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The En2/Xn~ x-ray irtensity ratios for 36 elements between 5~Sb and &5Am have been measured
with a Cauchois-type bent-crystal spectrometer and a Ge(Li) detector. The present experi-
mental results are systematically 5-10% higher than the values reported by Beckman and by
Wapstra et al. , but agree within experimental errors with the recent theoretical calculations
of Scofield.

INTRODUCTION

Measurements of the Ka,/Ka, x-ray ratios have
been carried out by Williams (24 & Z ~ 52}, ' Meyers
(23 4 Z ~ 49},' and Beckman (73 ~ Z 4 92}.' ' In

addition to these systematic studies, there have
been measurements made on a few specific ele-
ments. Waystra et af. ' give a table of Ka,/Ka,
x-ray ratios as a function of Z for 16 ~ Z ~ 100.
Their values are derived from a graph drawn
smoothly through the experimental values of
%'illiams, Meyers, and Beckman. ' '

Relativistic calculations have been carried out
by Massey and Burhop, ' Laskar, ' Payne and

Levinger, ' Asaad, 'Taylor and Payne, "Babushkin, "
and recently by Scofield„' Only Babushkin and
Scofield properly include the effect of retardation.
Babushkin uses a Coulomb potential with an effec-
tive nuclear charge to account for the screening of
the nucleus by the electrons, while Scofield" uses
the central potential given by the relativistic
Har tree-Slater theory. Scofield's theoretical
values are larger than those of Babushkin" which
in turn are larger than the experimental values of
Beckman' and the smooth curve of %'apstra
et al. ' Because of these discrepancies and the
lack of experimental values between»I and 72Hf,
we have measured the Ka,/Ka, x-ray ratios for
elements with Z& 50.
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pulse-height spectra were recorded. Except for
the absorption due to the quartz crystal, these
pulse-height spectra are the same as those re-
corded with a conventional Ge(Li) detector system.
In this case, the spectra were fitted by a function
which consisted of a sum of two Gaussians plus a
quadratic background. Figure 3 is a computer fit
to the En, and Ko, x-ray pulse-height spectrum
of Am.

The Ka,/Kn, x-ray ratios for elements»Sb to
»Am were then determined by correcting the rel-
ative ratios for the efficiency of the Ge(Li) detec-
tor, the self-absorption in the source, the absorp-
tion in the quartz crystal, the absorption in the
air path between the source and detector, and, in
the case of the data obtained from the diffracted
peak height, the ref lectivity of the quartz crystal.
Calibrated Co", Am"', and Cd' 9 sources were
used to determine the detector efficiency as a
function of energy in the range of 14-135 keV.
Figure 4 is a plot of the corrections applied to the
Kn, /Ka, x-ray ratios due to the efficiency of the
detector and the absorption due to the quartz crys-
tal and the air path. This correction is predom-
inantly due to the energy-dependent efficiency of
the Ge(Li) detector. The self-absorption correc-
tions to the Kn, /Ka, x-ray ratios were determined
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FIG. 3. Computer fit to the Am En~+X0.2 pulse-height
spectrum recorded with the spectrometer set at zero
Bragg angle.

where A is the ratio of self-absorption corrections,
w.)i is the fraction of the total y -ray intensity due
to the ith Ta'" y ray, p, , and p, , are the total ab-
sorption coefficients for the En, and Eo., x rays
of the fluorescent foil, p0i is the total absorption
coefficient for the ith Ta'~ y ray, and D is W
times the thickness of the foil. The appropriate
absorption coefficients were obtained from the
table of Storm et al. " The Ta'~ y-ray relative
intensities were taken from the Lederer et al. "
The self-absorption corrections varied from 1 to

1.05
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FIG. 4. Efficiency and quartz and air-absorption
corrections applied to the &0,'2/Eo. ~ ratios as a function
of Z.

5%%uq. Lind, West, and DuMond" have investigated
the quartz crystal ref lectivity in the region of 25-
1332 keV and have found that it varies as E-'. In
the present experiment, a E ' reflectivity was
assumed for all x-ray energies. Because of the
small En, -Ka, energy difference, any deviation of
the exponent from exactly 2 would introduce only
a small error in the Ea,/Ea, x-ray ratio. For
example, at Z= 51 only a l%%uo error would result
from using an exponent of 1.

RESULTS AND DISCUSSION

Table 1 lists the present results for the Ea,/Ka,
x-ray ratios along with the values obtained from
Scofield's E x-ray emission rates. The statistical
plus systematic errors in the present values are
estimated to be 4%%uo for elements where the direct
pulse-height spectra were used to determine the
intensity ratios (above Pt) and 5% for elements
mhere the diffracted pulse-height spectra were used.
A more clear comparison of the measured values
and the theoretical calculations are made in Fig.
5. As can be seen from the graph, the present
results are in good agreement with the theoretical
calculations of Scofield, but do not agree with the
calculations of Babushkin or with the measured
values of Beckman and the smooth curve of %'apstra
et al. Since the diffracted peak-height method used
in this work was similar to that used by Beckman,
the difference in the experimental values probably
lies in the applied corrections. Of the corrections
that were applied to the relative areas to determine
the Ka,/Ea, x-ray ratios, the most difficult to de-
termine was the self-absorption correction. In
Beckman's case, where high-energy electrons were
used to excite the x rays, it was necessary for him
to make the difficult correction for excitation of the
x rays as the electrons slowed down in the target.
When y rays are used to excite the x rays, as was
the case in the present experiments, the correction
is much simpler to calculate.

During the preparation of this manuscript, un-
published data of Ebert and Slivinsky" were made
available to us. They have measured the Ka,/En,
x-ray ratios for eleven elements from „Sm to „U
with a high resolution Ge(Li) detector. Their ex-
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TABLE I. A comparison of the experimentally determined Ko.2/Ke~ x-ray ratios with the calculated values of
Scofield.

51
52
53
55
56
57
58
59
60
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
90
92
93
94
95

Element

Sb

Te
I
Cs
Ba
La
Ce
Pr
Nd

Sm

Eu
Gd

Tb
Dy

Ho

Er
Im

Yb

Lu

Hf

Ta
W'

Re
Os
Ir
Pt
Au

Hg

Tl
Pb
Bi
Th

U

Np

Pu

Am

Present results

0.517
0.527
0.536
0.540
0.562
0.564
0.508
0.530
0.532
0.540
0.549
0.569
0.562
0.551
0.560
0.522
0.576
0.587
0.585
0.571
0.554
0.578
0.587
0.602
0.577
0.563
0.585
0.595
0.574
0.596
0.599
0.610
0.610
0.635
0.630
0.619

Ko&/Kn~ ratio
Scofield

0.534
0.537
0.539
0.542
0.543
0.545
0.546
0.548
0.549
0.553
0.554
0.556
0.558
0.560
0.562
0.564
0.566
0.568
0.570
0.572
0.574
0.576
0.578
0.581
0.5S3
0.585
0.588
0.590
0.593
0.596
0.598
0.619
0.626
0.629
0.633
0.636

perimental results are in good agreement with the
present measurements.

SUMMARY

0
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FIG. 5. Comparison of the experimental and theoreti-
cal Kn2/Ko(~ x-ray ratios. Solid circle, this work; open

circle, Beckman; solid line, nonrelativistic value; dot-
dash-1ine, Scofield; dashed line, Babushkin; dot dot-
dashed line, Wapstra et al.

A 2-m Cauchois-type bent-crystal spectrometer
and a Ge(Li) detector have been used to determine
the Ka,/An, x-ray ratios for 36 elements from
5 $Sb to 95Am . Experimental values in the region of
52 «Z «73 have been determined for the first time.
A comparison of the experimental results with
those of Beckman (Z & 73) shows the present re-
sults to be systematically 5 to 10% higher. The
present results are in good agreement with the
calculations of Scofield, which are based on the
central potential given by the relativistic Hartree-
Slater theory.
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Vacuum ultraviolet atomic nitrogen and oxygen lines can contribute significantly to the trans-
fer of energy in a high-density plasma for temperatures in the order of 1 eV. To calculate the
amount of energy transferred via these lines for optically thick conditions, the f value and

Stark half-widths are needed. This paper presents experimental measurements of these pa-
rameters which were obtained from a graphical solution to the curve of growth. The results
are compared with theory and other experimental data. A comparison is also made between
experiment and theory for the radiation emitted normally from an infinite homogeneous slab

by the strongest ultraviolet multiplets of these gases.

INTRODUCTION

Atomic nitrogen lines in the vacuum ultraviolet
contribute significantly to the energy transfer in a
nitrogen plasma. At temperatures in the order of
1 eV and greater they have been found to transport
as much energy in an arc column as by thermal
conduction. ' Presently, there is little experi-
mental data available for the parameters needed to
calculate this mode of radiation transfer. For
high-density plasmas where a Voigt profile may be

assumed as a first approximation for the line shape,
the parameters needed for a calculation of the line
radiation transfer are the Stark linewidth at half-
intensity and the f value. Electron broadened line
half-widths in the vacuum ultraviolet are very dif-
ficult to determine by direct measurement because
they are extremely small. Fortunately, for most
conditions where lines are important, the radiation
transfer is very nearly proportional to the square
root of the product off value and half-width. This
quantity may be readily determined from low-dis-


