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We investigate the influence of the electronic energy-band structure on the self-consistent charge density
and potential at solid-vacuum interfaces. A Kronig-Penny model in which the potential due to the positive
ions is simulated by planar attractive 8-function potentials is used to describe the electron-ion interactions.
The magnitude of the exchange-correlation potential is held fixed throughout the self-consistent calculation.
Outside the surface, the charge density responsible for the Hartree potential is given by the actual electron
density. Inside the surface it is given by the difference between the actual electron density and the electron
density which would exist if no surface were present. In general, lattice-potential-induced alterations of
the free-electron (i.e., uniform) bulk charge density may result in a substantial (e.g., 50 j&} decrease in the
size of the surface dipole potential. This decrease is caused by the occurrence of smaller charge deviations
at the surface. The magnitude of these deviations is influenced strongly by relatively small changes in the
parameters of the model. One-dimensional models predict substantially larger charge deviations than those
obtained using three-dimensional models.

I. INTRODUCTION
' 'T has been recognized for many years that the
~ ~ surface properties of a metal, as contrasted to its
bulk (transport and equilibrium) properties, are
dominated by the interactions of the conduction elec-
trons with each other rather than with the lattice
potential. ' ' This recognition has motivated the (ex-
clusive) use of jellium models to study the properties
of metallic interfaces. ~'4 In this paper we examine a
simplified Kronig-Penny description of the influence
of the lattice potential on the charge density and
electrostatic potential near a metal-vacuum interface.
Although the eQ'ects of the electron-electron inter-
actions predominate in the surface region, the results
reported herein indicate that a periodic lattice po-
tential can alter the surface dipole potential energy by
as much as a factor of 2, relative to its value for a
structureless, "jellium, " model of the ion-core charge
density.

Our model is motivated by noting, in analogy to
models of low-energy electron diffraction'~" (LEED),
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that the lattice potential causes two geometrically
distinct alterations of a jellium charge density. Con-
sider the lattice to be described as a series of periodically
repeating scattering planes parallel to the surface.
Treating these planes as "structureless" leads to
Darwin models of LEED intensity profiles which
describe the primary Bragg peaks in these profiles. '~~
This model is the one studied below. It provides an
adequate description of periodic variations in the
electronic charge density normal to the surface. The
geometrical structure of the individual ion cores within
each scattering plane leads to the spot pattern char-
acteristic of LEED intensities~' and to both multiple-
scattering' " and fractional-order'6'7'2 resonances in
the intensity profiles associated with each spot. It also
causes the charge density of the valence electrons to
vary periodically within the surface plane, an efI'ect
which is neglected in this paper. The large kinetic
energy associated with these charge-density oscilla-
tions is thought to cause them to be smoothed out in
the surface layer of the metals. " However, their
neglect constitutes a substantial deficiency in the model.

Our objective in this paper is an assessment of the
order-of-magnitude eGect on the surface charge density
and work function caused by uniform planes of "ion-
core" scattering charge. To achieve this objective, in
Sec. II we reformulate the local-density approxima-
tion'" " to the self-consistent calculation of the surface
charge density in order to incorporate the electron-
lattice potential due to these scattering planes. In this
section we also outline an approximate evaluation of the
surface charge density using an analytically solvable
one-electron model to define the basis states in the
presence of an exchange-correlation potential alone.
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In Sec. III we present results for our model "meta. l.
"

as well as for a one-dimensional model in which the
distinction between a metal and an "insulator" can be
made. We conclude in Sec. IV with a synopsis of our
conclusions.

II. DEFIMTION OF MODEL

A. Model Hamiltonian

The Hamiltonian describing the behavior of elec-
trons in metals (at zero temperature) can be written
schematically as "ec

0

Jrl.
21

JrL J5L
-0 0

Ilg

(hl

X Xgg+ Vg jtirt ~
(2.1a)

0

V. ;„,=Q V(r;—R„), (2.1c)

Ve,

for electrons with position coordinates r; moving in the
electrostatic field of ion cores at the positions R„.Spin
quantum numbers are suppressed throughout since we
do not consider spin-dependent interactions. Techniques
for reducing the solutions of Eqs. (2.1) to a tractable
procedure have been reviewed both for the calculation
of bulk band structures"' and of surface properties. ""
For simplicity and clarity, we confine our attention to
the treatment of K„ in the (self-consistent) local-
density approximation. "0"In this approximation, the
influence of the electron-electron interactions on the
motion of a given electron is described by a one-
electron potential V„, which depends on the local
electron density n, (r). The functional dependence of
V„on n, is specified by using various models for the
correlation energy as described by Kohn and Sham"
and by Bennett and Duke. '"We consider the ion core
centered about R„, to be described by a static charge
distribution n;(r —R„), and evaluate its influence on
the electronic motion in the Hartree approximation. '4

Using these model simplifications, Kqs. (2.1) become
the set of coupled one-electron equations

( —h'P(2m+V. ,Ln. (r))+V„(r) E)%e(r) =0, (—2.2a)

Fio. 1. Schematic diagram of the positive charge density (a),
electron charge density (b), exchange-correlation potential {c),
and electron-ion potential {d)' near a metal-vacuum interface.
The dashed line in (b} indicates the periodic component of the
electron density in the exterior cell. The positive charge back-
ground is assumed to be uniform sheets at x„=—nc, n)0. The
geometrical "surface" of the solid is at @=~~a. The V„curves are
sketched for the case that the maximum value of n, is less than
or equal to 10 cm ' (see Fig. 4 of Ref. 3}.

which are to be solved self-consistently. The bulk
Fermi energy is denoted by Ep.

The solution of Eqs. (2.2) for a given ion-core charge
density n;, and lattice geometry {E;),provides both
an energy-band structure of the "bulk" and a descrip-
tion of its surface properties. We wish to achieve only
the more modest goal of estimating the influence on the
surface properties of various (prescribed) electron-
lattice interactions. In order to visualize the ingredients
of an appropriate model description, we show in Fig. 1
a schematic diagram of both V,. and V„ for the n.,(r)
associated with uniform sheets of charge parallel to the
surface. The major deviations of the charge density from
the bulk (i.e., periodic) values occur in the exterior
cell (—-', a&x&-,'a). I et us decompose both V„and
V„ into bulk and surface parts:

n. (r) = Q i4'g(r) ~', (2.2b) V„.= Vb+ Vg, (2.3a)

V'V„(r) =4ire'LP n, (r —R;) —n, (r)), (2.2c)
V„=V...a+ V..., . (2.3b)

(2.2d)

~ F. Herman, Rev. Mod. Phys. 30, 102 (1958).
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York, 1969), Chap. 3.

~6%. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965);
145, 561 (1966).

The bulk potentials Vb and V„,b together with the ba.nd
structure of the material are obtained from the solu-
tions to Kqs. (2.2) using periodic boundary conditions.
In this limit, Eqs. (2.2) exhibit Bloch-function solu-
tions 'k~l, (r) defined by

( —h'P/2m+ V„,gfnb(r))+ Vg(r) —e, (k))

X%' v(r) =0, (2.4a)



1062 A. J. BENNETT AND C. B. DUKE 188

PV, =4irep(p n, (r—R;) —na(r)l, (2.4b)

na(r) = Z I+- (r) I'.
c(k) &Ey

(2.4G)

We perform our estimate of the influence of the
lattice potential on the electronic structure of the
surface by using the dipole approximation. '" Using
Eqs. (2.3) we define

V.,Ln, (r)g—= Vs„aLna(r))8(-', a—x)+V„,, (r), (2.5a)

V„(r)= Va(r)8(-,'a —x)+Ve(r). (2.5b)

The surface "dipole" potential is given by

V'Ve(r) =47re't na(r) n,—(r)5, (2.5c)

V„,(r) will be specified below. The important
feature of this approximation is that the sole entrance
of the bulk band structure into the determination of
the surface potential is via the occurrence of na(r)
in Eq. (2.5c). Therefore, once Eqs. (2.4) have been
solved self-consistently, their only role in determining
the dipole potential V~ occurs via their specification of
the "eifective" positive background charge na(r) in
the absence of a surface. This result motivates the
construction of our model problem in which the bulk
potential is prescribed a priori by a Kronig-Penny
model,

V...aLna(r) j+Va(r) —= V(x)
Ig2y2O,

= —U,+ g fi(x+na), (2.6)
n-0

A;2 d2

%@(r)= (e'a~~'~/QA)Xs, (x),

E=E,+k'k )P/2m,

(2.7a)

(2.7b)

+V (x)+Ve(x)+ V ....(x) E, —
2m dg'

X&@,(x) =0, (2.7c)

d'Ve/dx'=47re'Pna(x) n. (x)j,— (2.8a)

m EJ"

n, (x) =
2x2A' ' dE, (Er E,)—

(Bk)
XI —Il&a.(x) I' (2.gb)

ka p)

in which (Up+A'y'/m) is the average value of the
potential'0 of the bulk material. Using this model,
Eqs. (2.2) become those which we shall solve
numerically:

Equations (2.6)—(2.9) define the calculation of the
surface potential V~ and electronic charge density n,
in the presence of a surhce at x= pia for a specified
bulk periodic potential given by Eq. (2.6), with solu-
tions specified by Eqs. (2.9) plus periodic boundary
conditions. The requirement that no dipole moment
exists across the bulk solid uniquely determines the
truncation of na(x) at x= pa.

We use the limit of a semi-infinite continuum so that,
for a free-electron material, we have

Er =h'(3x'n) ' /2m (2.10)

in which 8 is the average electron density per unit
volume. ' " The wave functions are normalized by
requiring that in the limit of a uniform, infinite lattice,
we have

X.a(x) =e*'*u.a(x),

u„a(x+a) =u„a(x),

cell
Iu„,(x) I'dx=1.

(2.11a)

(2.11b)

(2.11c)

The solution of Eq. (2.7c) in the presence of a surface
at x= ~a is described in Secs. II B and II C. Here, we
only need to observe that Eqs. (2.11) suffice to specify
the normalization in this more general case also.

B. Basis States in the Absence of a
Periodic Potential

Vp(x) = —AP(1 —$) ',
e(z—xp)/e

(2.12a)

(2.12b)

We are interested in the nondegenerate continuum
of solutions to Eq. (2.7c) in the absence of a lattice
potential:

We already have noted that in carrying out self-
consistent —field calculations in the absence of the
lattice potential, it is convenient to use a model one-
electron potential for which the Schrodinger equation
can be solved analytically. This procedure permits the
calculation of charge densities by simple quadrature,
and the use of the parameters of the potential as
variational parameters in the iteration process. ""We
also impose the requirement that the potential be an
analytic function of position in order to eliminate the
possibility of spurious oscillations in the charge density
associated with joining conditions on the wave
function. "

A suitable potential proposed by Kckart" is given by

——h2 d2

+V(x) —p. (k) X a(x)=0,
2FPL dX

(2.9a) /
—1'a' d' h2k2

-+Vp(x) — va&P&(x) =0.
&2m d~ 2m

(2.13)

na(x) =
~V&2 O

Bk
d p(Er p) I &~a(x) I

—' —(2.9b).
86

"M. E. AlferieG and C. B. Duke, „.Chem. Phys. 46, 938
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The bounded eigenfunctions of this equation, E&A,
which decay exponentially for x))xo, are given by29 ~

x."'(x)= (-~)'" (I-&)-"-
XFPiks+», 1+iks+g, 1+2», (1—k) 'j, (2.14a)

The Jost functions Pq~+& are defined to be the solutions
to Eq. (2.13), in which k is an undetermined parameter
to be chosen conveniently at a subsequent stage of the
analysis. Insertion of Eqs. (2.17) into Eq. (2.7c) gives
the equation satisfied by the functions u&(x):

k'=2mB /k'

& =2ms (~ —Z.)/k',

(2.14b)

(2.14c)
+2 —lng&, &+& —+ (o' —k')

-dx dS dx

in which F(a,b; e,s) denotes the Gauss hypergeometric
function. " The Jost-function solutions which become
plane waves as x —+ —~ are given by

—2y'a Q b(x+na) u~&, (x) =0, (2.18)
nm

d &+&(x) = ( f)+'"'—F(&iks », &i—ks+g, 1+2iks, $) a' =2mE~/k'. (2.19)

—&
e+*'~* as x -+ —~ . (2.15)

The bounded eigenfunction, (2.14a), is a linear combina-
tion of the Jost functions described by Bennett and
Duke. "The Jost functions are utilized in Sec. II C as
the appropriate one-electron basis states in terms of
which the wave function in the regions between the 5

functions in a Kronig-Penny model can be expressed.

C. Envelope-Function Approximation

Our model iterative solution to Eqs. (2.7) is based on

taking

V(x)+ Ve(x)+ V„,.
/k'y'a)—= Vo(x)+~

~
P f'&(x+na) (2.16)

m )-~

in'&, + ikx——+O(x'), (2.20)

in which the terms O(x') are nonzero only near x=-', u.
The envelope-function approximation is defined by
neglecting the terms 0(xm) in (2.20). Evidently these
terms may be taken into account using perturbation
theory by treating

/d in' „+ qdu~, «&

J dx

In general, in&~&+) is a nonlinear function of x, so that
Eq. (2.18) assumes a complex form. However, the
coefficient of the du/dx term in Eq. (2.18) may be
expanded a,ccording to

=EX&,&'& (x), x) -', a. (2.17)

~ F. Oberhettinger, in Handbook of Mathe7natical Functions,
edited by M. Abramowitz and I. A. Stegun (U. S. Dept. of Com-
merce, National Bureau of Standards, Washington, D. C., 1964),
Appl. Math. Ser. 55, p. 555,

~The result (2.14) is obtained by introducing the variable
substitution (2.12b) into Eq. (2.13}and writing

x=expt iks ln(g}jF(g}.

One finds immediately that F(P) satisfies the hypergeometric
equation. The solution (2.14a} in the text is the exponentially
decaying series expansion about the singular point g= ~. It is
given by Eq. (15.5.8) in Ref. 29, from which Eq. (2.14) is ob-
tained by use of Eq. (15.3.4) in Ref. 29. Equation (15.5.13) con-
tained in Ref. 29, which purports to give (2.14} directly, is in
error.

in Eq. (2.7c). The "inner-potential" Vo(x) is defined by
Eqs. (2.12). The dipole contributions to the surface
potential are obtained by determining Ve(x) from Eqs.
(2.8) via an iterative procedure.

Our immediate task in this subsection is the solution
of Eq. (2.7c) using Eqs. (2.12) and (2.16) to specify the
potential as a function of the four parameters A, s, xo,
and y. Unfortunately, we have not succeeded in ob-
taining an exact solution for the wave functions. The
wave function is written as

xg, (x) =y„&+&(x)u&,(x)+e"'yg&—
&(x)u &, (x), x(a/2;

as the source term for an inhomogeneous equation
for a correction term N~g&". This zeroth-order term

is obtained by use of the envelope-function
approximation. As we shall use s xo a in Eq. (2.12b),
we expect I&" to be small except possibly in the cell
at the interface.

By use of the envelope-function approximation, we
have reduced Eq. (2.18) to that for the cell-periodic
part of the Bloch functions in a Kronig-Penny model.
Thus the envelope-function approximation defines a
sort of generalized e6ective-mass approximation, " in
which the wave-vector dependence of the cell-periodic
functions is not neglected. This generalization is
crucial in our problem because the charge density is
comprised of a superposition of the moduli of wave
functions associated with k vectors from large regions
of the Brillouin zone. In addition, the solutions to the
one-dimensional Kronig-Penny model with 6 potentials
have been studied extensively. " ~ Therefore, the
results for the ua&(x) are readily available and are

»%. Kohn, Solid State Phys. 5, 238 (1957).
» D. S. Saxon and R. A. Hunter, Phillips Res. Rept. 4, 82

(1949).
3' E. Aerts, Physica 26, 1047 (1960); 26, 1063 (1960).
34P. Schnupp, Solid State Electron. 10, 785 (1967); Phys.

Status Solidi 2I, 567 (1967).
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(a) E{eV|
2--

(2.17), in which R and i) are determined by continuity
of X and &fX/Cx at x =-',a. The X),&", &ke'+', and e&q

"& are
specified by Eqs. (2.14), (2.15), and (2.21), respectively.
If we define

&+)—P &+) (x)N &0) (x) (2.24)

&/a we obtain the formulas used in our numerical calcula-
tions:

e'=LE'(x&'), x&+))/lV(x& —),x&'&)j .„, (2.25a)

R =LW(&«
—

&,)«+))/ll'()«-&, )&&'))j .„, (2.25b)

(b)
/X' JX]

()&1 ~2) )&1 )&2

Qx 2$
(2.25c)

- F/a V/a

G„= 27K/a

F1G. 2. (a) Solid line shows the electron energy versus momentum
perpendicular to the junction for the Kronig-Penny model used
to represent a hypothetical metal. The dashed curve shows free-
electron behavior. The latter curve has been shifted to remove the
sects of the averaged 8-function potentials. (b) Fermi surface of
the model meta'f.

The hypergeometric functions used in XI, ('& and @/, (+)

are evaluated directly from the Gauss hypergeometric
series." If the argument of one of these functions be-
comes greater than unity, then one of the variable
substitutions given by Eqs. (15.3.4) or (153.5) in
Ref. 29 is used to reduce the argument to a value inside
the circle of convergence for the Gauss series. The
I),& &(x) are evaluated directly from Eqs. (2.21). The
densities n, (x) and n&, (x) are evaluated by numerical
performance of the integrals in Eqs. (2.8b) and (2.9b).

given by

up &'& (x) =Sic-"&*+"'&[sinn(x+no)

—e '~~ sinn(x+)iu —a)j,
r&a —,'a& x—&-—na+-', a; (2.21a)

sin 20.a
~VI, = —1—

sin~+ -»2
—coska cosoa—,2.214

for the normalization specified by (2.11c). Equations
(2.17) and (2.21) specify a solution to Eq. (2.18) if
and only if k is related to the energy E, Li.e., the
parameter n defined by (2.19)j via'2

coska = cosna+ (y'a/n) sinna . (2.22)

In the case of bulk band-structure calculations, the
parameter k is determined from periodic boundary
conditions so that Eq. (2.22) determines" the E (k)—= e„(k) dispersion relation to be used in Eqs. (2.9). In
our case, k is treated as a continuous index whose

integration range is specihed by the restriction

Ee) e„(k) (2.23)

in Eqs. (2.8b) and (2.9b) for the density.

D. Wave Functions and Electron Densities

The electron density defined by Eq. (2.8b) is ob-

tained using wave functions of the form given in Eq.

III. NUMERICAL RESULTS AND CONCLUSIONS

A. General Results

Before presenting detailed computations, let us
first survey the basic results obtained. At both jellium
and metal surfaces a dipole potential, due to the
"spreading" of electronic charge into the vacuum,
occurs. It raises the work function of the material.
However, any real metal surface is microscopically
rough because of its characteristic protrusion of atoms
into the vacuum. Therefore, a reverse dipole is formed
by the smoothing of the electronic charge density. "
When the microscopic roughness of the surface is
ignored, as in our model, there are two principal eGects
which distinguish between the results obtained for the
metal-vacuum interface and those for the jellium-
vacuum interface.

First, as may be seen from Eq. (2.5c), the size of the
dipole potential roughly scales with the size of the
difference between the actual electron charge density
calculated for the finite sample and the electron density
which would exist in the sample if no surface were
present. The charge deviation is confined to a region
close to the surface, and the surface is at the point —,'a
(e is the lattice constant), where the undisturbed charge
density has a minimum. Thus, for attractive lattice
potentials Ly'&0 in Eq. (2.16)j the eifective back-
ground charge density ne(x) near the surface is less
than the constant charge density in a comparable
jellium sample. This result tends to reduce the size of
dipole at the metal-vacuum interface relative to that
at the jellium-vacuum interface.
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The second eAect is due to the importance of the
cosinelike wave functions associated with k vectors
near the Brillouin-zone boundary which account for
the pileup of electron density near the atoms (or sheets
of positive charge in our model). Relative to lower-

energy electrons, the large-k vector electrons are
influenced by a small exchange-correlation potential.
Therefore, these (high-energy) electrons preferentially
spread into the vacuum. This result can cause changes
in the charge density near the metal surface which
are not present at the comparable jellium surface. In
particular, the charge density at the site of the atom
closest to the surface may be substantially reduced.
This reduction tends via Eq. (2.5c) to increase the
dipole layer over that at a jellium-vacuum surface.
In three-dimensional models'"" a phase-space factor
(EI E,), asso—ciated with electrons moving parallel
to the surface, appears in Eqs. (2.8b) and (2.9b) for the
density. As emphasized by Bennett and Duke, ' ' this
phase-space weighting reduces the contribution of the
high-energy electrons to the dipole potential. A more
realistic model of the band structure might diminish
the importance of the (En E,) factor.—Therefore, we
utilize a one-dimensional calculation in which (E/ E,)—
does not appear in the expressions for the density to
illustrate the potential importance of this latter effect
opposing the erst one.

Sections III 8 and III C consist of a comparison
of the jellium (free-electron) —vacuum junction results
and the metal (non-free-electron material)-vacuum
results for three-dimensional and one-dimensional
models, respectively. The separation energy S, i.e.,
the amount of energy required to remove an electron
from the system in the absence of the dipole potential,
is chosen to be a function only of the average density
and hence is not affected by the lattice potential. In
particular, the lowering' of the electron-dispersion
curves due to the averaged 8-function potentials is
1gnol ed.

B. Three-Dimensional Model

In order to estimate the difference between the dipole
potentials and charge densities at a metal-vacuum
interface and those at a jellium-vacuum interface, we
first consider a metal with lattice constant II=2.75 A,
in which the Fermi energy E~ is chosen equal to
a(k, =Ir/a) as shown in Fig. 2. The strength of the
attractive 8-function potentials of the Kronig-Penny
1Tlodel, y', is chosen equal to —2.07' 10" in order to
ensure a reasonable amount of deviation from free-
electron behavior. Similar calculations are then per-
formed with y=o and n=3.0, i.e., for a comparable
jellium-vacuum situation.

A self-consistent iteration scheme similar to that
used in our previous work'"" is utilized. V()(x) LEq.
(2.16)j is represented by the Eckart potential PEq.
(2.12)g with the parameters /f and x() chosen to repre-

(o)

(n&-n )/10 e/ce
/2

I I

-3 -2 ~ )I
x(al )
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{I) {.0 .-
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FIG. 3. (a) Example of the electron-density deviations obtained
at an intermediate stage of the iteration procedure for a three-
dimensional model of a metal-vacuum interface. The points are
the calculated density deviations. The solid lines represent the
linear model of the positive deviations and the exponential model
of the negative deviations. The surface is originally taken to be
at x=~u, but with the use of an analytic continuation (dashed
lines) of the model deviations, its position is shifted to x=y& to
assure change neutrality, The points shown in (b) denote the
converged calculated density deviations at the n=3.0)&10
e/cm' three-dimensional model of a metal-vacuum interface.
The points in (c) denote the converged calculated density devia-
tions at the n=3.0)&i(P e/cm' three-dimensional model of the
jellium-vacuum interface. The solid curves in (b) and (c) repre-
sent the linear fit to the positive density deviations and the ex-
ponential 6t to the negative density deviations.

sent the calculated potential at various stages of the
iteration procedure. The width of the potential, s, is
held fixed and equal to the "reasonable" value of 3 A; A
is chosen equal to the sum of S (the fixed separation
energy) EF and Va (the over-all change in dipole
potential across the surface); and xn, as explained below,
is adjusted to ensure charge neutrality. The iteration
procedure consists of the following steps:

(i) A starting potentia, l is defined by

/f =S (n)+EF, x()——0,
where n is the average density deep inside the material
and our previous jellium-model dependence' of 5„
on n is used to obtain a value for the separation energy.
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(ii) The electron densities n, (x) and n()(x) are cal-
culated from Eqs. (2.8b) and (2.9b), respectively. The
difference Lnn(x) —n, (x)j is plotted as shown in Fig.
3(a). The regions of positive and negative net effective
charge are represented by "6tted" linear and ex-
ponential curves, respectively, as shown in Fig. 3(a).
Each curve is extended across the boundary beyond
its proper domain of definition and the actual position
of the surfaces, y~, is chosen to guarantee the integrated
neutrality of the "effective" charge nb —n, .

(iii) The total change in potential across the junc-
tion, Vq, is calculated with the use of Eq. (2.5c) and
the model charge deviations.

(iv) The potential to be used in the next iteration
is defined by setting

A=S (n)+Vg+E/

xe ——x()—(yi —-,a) .1

Steps (ii)-(iv) are repeated until convergence is ob-
tained. This occurs, in general, after approximately
four iterations.

As noted elsewhere"" the use of the model charge
deviation is required to ensure proper convergence of
the iterations. The particular model used here is
chosen for convenience in treating the metal-vacuum
interface. Although difI'erence from that used pre-
viously" to treat the jellium-vacuum interface, it
yields results similar to those obtained in that analysis. "

I I

-6 -4 -2 ~ 2 4 6 8
X(A)

FIG. 4. {a) Converged model potential at the three-dimensional
metal-vacuum interface with n=3.0X10 e/cm'. (b) The dashed
line represents the charge density nb in the material with no
surface effects present. The solid line represents the converged
calculated electron density n, .

The converged calculated charge deviations and
model deviations for the metal-vacuum interface are
shown in Fig. 3 (b). The model charge deviations provide
a good representation of the calculated charge devia-
tions. The converged model potential and electron den-

sity are shown in Figs. 4(a) and 4(b), respectively. The
total change in the dipole potential across the surface
is 0.86 eV.

The converged density deviations and model devia-
tions for the jellium-vacuum interface are shown in
Fig. 3(c). The converged model potential and electron
density for this interface are shown in Figs. 5(a) and
5(b), respectively. The total change in dipole potential
across the surface, 2.25 eV, is more than twice that
present in the metal-vacuum case. This is largely due,
as may be seen from Figs. 3(b) and 3(c), to the first
eGect of Sec. III A, i.e., the larger maximum charge
deviation at the jellium surface.

The occurrence of Friedel oscillations in the charge
density is evident in Fig. 5(b). They are larger in this
case than in our previous analyses. '" One reason for
this result is the use in step (iii) of our present itera-
tion procedure of a model potential, Vq(x), which does
not exhibit oscillations in the potential associated with
oscillations in the charge density.

(a) "Y(x)
x* o/2

Y& *2.25ev
lt

S„=l.96ev

EF 3.48CV
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V(eV)
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Fzo. 5. (a) Converged model potential at the three-dimensional
n=3.0)(j.0 e/cm jellium-vacuum interface. {b) Dashed line rep-
resents the density in the material, nb, with no surface eBects
present. The solid line represents the converged calculated elec-
tron density n,.

C. One-Dimensional Calculations

Calculations similar to those described in Sec. III 8
were performed for a one-dimensional jellium model
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= }r/a) with p'= —2.07X10",was equal to the density
obtained in the full three-dimensional calculation
L3.0&&10" cm 'j. This makes possible a self-consistent
calculation for the one-dimensional case which can be
compared with that performed for the three-dimensional
case.

A typical charge deviation found in step (ii) of the
iteration procedure is shown in Fig. 6(a). The model
charge deviation used to represent the numerical one
also is shown in the figure. The model consists of a
region of constant charge deviation and one of ex-
ponentially varying charge deviation. The constant
value of the density deviation inside the material, p&,

is adjusted so that
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in order to investigate the importance of the second
effect of Sec. III A, i.e., the importance of the pre-
ferential spreading of zone-boundary wave functions
into the vacuum. The iteration procedure used was
similar to that described in Sec. III B. There were,
however, two differences. The three-dimensional ex-
pressions for the densities, Eqs. (2.8b) and (2.9b),
were replaced by

-I 5.-

FzG. 6. (a) Example of the density deviation obtained at an
intermediate stage of the iteration procedure for a one-dimensional
interface. The points are the calculated density deviations. The
solid lines represent the constant model of the positive deviations
and the exponential model of the negative deviations. The
surface is originally taken to be at x=$u. With the use of a
continuation (dashed lines) of the model deviations, its position
is shifted to x=yi to assure charge neutrality. The points in (b)
are the converged calculated density deviations at the
n=3.0)&10 e/cm' one-dimensional model of a metal-vacuum
interface. The points in (c) are the converged calculated density
deviations at n =3.0)&10 e/cm one-dimensional jellium-vacuum
interface. The solid lines in (b) and (c) represent the constant
fit to the positive density deviations and the exponential fit to
the negative density deviations.
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where c, d, and the parameters of the exponential curves
are fitted to the calculated points. As in the three-
dimensional calculation, the model curves are extended
across the boundary beyond their actual domain of
definition, and a new position of the surface, yi, is
chosen to guarantee charge neutrality in the model
system.

The converged density deviations, model potential,
and electron density for the one-dimensional metal-
vacuum interface are shown in Figs. 6(b), 7(a), and
7(b), respectively. The total change in dipole potential
across the junction is 1.54 eV. The analogous quantities

and

C E~ dk
n, (x) = dE.——~ixg, (x) i'

2x p de)
(3.1)

2C
ne(x) =—

p

dk
dE,—

i
X„,(x) i'.

8e
(3 2)

The constant C was chosen such that the average
density n calculated for the full band, i.e., E}=o(I}

} I I

-6 -4 -2
I I I

~
2 4 6 8

x(a)

FyG. 7. {a) Converged model potential at the one-dimensional
metal-vacuum interface with n=3.0)&10 e/cm. ' (b) Converged
calculated electron density at the interface t see Fig. 6(b) to
obtain the periodic component of the density).
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shown in Fig. 3(a). Consequently, the local minimum
in ni, (x) at x= 2a is no longer effective in reducing the
dipole potential from its value in a jellium model. This
is a significant result because it shows how sensitive
the charge density (and hence V&(x)j is to the phase-
space weighting factor PEr Ej—in the three-dimen-
sional model. It is precisely this sensitivity which led
us to emphasize in previous analyses' " the possibility
of large charge-density redistributions at metal-semi-
conductor interfaces, in analogy to their occurrence at
bimetallic interfaces. Comparison of Figs. 3 and 6 leads
to the general conclusion that for one-dimensional
models Lwithin the framework of which Figs. 6(a), 6(b),
and 7 represent results for a genuine "semiconductor")
the absence of phase-space restrictions on the high-
energy eigenstates, E, Eg, leads to much larger charge
deviations than occur in three-dimensional models.
This pathological feature of one-dimensional models
suggests that they are not suitable for studies of the
electronic structure of solid interfaces.

-8 -6 -4 -2 ~ 2 4 6 8
x(A)

FIG. 8. (a) Converged model potential at the one-dimensional
jellium-vacuum interface vvith n =3.0)&10 e/cm . (b) Dashed line
represents the charge density n& in the material with no surface
eBects present. The solid line represents the converged calculated
electron density n, .

at a one-dimensional jellium-vacuum interface are
shown in Figs. 6(c), 8(a), and 8(b). The size of the
dipole potential is within the accuracy of the calcula-
tion approximatelx the same as that found for the one-
dimensional metal-vacuum surface.

A comparison of Figs. 6(b) and 6(c) shows that the
maximum charge deviation is greater for the case of
the jellium surface than for the model metal surface
just as was true in the three-dimensional calculations
of Sec. III B. Now, however, the zone-boundary
electrons which preferentially spread into the vacuum
contribute significantly to the charge density at the
first plane of atoms (i.e., x= 0). This causes a net posi-
tive charge deviation Lni, (r) —n, (r)j at the "center"
of the first plane of atoms, thereby extending the charge
density farther into the material than in the three-
dimensional junctions, and simultaneously causing it to
be an oscillating function of the penetration depth
from the surface. These effects render the value of
n, (2a) much less important in determining the value of
the dipole potential then in the case of a small mono-
tonically decreasing density deviation such as that

IV. SUMMARY

The influence of band structure on the self-consistent
charge density and dipole potential at solid-vacuum
interfaces has been examined. Ignoring atomic structure
parallel to the plane of the junction, we have used a
simple planar Kronig-Penny model to represent the
ion potentials. The exchange and correlation potentials
are held fixed through the calculation. Only the charge
deviations closest to the surface are considered, and
those are represented by analytic forms at intermediate
stages of the iteration procedure. This accounts for
errors of perhaps 20% in our results, but enables us to
identify and estimate two effects which differentiate
the jellium-vacuum and metal-vacuum interfaces. The
first effect, the smaller magnitude of the charge devia-
tion at the metal surface, reduces the size of the dipole
potential relative to that at the jellium surface. This
result is clearly demonstrated in the three-dimensional
model of Sec. III B.A second effect, the greater penetra-
tion into the material of the density deviation in the
case of the metal, raises its dipole potential with respect
to that at jellium surface. In the model used in Sec.
III B, a phase-space factor largely eliminates this
effect. However, the results of Sec. III C, where a
one-dimensional model is used, show that for particular
band structures, the second effect predominates. The
dipole at a single-crystal surface of a metal is thus shown
to depend on particular features of the metallic band
structure, and on the details of the model used to
describe this band structure.


