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A symmetrized form of the relativistic augmented-plane wave (RAPW) method is described. This sym-

metrized relativistic APW technique (SRAPW) uses the double-space-group projection operators to greatly
reduce the size of the Hamiltonian matrix that must be dealt with on symmetry points and lines. This
enables one to obtain better convergence than can be obtained with the unsymmetrized RAPW technique
and identifies the symmetry properties of the states found. The technique has also been generalized to
include the effects of a nonconstant potential outside the mu6in-tin spheres. The SRAPW method is then

applied to gray tin to test a number of potential approximations, including non-self-consistency and the
treatment of exchange as well as the various features of the muon-tin approximation to the model potential.
The results show that, of the terms left out of the muffin-tin approximation to the model potential, the
additional warping of the potential outside the mufEn-tin spheres has the most significant effect.

I. INTRODUCTION

HK relativistic formulation of the aumented plane
wave method' (APW) by Loucks' has been used

with much success by many workers. This relativistic
(RAPW) method was obtained by using the relativistic
basis functions and rewriting the variational quantity
that gave the nonrelativistic method to use the Dirac
single-particle equation. The approach has yielded such
good results that the RAP% technique has become the
most frequently used ab iniA'0 technique for energy-
band calculations of high-Z materials.

There are, however, three good reasons for reformu-
lating the technique to make use of the additional
crystal symmetry as was done for the nonrelativistic
technique. ' The first and most obvious reason is the
reduction in size of the basis set. This is not only

~ Part of this work represents a thesis submitted to the Physics
Department, MIT, in partial fulfillment of the requirements for
the Ph.D. degree, 1968. Part of this work was supported by the
National Science Foundation and Kennecott Copper Corp.

f Supported in part by the Advanced Research Projects Agency
through the Northwestern University Materials Research Center.' J. C. Slater, Phys. Rev. 92, 603 (1937).

s T. L. Loucks, Phys. Rev. 139, 1333 {1965);Augmented Plane
8'ave Method (W. A. Benjamin, Inc., New York, 1967).' J. H. Wood, Phys. Rev. 126, 517 (1962).

economically desirabl- cutting down computation
time by over an order of magnitud- but necessary for
accuracy and convergence. Second, one can quickly and
correctly indentify states, since one knows the trans-
formation properties of the basis functions, and thus of
the trial function. The third reason is that the secular
determinants will have only first-order roots, which are
more widely separated in energy and, hence, easier to
locat- a feature that can only be fully appreciated by
those who have actually done an RAP% calculation.
These advantages of the symmetrized RAPW technique
(SRAPW) will exist whenever there exists the additional
crystal symmetry, i.e., on the symmetry points, lines,
and planes.

The symmetrized relativistic APW (SRAPW) method
has been developed using a modified, but equivalent,
form of the RAPW matrix elements. This symmetriza-
tion is greatly facilitated by the realization that the
same RAPW technique can also be obtained by using
Pauli spinors in the region outside the muffin-tin
spheres in a I'oldy-Wouthusen transformed Dirac
formalism. (See Appendix A.) The SRAPW method has
also been extended to include a more general "warped
muffin-tin" potential approximation which requires only
that one spherically average the model potential out to
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the mufIin-tin sphere radius. 4 This SRAPK method and
its extension to the warped mufIin-tin potential is
developed in Sec. II.

As a severe test of the SRAPK method, we study the
energy-band structure of gray tin. Gray tin has a
diamond structure which is nonsymmorphic, so that
one is dealing with a more general case than the fcc of
bcc materials. Further, the mufIin-tin approximation
is inadequate for the diamond structure, so that one can
study the effects of the various approximations made
for the model potential in addition to the various ways
of constructing it. This is only possible because the
energy-band structure is reasonably well known from
experimental data. Groves and Paul' 6rst combined
successfully the data available to them to create a model
band structure into which additional data has fit well. '
Filling in the positions of the bands away from the
Fermi energy bands by using the optical data of
Cardona and Pollack, ~ one can set up a set of energy
bands to be identified as the experimental data. To fill
in any gaps that cannot be assigned directly from experi-
ment, one also has the extensive work of the Herman
group' using orthogonalized plane-wave techniques.

In all ub initio energy-band calculations, the first and
most significant problem is the question of what model
potential is to be used. It is here that a great deal of the
physics is to be included (or omitted), so the approxima-
tions used to construct the model potential should be
constantly reviewed. The approximation used for con-
structing the model potential that is currently receiving
the most attention is the Slater p"' (Thomas-Fermi)
exchange term. ' The one other approximation which is
widely used (and which has not received quite as much
attention) is the omission of the self-consistency require-
ment. This omission leaves one with uncertainties in
what atomic con6guration should be used to set up the
model potential. In this paper, the model potential con-
structed by overlapping free-atom potentials and charge

4 The term warped muQin tin has been introduced to distinguish
between the addition of the correction terms outside the spheres
and the "nonspherical" correction terms inside the spheres. Out-
side the spheres, one is dealing with plane waves and Fourier
analyses, whereas inside the spheres one is dealing with spherical
harmonic decompositions. Thus, only inside the spheres should the
term nonspherical be applied.'S. Groves and %. Paul, in the Proceedings of the Seventh
International Conference on the Physics of Semiconductors, Paris,
1964 (Academic Press Inc. , New York, 1965); Phys. Rev. Letters
11, 194 (1963).' The newer data has been discussed in a recent paper by A. W.
Ewald I Helv. Phys. Acta 41, 795 {1968)j.' M. Cardona, K. L. Shaklee, and F. H. Pollack, Phys. Rev.
154, 696 (1967); M. Cardona, P. McElroy, F. H. Pollack, and K.
L. Shaklee, Solid State Commun. 4, 319 (1966).'F. Herman, R. F. Kortum, C. D. Kuglin, and R. A. Short,
Quantum Theory of Atoms, Molecules, and the Solid State: A Tribute
to J. C. Slater (Academic Press Inc. , New York, 1966); J. Phys.
Soc. Japan Suppl. 21, (1966};J. P. Van Dyke and F. Herman,
Bull. Am. Phys. Soc. 13, 413 (1968); and (private communica-
tions). F. Herman has kindly made the relativistic OPW data
available.

9 J. C. Slater, Phys. Rev. 81, 385 (1951); W. Kohn and L. J.
Sham, ibid. 140, A1133 (1965); R. Gaspar, Acta Phys. Acad. Sci.
Hung. 3, 263 (1954).

TABLE I. Description of calculations. Lattice constant a = 12.26664
a.u. APW sphere radius 8=2.636227 a.u.

Name

SE1
SX3
SE6

Con6guration
used

5s 5pg(22 5pg2
5s 5pi(2' 5pg2

5s' 5pyyp

Exchange
scaling
factor

densities' and then using the p"' exchange approxima-
tion are adhered to. Other prescriptions do exist, but
thev are primarily of use for transition metals. "Kithin
the model potential prescription used, there are two
"parameters" which can be varied; namely, the ex-
change scale factor and the configuration. (Of course,
for gray tin one would expect to find the sp' configura-
tion to be the "best" choice. ) The various calculations
done as a result of invoking these choices are described
in Table I.

The other approximations to be dealt with are the two
parts of the mufIin-tin approximation to the model
potential: (a) the use of the constant potential in the
region outside the muffin-tin spheres, and (b) the
spherical averaging in the inside region. This approxi-
mation is usually, but not always, ""used in APK
calculations. For the fcc and bcc lattices with a low-Z
material, it works very well. However, for diamond-
structured materials such as gray tin, the situation is
very di6erent. Since two-thirds of the volume in the
unit cell is 0NIside the mufIin-tin spheres for this struc-
ture, the use of a mufIin tin looks like a nearly free-
electron model calculation. For example, Kweon" had to
use the mu6in-tin height as a disposable parameter in
his calculation for diamond to get the right band gap.
The situation is, in fact, much better in diamond than in

gray tin, since the lower Z of diamond implies that the
outer electrons are more tightly bound to the nucleus
and so remain more inside the muffiin-tin spheres. Kith
so much volume outside the mufIin-tin spheres, an inter-
mediate approximation between the mufIin-tin approxi-
mation and the use of the full model potential can be
tried. This warped mufIin-tin approximation keeps the
spherical averaging within the muffin-tin spheres but
uses the actual model potential in the region between
the spheres. The calculations for the various potentials
in both the mufIin-tin and the warped mufIin-tin ap-
proximation are described in Sec. III.

For the diamond-structured gray tin, the warped
mufIin tin is seen to be not quite adequate, although

'0 D. Liberman, J.T. Waber, and D. T. Cromer, Phys. Rev. 137,
27 (1965)~ We are grateful to J. Waber for making all the atomic
data available."S.Wakoh and J. Yamashita, J. Phys. Soc. Japan 21, 1712
(1966); S. Asana and J. Yamashita, ibid. 23, 714 (1967).

'~ P. D. DeCicco, Phys. Rev. 153, 931 (1967)."W. E. Rudge, MIT Solid State and Molecular Theory Group,
Quarterly Progress Report No. 68, p. 2 (unpublished); Phys.
Rev. (to be published)."R.Keown, Phys. Rev. 150, 568 (1966).
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much better than the muffin-tin approximation. As the
remaining corrections are small, several adjustment
procedures are explored as an alternative to including
the nonspherical terms within the muffin-tin spheres
(at which point one would be using the full model
potential). These calculations are discussed in detail in
Sec. IV. Finally, Sec. V discusses the conclusions of this
work as it applies to work presently in progress.

G. METHOD OF CALCULATION

The SRAPW method is based on the use of the ful. l
crystal symmetry to form the basis set in a relativistic
APW calculation. To formulate the procedure, it is
convenient to start with a modihed form of the unsy~-
metrized relativistic APW matrix elements obtained by
I.oucks' for a muffin-tin potential and then add a nonfat
potential outside the AP%' spheres to correct the muffin-
tin approximation. "The modified form of the matrix
elements for the muffin-tin potential problem can be
obtained by a Bessel function identity" and some
recombining of the a-sum terms to get a sum on /. The
matrix elements then take the form

M (k's', ks) —= (k's'
~

H E i ks), —

=(s'i s)M~'~(k' k)+(s'i Mso(k' k) i s)

M~e(k', k) =(k' 1 —E)U(k —l ')+(4 R'/n)S(k —1 ')

XQ Pl(k' k)j i(&R)j i(&'R)&i(E),

M (k', k) = (i 4Rs' Q/)S(k —k')

XP P('(k' k) j&(kR)j((k'R)g((E)
l

8(k'Xk) e,
S(k—k') =P expi(k —k') .t,

U(k —k ) = hagi —(4mR /Q)S(k —k )

X[j~(~k —k'~ R)/[ k —k'~ ],
«(E) =fL&fs(R E)/g~(R E)j

+(l+1)gcf i i(R,E)/gi i(R,E)$,

g((E) =of((R,E)/g((R, E)

cf i g(R,E)/g i
—i(R,E)—( 1+21) R/.

In these expressions, 0 is the volume of the unit cell, E
is the radius of the APW spheres, t is the position of the

"The integral techniques used by L. F. Mattheis, Phys. Rev.
133, 1399 (1964), have been used to set up the mufBn-tin potential
instead of the differential techniques of Loucks. It should be
pointed out that Loucks, in determining the mufBn-tin floor by
averaging between the mufBn-tin and atomic volume radii, makes
a small error by including part of the adjacent mufBn-tin spheres.
This is unnecessary as it is just as easy to average over the true
signer-Seitz cell."J.0. Dimmock {private communication); L. F. Mattheis,
Phys. Rev. 151, 1450 (1966}.

atoms within the unit cell, g~ is the large-component
radial function, and f~ is the small-component radial
function. The expression is written for more than one
atom per unit cell of the same species and muffin-tin
environment. Thus the $~ and q~ are the same for each
site, and only the structure factor S appears. Thus, for
one atom per unit cell, S= i.

Writing the matrix elements in this form has a number
of advantages. First, the nonrelativistic limit is im-
mediately obvious since M~" is exactly the nonrela-
tivistic matrix element as c-+ ~, because t~ becomes
(21+1) times the logarithmic derivative, as it is just a
j-weighted sum of the spin-up and spin-down logrithmic
derivatives. For c 6nite, M~~ contains all the relativistic
effects except the spin-orbit coupling obtained in the
second term. Second, the evaluation of the matrix
elements is easier since it has reduced the number of
quantities that one must have the computer calculate.
The most important result for symmetrization is that
the spin factors g~ are within the noise of the numerical
integration for l &4, even for uranium. This allows the
truncation of the spin-orbit sum at l = 2 for tin, resulting
in a great savings of array space when symmetry
elements are used. Further, the f~ can well be repre-
sented by a linear ht

for l&4, since the radial functions are very nearly the
Bessel functions, jl[t'(E+Vp)'~'j in their small argu-
ment region. In fact, the value of g~ for a Bessel function,

3/= (2l+1)l/R [(21+—1)/(21+3)jRVo-
tpi [(21+1)/(21——+3)jR

could be used directly. The ability to use a linear ht for
$& means that the symmetry elements need not be stored
for l) 4. (The sum was carried out to i=12, although
l=6 was probably sufficient —after all, it required
almost no extra computer time. )

The modification of the RAPW matrix elements to
include the warping is a very simple task, since they are
merely a Fourier analysis in an incomplete space. The
potential is now written

V(r)= V (r)+Vg(r),

where V is the muffin-tin potential and V~ is a correc-
tion to the muffin potential which is dehned to be zero
inside the APW spheres. It is convenient to Fourier
expand V~ making explicit use of the knowledge that
Vi must be invariant under the transformations that
send the crystal into itself, so that

V(r) =Z c„s„(r),

U(r)
s„(r)= g expinK (r—~ ),

g a

where n indicates a rotation operation from the point
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group of the crystal, g is the order of the point group,
and v is any nonprimitive translation associated with
the rotation n. The primitive translations are taken care
of by the fact that K„ is a reciprocal lattice vector. The
function U(r) is a step function which is zero inside the
APW spheres and one outside. It already has the proper
symmetry and so need not be symmetrized. There is no
conQict in the use of U here and in the expression for
RAPW matrix elements, since U(K) is the Fourier
transform of U(r).

At this point, the present formulation differs in ap-
proach from the calculations of De Cicco" and Rudge"
who do a numerical Fourier analysis. Instad of at-
tempting a numerical integration, the model potential
is calculated at a large number of points throughout the
unit cell and the c„'s determined by a least-squares-fit
procedure. This would amount to a Monte Carlo
calculation were sufFicient s„'s used. Between 200 and
500 points were used to determine the potential. For
gray tin, an additional set of basis functions were added
to aid convergence. This is discussed in Appendix B.

To get the proper modification of the matrix elements,
we make use of the knowledge that the RAPW matrix
element form used can be obtained more easily by
working in a Foldy-Wouthusen transformed Dirac
formalism. (See Appendix A.) In this way, the region
outside the APW spheres is dealt with using a
Schrodinger equation and Pauli spinor plane waves.
Thus, one merely adds to the mufFin-tin matrix elements
the plane-wave matrix elements of Vi'.

(k's'~ &,
~
ks) =(s'~ s) V,(k —k'),

1
Vq(k —k') =—P c„U(k—k'+nK„) expinK„~

g n, a

These matrix elements are given in Appendix B.As can
be seen, they are small, but not negligibly so. One should
note that when this term is added into the matrix
elements, one is doing a variational calculation with a
basis set restricted only by its finite size. It is not
perturbation theory that is being applied.

With this modified form of the RAPW method, the
inclusion of the additional symmetry can be accomp-
lished straightforwardly by carefully applying pro-
jection operator techniques. The Foldy-Wouthusen
transformed Dirac formalism is again useful, since we
can symmetrize Pauli spinors in the region outside the
APW spheres. This was, of course, checked with the
results of using the Dirac formalism and then making
approximations of the matrix elements. The results
were identical, although much harder to obtain. The
region inside the APW spheres need not be explicitly
dealt with here because the matching condition of the
APW basis set takes care of maintaining the symmetry
in that region, provided the functions is properly sym-
metrized in the outside region. Thus one can focus on
the transformation properties of Pauli plane-wave

spinors. For this spinor

expik r
~
s),

the projection operator I' is defined as

P(ljpg) = ——p r,*(Z)„,g.
N 2h

H}, indicates the entire subgroup of the space group
which leaves the vector k invariant to within a re-
ciprocal lattice vector. X is the number of unit cells in
the crystal —so the translation subgroup in Ht, cancels
this factor. 2h is the order of the double point group of
H&„n, is the dimension of the jth representation I';(E ).
The operator R is written

~.= {nl a}D„,(n),

D~~s(n) = exp( i ,'8—8 -n), .

so its effect on the Pauli plane-wave spinor is

R ' expik r~s)=expink (r a)D»2(—n) ~s).

Then the symmetrized spinor is

~&&ksj pg) =P expik r~s)

1 fg
1/

P I',"(E ) exptnk (r —. a)
2N h

8 Dying(n) i s) .

The projection operator has been constructed so that it
commutes with the Hamiltonian, and it is easily shown
using the results of representation theory that

P+=P (Hermiticity),

1
P(k, j,p,q)P(k, j',p', q') =~» ~..—Z P (&)-'&

2X &~

This permits the matrix elements for two SRAPW's to
be written

1
M'r (kj Pqs; k'j 'P'q's') = b,,'b„„Q I', (R)r, *—

2N ai,

g M"" s-[k,s; k',n(D~ s)])

Since k and k' must be related by a reciprocal lattice
vector to get a nonzero result, the sum on the translation
subgroup of H), merely cancels the I/E factor, and the
operation together with its negative cancel the 2 factor.
Thus it becomes obvious that the choice of constants in
the projection operator I' has been designed to make the
matrix element expression as simple as possible. There
is no reason not to do this, since the normalization of
the basis functions is not needed (or known at this
point) to perform the calculation. The possible require-



188 SYM M I. TR I ZL 0 RI. L ~TI VISTI C A VAV M I'. TIIOD j.053

ment for q'4 q can be eliminated by properly choosing
the list of vectors to generate one's basis functions so
the q= q' matrix elements are the only ones that must
appear. In the nonrelativistic SAP% method, ' the
possible appearance of q'/q was considered, instead of
readjusting the vector list. This would be much less
convenient in the relativistic case, since it would inter-
fere with the technique used to deal with several com-
plications caused by the presence of spin.

A further simplication can be included by specializing
to crystals with an inversion site and locating our origin
at that site. By commuting the symmorphic inversion
(or parity) operation with any operation, one finds that
all nonprimitive translations are half some primitive
translations so that writing

I', ((ala))=y, (n) exp( —ia k„e),
one can write

3f»-(ks; kY)=g q,*(o)«r(ok')M. r-
XLks; ak'(Dii2(n)s')],

r(nk') = expia (ak' —k...) =~1.
In this expression, the sum is over the single point group
of H&, and the indices j= j', P= P', and q= q' have been
suppressed. k,.e is the reduced k vector (i.e., in the first
Brillouin zone), so ok' —k„e must be a reciprocal lattice
vector. Note that the spin-state of the initial RAP% is
used to label the projected SRAP%. This is a useful but
arbitrary convention, since the projection operator in
general mixes RAPW's with diA'erent spins. Some
difIiculty is encountered due to the existence of this
index, since one must check whether one gets 0, 1, or 2
linearly independent functions by projection from the
two RAP%'s with the same k vector but different spins.

To account for time reversal symmetry, it is con-
venient to introduce an operator Q which is the product
of the time reversal operator and the inversion (or
parity) operator. The operator Q is an anti-unitary
four-dimensional inversion operator which can be called
the spin-Rip operator, since its effect is to "reverse"
the spin of a state. Thus we have

&elQie&=O.

Using the properties of Q, it is possible to show for the
definite spin functions such as RAP%'s that

(Tl T&=&ill&*,

&l I T&
= —

&T ll&*.

Since Q commutes with the Hamiltonian, its matrix
elements have the same symmetry, giving rise to the
Kramers degeneracy. "

This, however, is not the form that the degeneracy
takes when working with SRAP%'s. The results re-

"P. Soven I Phys. Rev. 137, 170 (1965)j has shown how to
handle the computational problems of the double roots resulting
from the occurrence of the degeneracy. It is, in fact, possible to
calculate the factor which when squared becomes the determinant.
Loucks (Ref. 2) discusses this in his book in some detail.

III. STRAIGHTFORWARD CALCULATIONS

A large number of gray-tin calculations have been
done for the symmetry points F, L, and X. The results
are shown in Table II. These calculations are generated

TABLE II. Unadjusted calculations (units are mRy).

Level SN1 SN3 SN6 SN1MT SN3MT SN6MT

r,+

r,—

r.'-
r,—

J6
L4
Ls

+
1.4+

Xk
Xk

—55—85
~ ~

116
155—123—88—12
226
246—196

+80

—57—125
~ I ~

138
174—115—78—31
243
269—176
116

—55—113
~ ~ ~

113
154—118—83—30
216
238—189
64

—57—181
~ ~ ~

76
115—130—96—122
157
174—220—66

—60—228
~ ~

86
129—123

—122
174
195—202—38

—58—213
~ ~ ~

81
123—124—87—126
165
185—207—51

a The Fs+ has been chosen as the zero of energy.

"SRAPW has also been used with fcc, bcc, hcp, white tin, and
n-uranium structures and only on two lines of O,-U has this situa-
tion occurred. However, on planes of symmetry, it does occur
more frequently. See Bull. Am. Phys. Soc. 13, 413 (1968); 14, 28
(1969); 14, 360 (1969).

quired to discuss the form of the Kramer's degeneracy
are obtained by showing that

QI' = I'*Q

&T I

I' ll&= &l II'*I l)"
&T I

I' ll) = —
&l I

I'*I T)*,

where I' is the projection operator obtained from the
representation

I', "((nl a)) = y;*(n) exp( in—k,.e a),

and all basis vector indices have been suppressed except
the spin index. These relations are obtained by a
straightforward manipulation. The resulting form of
I'* is a consequence of choosing an inversion site as the
origin. Otherwise, a phase factor depending on the
nonprimi tive translation of the inversion and the
operation considered appears.

There are three cases which occur. The first is that y
is real, or can be made so. This is the case at a general
k point or when dealing with RAP%'s. This case does
not appear on the symmetry lines or points thus far
considered. "But if it did, it would have to be handled
in the same way as the unsymmetrized RAP%'s. The
second is that y* is inequivalent to p. This is implied by
having a representation with complex characters. These
two representations are then time reversal (or spin-fhp)
degenerate and are usually one-dimensional. One
handles this case merely by doing calculations for one
of the two representations. The third and predominant
case is tke p be equivalent to y*, but impossible to make
real. A good example of this case is the Dii2 representa-
tion. In this case, there is no additional degeneracy due
to time reversal. This case requires no special handling.
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by choosing (1) the configuration, (2) the exchange scale
factor, and (3) whether the muffiin-tin or the warped
muffin-tin approximation is applied. These choices were
given in Table I except for the distinction between the
muffin-tin and the warped muffin-tin approximations.
The muon-tin approximation is identified by adding an
MT to the end of the identification for the calculation.

The calculations discussed in this section have no
adjustments. That is, once the choices described have
been made, the calculation is straightforwardly carried
through to the end. In Sec. IV, two types of trimming
adjustments are discussed.

These calculations are to be compared with the
following results from the Groves-Paul model and
Cardona-Pollack k.y interpretation of their electro-
reffectance data: (1) the Fi should lie between the
F,+—I'8+ spin-orbit split states, (2) the L6+ should lie
0.006 Ry above the F8+, and (3) the Fs+ should be the
point of contact between the valence and conduction
bands. (In particular, one X, should lie above and the
other below the I'8+.)

If one first looks at the straight muon-tin calcula, —

tions one sees that the situation is very bad. The calcula-
tion makes gray tin a metal with electrons at both I and
X. In fact, the I.6+ which should lie above Fs+ is now
the bottom of the band. Furthermore, the F7 lies
O. j.2—0.15 Ry below the F7+.

If one goes to the warped muffin-tin calculations, the
situation is much improved. There is no longer the
pocket of electrons at X. In fact, the X;—X; separation
agrees well with the electroreQectance result of 0.275 Ry.
The L,6+ still lies below the F8+ but now it is only
0.03—0.07 Ry below it. Thus, one can say that the
inclusion of the potential variations outside the spheres
has greatly improved the calculation, but it has not
made it agree with experiment. The bands for the best
calculations (SX1) are shown in Fig. 1 for the lines
L,-F-X. The most interesting feature of these bands are
the distortions occurring near F because the F7 is still
too low in energy. The local nature of this distortion is
most impressive.

g+
6+

6+

One other feature of Table II should be pointed out.
If one compares S&V3MT with S.V6MT, one sees that
these two results are extremely similar. Since these two
calculations differ only in the configuration initially

chosen, one would be inclined to say that configuration
was unimportant. But if one then looks at the M'3-S.V6
calculations, the diRerences are more noticeable,
especially in the upper bands. This ~ould, of course, be
an even more pronounced effect for the Kohn-Sham
exchange, since the potential would be less a,ttractive
and thus more sensitive to the outer regions.

IV. ADJUSTED CALCULATIONS

It is clear what is missing from the warped mufIin-tin
potential calcula, tions. These potentials have the
spherical averaging out to a given muffin-tin radius Rl.
If one looks at a spherical harmonic expansion of the
model potential inside these spheres, one finds the /=0
term, which is the mufIin-tin term, and then /=3, /=4,
etc., terms. The /= 4 term enters for all cubic systems,
but the /=3 term results from the tetrahedral co-
ordination of the diamond structure. The /=4 term can
couple I components with each other, but no lower /

components. Thus it is relatively unimportant for gray
tin where the bands are s-p in character. But this is not
the case for the /= 3 term. It can couple the p component
to the d bands above and below the energy range of
interest. That this is indeed so is greatly supported by
the observation that as the warping of the mufFin tin is
turned on, the F7 and I.6+ levels remain almost
stationary, while the other levels lower significantly. As
these two levels have no d' character, their immobility
indicates that the interaction with d' states is the pri-
mary feature being misrepresented in the muffin-tin
approximation.

As evidence that it is the approximation to the model
potential and not the model potential itself which is
responsible for the discrepancy, one can cite the fact
that the relativistic OP% calculations do not show this
discrepancy. These calculations were done using the sp'
configuration and Kohn-Sham exchange. They are thus
a version of SiV1.

Since the remaining efTects are rather small, it is
natural to ask whether or not they can be mocked up by
an adjustment of the calculation. (One might even say
by a pseudopotential. ) The adjustment of the muffin-tin
constant potential originally suggested by Scop" was
tried, although it must be reinterpreted as a movement
of the logarithmic derivatives (or phase shifts), since
there is nd longer a constant potential in the warped
mufFin tin. This amounts to adding a constant potential
Vq~ to the potential inside the spheres. The results of
performing such an adjustment are shown in Table III.
As can be seen, the F~ can be moved to its correct
position, but the I.6+ has not been adequately moved

FfG. i. Straightforward calcplat&on for SE1, "j.', Scop, Phys. Rcv. t.39, A934 I j.965),
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and the rest of the band structure has been degraded.
This is obviously not a very successful approach.

But from the observation that it is the interaction
with the low-lying d states that is influencing the
problem, and from the lack of d bands in the immediate
region of interest, one sees a more natural adjustment:
the shift of the d component of the logarithmic deriva-
tives (and spin factors) alone. This is easily done since
(2= 3.506 —2.7606E and g2= —0.0201+0.009548 with
a very small rms error. Thus one merely changes the
constant to the appropriate value to shift the loga-
rithmic derivative and spin factor. As can be seen from
Table III, this is a great deal more successful. It is also
most consistent with the nature of the potential effect
that we are trying to mock up. What is being done can
be viewed as follows: Since the interaction with the
d bands has been weakened, the d bands have just been
moved nearer by shifting the logarithmic derivatives.

The resulting adjusted band structure is shown in
Fig. 2. One interesting result is that as the F7 moves

TABLE III. Adjusted calculations (units are IRy).

REP. MT shifted by d's shifted by
ID. 0.05 Ry 0.25 Ry 0.1 Ry 0.3 Ry 0.6 Ry 0.8 Ry

+

r,—

p +a

r,—
11

L6
L4
L +
L +

+

Xg
Xg

—54—73
~ ~ ~

109
148—124—90—12
217
236—201
69

—49—33
~ ~ ~

80
112—132—101—24
176
189—223
13

—54—77
~ ~ ~

115
154—119

—6
221
240—190
80

-53
—65
~ ~

113
151—112—27—2
211
229—179

74

—50—43
~ ~ ~

111
148
99—65

5
194
210—160

75

—48—25
~ ~ ~

112
148—189—54

11
183
196—145
59

a The I's+ has been chosen as the zero of energy.

into place, the Fv+ —Fs+ is reduced to a value which more
nearly agrees with the results of Herman.

V. CONCLUSION

The formalism required to symmetrize the RAPW
technique has been developed. It proves to be a straight-
forward application of projection operator techniques
to Pauli spinors once the RAPW has been reformulated
as the result of a Foldy-Wouthusen transformed Dirac
formalism. This alternate formulation of the RAPW
technique has also reduced the problem of generalizing
the RAPW technique for a warped muon-tin potential
to the same problem as occurs in the nonrelativistic
technique. Computer codes have been written for the
SRAPW technique and applied to gray tin, which was
chosen as a very severe test of the technique. Having an
atomic number of 50, gray tin requires the relativistic
formalism and, in addition, it has the diamond structure
which is both nonsymmorphic and far from the appli-
cable region of the muQin-tin approximation. In this

.5

6+

4

-.2

FIG. 2. Adjusted calculation for SE1.

~ SRAPW has successfully been used with a warped muon-tin
potential to the fcc, bcc, and white tin structures.

way, we have been able to examine the efFiciency of
using the additional symmetrization while experi-
menting with the various parameters and approxima-
tions in the construction of the potentials. With an eye
towards future applications, the computer codes also
print out the SRAPW expansion of the trail function
whenever an eigenvalue is found suKciently accurately.
Another small code exists to reanalyze these SRAPW
expansions into RAPW expansions so that one can find
wave functions as well as eigenvalues.

Once set up, SRAPW is much faster and a great deal
more convenient to operate than the unsymmetrized
method. This increase in speed is accomplished in
several ways. There is, of course, the reduction in size
of the secular matrix which is the major factor pro-
ducing the increased speed. But the fact that all roots
of the secular equation are of first order and separated
according to symmetry type also allows one to locate the
eigenvalues more quickly, as one can search on a wider
energy mesh and look only for sign changes. This is in
contrast to the very inconvenient dips that would occur
for roots of even order.

The technique of using a }east-squares fit with plane
waves to the model potential in the region outside the
muon-tin spheres is very rapidly convergent for all the
structures that have been investigated except the
diamond structure. '0 For the fcc and bcc structures
(Pt and y-U), the expansion is well converged (to about
one part in 10' for the matrix elements) by the time one
has reached the fifth star. Further, one has at each stage
a good estimate of the errors involved in the fit. And
once the fit is obtained, the matrix elements are then
evaluated analytically so that the errors involved are
defined much better than for the numerical procedures.

The reason for the good (if not complete) success of
the warped muffin-tin potential for gray tin is seen from
an inspection of the errors relative to the model poten-
tial. The region outside the mufFin-tin spheres has been
corrected to coincide with the model potential, since
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this region is the larger portion of the volume of the
crystal (roughly —,). In this large region, the use of a
constant muon-tin potential would make an rms error
of 0.25 Ry. Within the smaller region enclosed by the
spheres, spherical averaging is still applied. This yields a
maximum rms error of O. I Ry at the sphere surface, and
this error drops off rapidly as one moves into the sphere.
Thus, one is now accounting for a large part of the
muffin-tin errors, but not for all of them.

The SRAPW technique can be modified with very
little conceptual difficulty (although a great deal of
computer coding) to include the nonspherical terms
within the spheres —as has been done for the non-
relativistic method. ""There will be a great deal more
Clebsch-Gordon coefficients to calculate as one also has
spin to consider. (It may well be, though, that one
would be wiser to use the plane-wave angular functions
X„' instead. ) However, because the nonspherical terms
of the potential expansion within the muon-tin spheres
do have much smaller effects, "it may be much wiser to
seek an approximate technique for their inclusion. A
modification of a suggestion by DeCicco" to use the
plane-wave matrix elements of these terms is particu-
larly attractive, since the deviations from spherical
symmetry occur principally near the muffin-tin sphere
surface where the APW's are most like the plane waves
to which they are joined. These considerations become
more and more crucial as one attempts to do calculations
in the lower symmetry crystals where such terms are
more important.

For structures more appropriate to an APW calcula-
tion, one would expect that the warped mu6in-tin
approximation would work quite well. " In high-Z fcc
and bcc materials, a great deal of charge is to be found
outside the muffin-tin spheres. Thus, one suspects that
the warping could be signi6cant although the non-
spherical terms inside the spheres are not. One solid
where the warped muffin-tin approximation must be
applicable is white tin; here, the rms deviations are as
large in the region outside spheres as for gray tin, but
the deviations from spherical symmetry inside the
spheres are less than half the size. Another class of
materials for consideration are those with the hcp and
double hexagonal structures. For these materials, a
great deal of charge is also found outside the muffin-tin
radius, so that the warping could easily be important.
Furthermore, one can make the observation that the
logarithmic derivatives are the same for the hcp and
dhcp crystals. This means that the only difference to be
found for these two structures in the muffin-tin ap-
proximation is due to the different structure factors
S(k—k'). However, the remaining parts of the model
potential are radically changed. Thus, one could suggest
a second look at all the hexagonal materials to see what

has been missed, although it might be necessary to go
beyond the warped muffin-tin potential.

The RAPW method has proven itself to be a very
useful technique in actual practice. With the use of the
additional symmetry and generalizations to include
non-muon-tin potentials, it has become an even more
useful technique and should be used extensively in the
future. The procedure is already being used to provide
the band structure data for several efforts in which the
author is involved and other applications are in the
planning stage.
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APPENDIX A: RAPW METHOD FORMULATED
USING FOLDY-WOUTHUSEN TRANS-

FORMATION

It is clear that throughout most of the solid, the non-
relativistic approximation is quite adequate. Only near
the nuclei does this approximation break down. Thus,
it is appealing to break up the volume of the solid into
a relativistic region and a nonrelativistic region. The
relativistic region is to coincide with the muffin-tin
spheres, and the nonrelativistic region is the remaining
volume outside the spheres. This is precisely what
results from using the Foldy-Wouthusen (FW) trans-
formed Dirac formalism.

The FW transformation" proceeds in steps, with each
step reducing the relative size of the small component
by a factor on the order of the kinetic energy over mc'.
We use two transformations so that they are reduced to
third order. Thus,

)

giWm~i WI+D)

W (ii/2m)Pe p-

IV2 ——(—i/6'') P'e. p,

~' P. DeCicco and J. C. Slater, MIT Solid State and Molecular
Theory Group, Quarterly Progress Report No. 50, p. 46, 1963
(unpublished)."P. DeCicco (private communication).

~ M. E. Rose, ReIativistic E/ectron Theory (Wiley-Interscience
Inc. , New York, 1961).
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In these expressions, a D subscript indicates the Dirac
form so

Hn ——a y+m(il —1)+V,

where the rest mass energy has been subtracted out of
the Hamiltonian. The units h= c= 1 have been adopted
here with m retained explicity since (I'-))m is the ex-
pansion variable. The transformation cannot be carried
out exactly when there is a potential present, so it is
written as an expansion in commutators to the accuracy
to which the small components vanish. Such an ex-
pansion yields

H=m(P 1)—+Pp '/2 '-m+V

,'m—'p-(v V v+ie v Vxv }+O(1/ m ') . '-

This expansion converges sufFiciently rapidly in the
outside region so that only the kinetic energy and
potential terms need be retained. Inside the spheres, the
transformation is only needed at the sphere surface, and
thus this is more than adequate.

The transformation on the basis functions becomes

@= L1+(1/2m)Pa pj+~+0(1/m-") @~,

conveniently be written in a matrix formulation as

D, (r; k) = ~~ ~&&(k r)1+iSqP~'(k r)(rXk). e,

where I'& is the Legendre polynomial and 5„ is the sign
of a. These functions satisfy the relation that

d'rX„"(k;,r)~X„'~(k, ,r) =47rb„,D„(k;s;; k,s;),

which are used later.
Using these functions one can write the (not quite

normalized) Dirac plane wave as

j ((kr)X, '(k, r)
4""'(k,r,s) = ( VQ "')Q i'~

ij &
(—kr) 0„X„'(k,r)

f~:
—1, ]c &0

If:&&0,
~(0 '

0 is the volume of the unit cell, and X is the number of
unit cells. This requires the function

which is

+ p%'D+0 —4'g) .
j&(kR) g„(r,E)X„'(k,r)

4'"(k,r,s) =Q if ~e'"'
g,(R,E) if, (r,F)~—„X;(k,r)j

For the region outside the spheres where (E—V)/m is
of order 10 ', the remaining small component is quite
negligible. Since we need not worry about normalization
at this point, one can use

@Ottt — e tk

0

and an equivalent Hamiltonian

H= p'/2m+ V

in the outside region. This is just the Schrodinger
equation and Pauli spinor formulation.

For the discussion of the region inside the spheres, it
is convenient to define the functions

X„'=—4x. Q C(a,p, )x„s&(r)Y((„)"' "
D„(r+,';ks)-

for f~: && 0.
D.(r ——,'; ks)

In these expressions, C is a Clebsh-| 'ordan coefficient,
~ is the relativistic quantum number satisfying the
relationships

I~I =i+l
and j =l 2 for ~)0, —

~a~ =l 1and j =l+2 for ~&0—,
'4 R. S. Leigh, Proc. Phys. Soc. (London) A69, 388 (1956)."P. M. Marcus, J. Quant. Chem. 1, 567 (1967).

and D, is the quantity de6ned by Loucks. ' It can most

to join the large components continuously, as required
for the sphere centered at the point t. As the functions
inside the muffin-tin spheres are required to satifsy the
radial Dirac equation for the energy under considera-
tion, the only place the actual FW transformed equation
is required is at the sphere surface. There, the 6rst terms
of the expansion are quite adequate. In fact, the only
term that is needed is the first term —which consists of
taking the Dirac spinor and ignoring the lower com-
ponents. Again we are back to Pauli spinors.

One must be careful now in the formulation of the
variational principle since the basis functions formed
from 0" and +'"' do not have a continuous small
component —or derivative of the large component —as
one crosses the muffin-tin sphere surface. There is also
the further difficulty that the FW transformation as
well as the Hamiltonian involves differential operators.
This nonphysical difFiculty can be eliminated by ex-
cluding a spherical shell of thickness e, and then allowing
~ to approach zero. However, if this is done, the differ-
ential operators are no longer Hermitian. It is then most
convenient to add in a term which makes the variational
quantity Hermitian and vanishes as the trial function
approaches continuity. This is the origin of the surface
integral in the APW methods as well as the uncer-
tainties in the actual variational quantities used. ""
The most convenient and physical term to include is
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one which is a finite-increment evaluation of the integra-
tion over the thin shell. "
The resulting variational quantity is

Eg(1,2) = (Pt l U(r) (H E)—l ttit)+Q(1, 2),

1
Q(1 2) dtr($ intpr. Q@ in @ outtr". +@out)

8urf ace

The matrix integration for (H E) has—the step function
in it because the basis functions have already been
required to satisfy the Hamiltonian equation for the
energy E inside the muon-tin spheres. Thus it is seen

that one only needs to evaluate the transformed function
at the sphere surface. The operator i V appears in the
surface integral instead of the operator r e that appears
in the straight Dirac formulation' because

W,W,~W,+W,+=e+Pp/m+O(1/mk) .

The e operating on the transformed basis functions
would give a term of order (1/m') and so need not be
included. The presence of the P in these expressions is
not significant, as the lower components are to be
neglected. Again we are back to a nonrelativistic
operator.

The variation of the quantity EE is done by expand-
ing the trial function in the I'% transformed basis
functions and doing a Rayleigh-Ritz variation. %hen
this is done, one gets a secular equation involving the
basis-function matrix elements of E~..

detKs(t', j)= 0.

This is the only reason that the two indices were in-
cluded in the definition of EE, since the quantity varied
is its diagonal matrix element with the trial function.

It remains only to evaluate the matrix elements and
the procedure is complete. The warping terms have been
discussed in the text and Appendix B, so that only the
muon-tin potential terms need be dealt with here. The
volume integration can be done immediately:

(k~s;l U(r)(H E) l&;s,)= (&,'—E—)(s, ls, )U(k, —k*)

Note that this term is not Hermitian as mentioned. The
term in the surface integral obtained from the outside
limit is also easily evaluated:

dsry utr. p@oout

R

g~Rk (p, k —k; k,)j,(lk, —k;lR)=—s(k,-k,)
'

0

leaving only the first term to be evaluated. The loga-
rithmic derivative involved in that term is evaluated

26 R. Gilmore, MET Solid State and Molecular Theory Group,
Quarterly Progress Report No. 60, p. 24, 1966 {unpublished).

using the radial Dirac equation

Ll/g. (R,E)j(d/«)g. (R,E)
= (2m+E V)—f„(R,E)/g(R, E)—(k+1)/R

and its solutions as obtained from a radial integration. -'

This is the actual mechanism for the appearance of the
relativistic eRects and is found via the FVV transforma-
tion. Having already obtained the surface integrals for
the X„"s, the integral can be evaluated leading to the
matrix elements

1
k (k;s;;k;*;)= —k; k;—E)uik; —k;)i*;~*;)

2m

4xR'
+S(k,—k;) Q D,(k,s;; k, s,)

2mQ

Xj,(S;R)j,(u,R) g„(R,E)—,
g.(R,E) dr

which is the same matrix element as that obtained by
Loucks' —although somewhat rearranged. It is only
necessary to combine the it=i and k= (I+1) terms of
the summation and switch to atomic units to get the
matrix elements used in Sec. II.

All this has now led us to a very simple result. One
could get the matrix elements for the RAP% by first
writing down the variational quantity in the Dirac
form; then, observing that all integrals are in a non-
relativistic region, one uses the nonrelativistic operators
and Pauli spinors to evaluate them except that the
logarithmic derivatives are evaluated using the radial
Dirac equation. '~

APPENDIX B: WARPING POTENTIAL Vg AND
ITS MATRIX ELEMENTS

The warping potential is

Vi(r) = U(r)(Z V"(lr —Rl)

+ CLZ t (lr —Rl)3'"—«&

C = —6(3/Sir) '",
where Vo is the muffin-tin potential adjustment. U(r)
is included because this potential is nonzero only outside
the muffin-tin spheres. V,t(r) is the atomic Coulomb
potential, and p(r) is the atomic charge density. The
sum is over all lattice sites. This potential is calculated
for a set of points distributed randomly in the outside
region and put in a large array. This array is then a
function to be fit with a set of basis functions. The
natural set of functions for an expansion of Vi(r) are the
reciprocal-lattice vector plane waves. The basis set
must have the F& symmetry, so the plane wa, ves are

27 D. D. Koelling, MET Solid State and Molecular Theory
Group, Quarterly Progress Report No. 68, p. 36, 1968
(unpublished).
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TABLE IV. Warping potential V&{R) coefBcients. TAaLE V. V&(K).

E,
0
2
4
6
4
6
8
8
6

10
8

10
8

12
10
12
8

ho
Ag

Efj
0
2
4.

2

6
0
4
6
2
8
6
8
4.

6
4
8

X,b
0
2
0
2
4
2
0

6
2
0
2

0
6
4
8

a Units are Ry.
b Reciprocal-lattice vectors are in units of x/a.

Coefhcienta

—18.8209—2.23815

0.492529
0.269096
0.127321—0.088075
0.144225

—0.153114
0.099502—0.038026—0.001710
0.012310
0.016318—0.072102
0.011729—0.010546
0.000017
0.010181
0.001550

Simple cubic vectors
1za Kz Ky Kzb Vt (K)e

bcc vectors
nd Kz Kq K,b V 1 (K)e

2 4 4 0
3 4 4 4
4 8 0 0
6 8 4
8 8 8 0
9 8 8 4

10 12 4 0
11 12 4 4
12 8 8 8
14 12 8 4
16 ]6 0 0
17 12 8 8
18 ]6 4 4
19 12 ]2 4
20+ 12 12 0
21 16 8 4
22 12 12 8
24 16 8 8

—27.66
25.90
13.57

—6.00
2.03
0.54
4.86
1.56

—7.38
—6.97

5.49
—0.59
—2.32

0.17
—1.79

0.39
0.12
0.96

1+ 2 2 2

2 6
3+ 0 0 0
4 6 6
5* 6 6 {6

6 10 2

10 ]0 6
11+ 10 10
12 14 2 2

10 10 6
14 14 6 2
16 14 6 6
17+ 18 6 6
18 10 10 10
19+ 18 2 2
20 14 10 6
23+ 14 10 ]0
24 14 ]4 2

52.13
—19.54

48.52
—3.76
—4.87
—3.05
—3.87
—5.21

6.15
—5.10
—4.13
—2.88

1.27
0.71

—0.40
0.54
0.22
1.07

a Except for the element marked with an asterisk, this indexing is
t K j2/16.

b Reciprocal-lattice vectors are in units of ~/a.
o Units are mRy.
d Except for the element marked with an asterisk, this indexing is

( J K f
& —12)/16.

combined to the symmetrized functions: analytically the required quantity V&(K):

~4

s„(r)= U(r)—P cos[n;K„(r—~;)].
24 s=]

Obviously one should take only one K„ from each star
to get a linear independent set of functions. Further-
more, s„ is zero for some stars, since this is a non-

symmorphic crystal structure. This set, however, does
not converge conveniently rapidly, so we define another
set of functions to aid the convergence:

h. (r) = U (r) P )
r —R

~

"'-' exp( —
~

r —R
) ); n =0, 1,

The first two of these functions fits Vi with an rms
error of 0.03 Ry, but adding more functions does
nothing to reduce the rms error. The best fit for S'V1
was accomplished by using ho, hi, and the first 16
nonzero s„ to yield an rms error of 0.0005 Ry. The
coeScients of this fit are shown in Table IV. It should
be noted that the inclusion of the h„'s is a convenient
crutch for the diamond structure, whereas for other
structures it is not needed (for example, white tin).

Once one has a fit for Vq(r), one can then calculate

Vg(K) =- d'r V~(r)e'*'
rystal

The result for the s„was given in Sec. II, but the h„'s
present a somewhat more diS.cult problem. By noting
that the integral is actually a faltung of the step function
with a lattice sum of spherically s&.mmetric functions,
one can immediately write down the relation

47t-

h„(K)=—Q 5(K )fi (K'+'K )( '1)"——
Q (/p p'+E '

The sum for h„(K) is very slowly converging, so it is
necessary to tabulate and store the V&(K). This is
readily accomplished by observing that one needs only
the value of Vq(K) for one vector of the star Vr(nK).
equals Vr(K) in magnitude, although it may be of
opposite sign. However, the look-up procedure and
prescription for determining whether a sign change
should occur are merely programming details" which
can be given to anyone who is su%ciently interested.
The values of V~(K) are tabulated in Table V.

"D.D. Koelling, Ph, D. thesis, 1968 (unpublished).


