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Row Correlation Functions of the Two-Dimensional Ising Model*
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Expressions for many-site correlation functions of a square-lattice Ising model have been derived for
the case in which all sites lie in the same row. The results involve expressions for minors of Toeplitz matrices
which are obtained by the Wiener-Hopf technique. We derive an expression for the magnetization at any
site in a row if a finite number of defect bonds are distributed at given positions in that row; this expression
can be used to study the effect of a dislocation. Some remarks about the decoupling of correlation functions
are made.

1. INTRODUCTION

' 'Xi a recent paper by Pink' (hereafter referred to as P)
~ - an analytic derivation was given of certain three-
site correlation functions of the square-lattice I.enz-

Ising model having spins of magnitude -„which are
coupled by nearest-neighbor interactions, located at
each lattice site. The expressions obtained were used to
calculate the magnetization at any site in a row when

one of the bonds in that row was a defect bond. It ap-
pears to be of interest, however, to derive expressions
for many-site correlation functions which can be used
to calculate the magnetization at a given site if defect
bonds (of possibly unequal strengths), which replace
perfect-lattice bonds, are distributed at given positions.

Quite apart from this defect problem, one would wish

to know the exact form that manx. -site correlation func-
tions have because previous use of them' has neces-
sitated their approximation, and it is of interest to know

to what extent the approximations are valid. This in-
formation is especially valuable in the critical region.
As far as the defect problem is concerned, much work'
has been done on calculating the effect upon various
bulk properties of the Ising model when defect bonds
are distributed at random in the lattice. In contrast to
the case of a system described by the Heisenberg Hamil-
tonian, where some effort has gone into calculating the
effect of a single impurity spin upon the magnetization
at any site in its neighborhood4 and upon the elementary
excitation spectrum, ' little work has been done concern-
ing the effect of defects upon microscopic properties of
the Ising model. '

In this paper we have in mind applications of the
Ising model to solid-state problems. For example,
Miyazima' investigated a decorated square lattice and

~ This work was supported in part by the National Research
Council of Canada through Grant No. A5362.

' D. A. Pink, Can. J. Phys. 46, 2399 (1968).' N. Matsudaira, Can. J. Phys. 45, 2091 (1967).' A. A. Lushnikov, Phys. Letters 27A, 158 (1968); M. F. Sykes
and J. W. Essam, Phys. Rev. Letters 10, 3 (1963).

4 H. P. Van de Braak, Phys. Letters 26A, 569 (1968);D. Hone,
H. Callen, and L. R. Walker, Phys. Rev. 144, 283 (1966).

s Yu. A. Izyumov and M. V. Medvedev, Zh. Kksperim. i Teor.
Fiz. 51 317 (1966) LEnglish transl. : Soviet Phys JETP 24, 347.—
(196/); T. Wolfram, and J. Callaway, Phys. Rev. 130, 2207
(1963).

~ However, see P. G. Watson, J. Phys. Cl, 575 (1968).
& S. Miyazima, Progr. Theoret. Phys. (Kyoto) 40, 462 (1968).
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found it to have either two or three phase transitions,
depending upon the choice of parameters. He suggested
that the first case provided a model for Rochelle salt
which has a ferroelectric phase between —18'C and
25'C. In this case impurities can be represented by
defect bonds. Thus, in view of the possibility that cer-
tain physical systems can be described approximately as
an Ising model we can list three cases in which knowl-
edge of the many-site correlation functions is of value.

(i) If we know all three-site correla, tion functions, we

may calculate the magnetization per site at any dis-

tance from an isolated impurity or defect bond.
(ii) If there are many impurities present in the crys-

tal, however, we may find it necessary to consider more
than one impurity or defect bond in calculating the
magnetization per site. In this case, knowledge of
higher-order correlation functions is necessary.

(iii) We could consider a line of omitted bonds to
represent a simple model of a dislocation. The number
of correlation functions needed in this case will depend
upon the length of the dislocation.

The object of this paper is to derive relatively simple
expressions which are easily applied. The solution of
the general problem is, however, no trivial task, and we
shall confine ourselves to the presentation of a more
modest endeavor.

Here we shall be concerned with deriving an expres-
sion for the magnetization at any site in a row if a finite
number of defect bonds are distributed at given posi-
tions in that row. One would expect that this restriction
leaves the third case mentioned relatively unaffected
since in that case all the defect bonds lie in the same
row. The expressions derived here could, thus, be di-
rectly applied to the investigation of the effect of certain
kinds of defects (see Sec. 4). The application of the re-
sults to the first two cases is considerably restricted but
it should shed some light upon the form of the magneti-
zation per site in the general case. The solution will be
approached in such a way that it will give expressions
for many-site correlation functions when the sites all
lie in the same row. The method that will be eniployed
is an extension of that used. in P, which was originally
1032
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due to Krein. " AVu and his collaborators' have used this
kind of approach in a series of papers.

Each site in the lattice is labeled as (k, l), v;here k

denotes the row and l the column. The variable eI,- ~

(which takes on the values &1),of the set {0),is associ-
ated with the site (k,t), and interactions, which are be-
tween nearest-neighbor sites only, are denoted by Jl
(for sites in the same row) and Jo (for sites in the same
column). The number of sites in a row or column is Xtt-',

which is allowed to go to infinity, and we shall be con-
cerned with effects far away from the boundary of the
lattice. The partition function of the perfect lattice is

Z=p expt p Q (J, Ottt 1 t~t+JonltOt+, tt)5,
loj k, l

=(coshPJ1 coshPJo)'~'Zo, P=(kBT)
where

By making use of aj, ,
l"-= 1, we can write

1)

ZB ——(1—xl') "g (1—xtxr')Q {S(n)g L1+(x —xi)
f=1 la) i=l

X(1—»x') '01,1;«,&„.+tj) t (2 3)

which is an appropriate sum of correlation functions of
the form (1.3), each one containing an even number of
0 p.

Here we are interested in calculating the magnetiza-
tion at the site labeled (1.1) and we shall assume that it
is given by

(01,1)B ~ lim (tl1, 101 1+t)B
$ ~oct

=M 'limZB 'QS(n )I71101,1+, , (2.4)
t ~cto t~)

Zo=p S(n),
ja}

S(n) = g (I+not, o 1 01., «l, t ),

~ ~ =x for k'=k, L'=1+1
=x for k'=4+1, t'=l

=0 otherwise,

x;= tanhP J;.

(1.2)

where M is the spontaneous magnetization per site in
the perfect lattice. It is understood that t ~~ before
a,ny of the p —+oo. Site (1, I+t) is thus far away from
the defects, which is the reason for the assumption of
(2.4). By using the same procedure that led to (2.3), we
see that

n

(Ot, i)B=tM—'(ZoZB —')(1—xto) " g (1—xlxg')
f=l

Each bond has the number x; associated with it which
we shall call its weight. An n-site correlation function is
de6ned as

(Otoo' ' 'ITi, ) =Zo P S(n)010o' ' '0'@1
Ig 1

(1.3)

where 1, 2, , n denote various sites in the lattice. The
defect problem will be presented in Sec. 2, and the
formal solution to the correlation-function problem
given in Sec. 3. In Sec. 4 some simple applications of the
results will be presented.

ZB ——Q S(nB),

hagi

S(n ) = g (1+nit, l 1 tll, «i, t ),
(2.1)

2. DEFECT PROBLEM

I et us assume that there are defect bonds lying be-
tween the sites labeled (1,Xf) and (1, At+1) which have
weights xr'=tanhPJf', f=1, 2, n Let us. write
8= {Xl, ,X ) so that the partition function is

n

Xiim Zo-' Q {S(n)g (1+(x —x,)(1—xix )-'
i,
' ~oo i~1

+01,X;tlt, 4+lgtrl, t01,1+t }~ (2.5)

The problem thus reduces to the calculation of correla-
tion functions of the form

fTl, 1 01,X frl, )tt '+1 ' fT1, 1+ f ~

In P it was shown that for the case of n= j. we had to
obtain an expression for a minor which is formed from
a Toeplitz matrix' bv striking out the rth row and the
rth column (referred to as the corresponding column of
the rth row). In order to display the problem for this
case, let us consider

(01,101,1101,At+1
' ' ' Ol, lrnl, if+101,1+t)

=C(1, Xt, Xt+ I, , XI, P,r+1, [+1),
1&ii,«. . X~&f.

By inserting factors of 0-1, ', 1&m&k+1, we can write

okl, k'l' xf8—

—X2

for k'=k = &, t'=t+&,
for k'=k, l'=/+ j.

(excluding first set)

for k'=k+t, t'=i
(excluding first set)

PI l, a i =&k&. I t+g~at, I; t,
g = 1/'xl —xl,

for k'=k=1, l'=I+1,

(2.7)

( (11 t~l& ' ' ' ~f+1 &+1)=xi' fjp S(p)1/p S(n), (2.6)
Iol

=0 otherwise. (2.2)
' M. G. Krein, Am. Math. Soc. Transl. 22, 163 (1962).
'T. T. %u, Phys. Rev. 149, 380 (1966). See also H. Cheng and

T. T. SVu, ibid. 164, 719 (1967); B. M. McCoy and T. T. %u,i'. 174, 546 (&968).

=0 otherwise.

' V. Grenander and G. Szego, Toep/iIz Forms and The~r Apph-
ceIiorls (University of California Press, Berkeley, 19SS).
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It is found that Then if we apply Jacobi's theorem, "
Q S(n) =Ldet(1 —.-1 )j'"

where A is a matrix obtained from the nk~, k ~ when they
are written in the form of a matrix (a&),& i )."Similarly,
it is found that

(2.9)

The matrix D is obtained from (hq& ~ i ) in the same way
as A is obtained from (a&&,g,') )."Thus, we find

C(1, X&, ~, XI+ 1, t+ 1)
=x&' t(det[1 —g(1 —3) 'Dj)'". (2.10)

PX1X1 PX2X1
' ' PsX1

Vu+l) det(V) . (3.1)
+88

Jacobi's theorem, however, must be used with care
when dealing with infinite matrices" and we shall
present a derivation of (3.1) which is valid when f is
6nite. There we shall see the problem that occurs when

f is not finite, but we shall not take up that solution in
this paper. The derivation of (3.1) will also serve to
display expressions for the y~ .

Consider the set of equations

&e f
a. ~$~&f) Q a. ~ $~ &f) —&).&f)

(3.2)

Because of the form of D, (2.10) is obtained from a, t Xt
Toeplitz determinant by striking out the rows labeled

, ) f and their corresponding columns. %e shall
refer to it as an fth minor of a Toeplitz matrix. The
matrix elements c„„=c„are given by"

If we multiply each equation by P' and sum over j, we
get

P P a kfi &]~&f)f.) . P —P a. z P-)*~z&f)f.)~,

c„=(2&r) +(8)e
—ini)dt)

j=0 k=0 j-0 i-1

p(e) =
l

(x&x2~e*'—1)(x,e*'—x2*)/

f or& f—2 l Q a~;—) $a&r) —Q (&; +a)„), )t),„&»jf"'
i=1 k~0

(e" x&x2*—)(x2"e" x&)j'—"
c„e'"', x,*=(1—x;)/(1+x;) . (2.11) Then, if f is finite,

=P )) &f)f J (3 3).
j-0

We shall be interested in the limit as t )~. Not much a(f)l-& O) ~ ~)' 1' 'j=)&' 8)+2 L~)'& '(5)
i=l i=1

eGort is required to convince oneself that all correlation
functions of the form

1'
llm Ol )tlCT] )«g' 0'l

)&, s(T], ]
g ~oo where

can be written as (2.6) and so can be expressed as ap-
propriate minors of a Toeplitz matrix.

3. FORMAL SOLUTION

Let us consider an (f+1)st minor, V&t+», of a
Toeplitz matrix V, in which the missing rows are
denoted by the set (f+1)=(X&, ,Xt,s). We write
(n)=(X&, . ,X„) with a corresponding definition of
V&„&. Let the matrix elements of V be (V)& =a& and
write (V ')i ——y&, l, ns=0, 1, 2, where VV &=I.

k 0

—1 00 f

» X.V. Vdovichenko, Zh. Eksperim. i Teor. Fiz. 47, 715 (1964)
I English transl. : Soviet Phys. —JETP 20, 4/7 (1965)j."N. V. Udovichenko, Zh. Eksperim. i Teor. Fiz. 48, 526 (1965)
I English transl. : Soviet Phys. —JETP 21, 350 (1965)j."E.W. Montroll, R. B.Potts, and J. C. Ward, J. Math. Phys.
4, 308 (1963}.

(3.6)

"A. C. Aitken, Determiean/s and Matrices (O)iver and Boyd
Ltd. , Edinburgh, 1959), Sec. 42."I am indebted to E. Schuegraf for some comments on this
point.
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and that the expressions appearing in (3.4) converge
absolutely inside the closed unit disk at the origin. Then,
if the index of a(f'), inda(f'), which is the increase in the
argument of &2(g)/22r as f moves around the unit
circle at the origin in the positive direction, satisfies
ind(2(t) =0, we have

choice of Xl, ~ ~ . , Xf, and s. AVe find that

f
t.&f) =v.,+2 ~~;&f)(k)v.~f,

f
2 -4~;")(&)v)„x;=—v),.'

(3.14)

(3.15)

(3.7)
It is not difIicult to see that these equations give

where g+(f) and g (Q') are analytic inside the unit
circle at the origin and are continuous on the unit circle,
so that

+XIXI

$, &f) =
,
P)tls

PS)),I

+88

P)&fXI

(3.16)

g.o) = 2 ~-'"'P"" ) =+ —. (3.8) What we want is $. 'f) det(V(f)), which is given by

$.(f) det(V(f)) = $, (f)gz 'f " . $2 & ' det(V), (3.17)

Ke can then write

g+(0) '(5")(P)—E f2;&f)f"') I'+(—g (f) t-")(f-))

=g 8)I-&f'('f) +(1 1)—+( g(f')-"& '( ')&), (3 9)

where

't "'(1-') =v"'(f')

(3.10)

g=0

where ( &"& is evaluated with )&„&")= 1, 2&f&"&=0 if j Wn

By combining (3.17) and (3.16) we obtain (3.1).
At this point we should refer back to (3.3) and note

that if f= ~, then (3.4) does not follow. In order to
deal with this case, we should consider a set of equa-
tions like (3.2) where k and j run over 0, 1, , K, solve
them for K finite, but much larger than Xf, and then let
E and f go to infinity together. We shall not take up
this problem here.

For T(T„ the critical temperature, we identify, as
Ku9 first pointed out,

a(f')= [(1—a)f)(1—a.f' ')/(1 —a2t)(1 —a) '))"-,
a) x)x2 i a2 x2 /x& . (3.18)

ln this case a)(a'(I, so that iud&2(f) =0. Then (2, 2

=c, I, and

The left- (right-) hand side of (3.9) is analytic inside
(outside) the unit circle, and the right-hand side goes to
zero as g~~. Thus,

g+(f) = [(1—a f)/(I —a)f))"',
g (f)=[-(1 a)l ')—/(1 a20 ')—)""

It is easy to show (see the Appendix) that

(3.19)

glen —Cn A' &&I —n y
Q n+1 (3.20)

By equating coefficients of f'" we find

f CC) f
$2(f) —Q $~(f)$ i —Q P )7 (f)+Q [g (f)(()

n~0

f4 ."+'= Q v&+2 .&+)v&& ' if k)n
l=n+]

v&'+'7 &+.-2' ' if k ~& n (3.21).
i=k+1

where

f—2 (8&m+&2); ),„)2&), &f))yw;, (3.12)
m=1

%hen l is very large, it was shown in P that

y&(+'~ —[a2/42r(a2 —a)))'"a2'f—'"
[(a2—a))/)ra ))"a2'f-'" (3.22)

Pkn ~ PIc—m Pn —m
(+) (—) (3 13)

so tha, t

02 „"+'-—(2)r) ' Q a2"+' "(1+k—n) '"t '"
The pj,„are the matrix elements of V ' given previously.
By putting k = X, in turn, 2= 1, , f, we obtain a set
of equations for the A)„.&f&($). We are interested in
solving for (,(f) when p, 'f'=1 and p,'f)=0 for jets,
s ~&P f. The condition s &~ P f is one imposed merely by our

l=n+1

~ —(2~) 1 Q a 2&+a 2f 2/2(f+n —k) 1(2
)

1=A+1

k ~(n. (3.23)
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Op „+~ —4Hl e pd-ye+42(k n—)g"2
e(k+ri+2)

&&Py —42(k —n)]—'" k~&n

If, inaddition, Jl=J2=J, e=J(T, T—)/keTT, is very
small, and p(k+n) is very large, we have

vanish identically, as we should expect. Those with an
even number of sites are given by (4.2).

(ii) Let us assume that there are impurity bonds be-
tween the sites (1, 1+X;) and (1, 2+3'), i= 1, ~,f, of
weight x, respectively, so that 8=(1+Xi, ",1+Ar).
By an expansion into correlation functions similar to
that of Sec. 2 followed by a substitution from (4.1), we
see that

e rdyp 4e—(n k)—] '"
e(l.+ri+2)

XI-y+42(n —k)] '" k&n (3.24)

wherein one should note the correction to the asymptotic
form L28] in P which corresponds to the case k=n.

(ol, l)e=M det(iVr)/det(Dr),

1++1+),x +1+), x

2+)tl), 2 1++2+),2),2

~& f+XIXf

+1+)tf),I
+2+)tf X2

1++fP)f)f

(44)

, (4.5)

4. APPLICATIONS

(i) First we see that

1+&lcp

Efc),f

+lCXI—)t2

1+E2cp
+1CXI—Xf

E2CX2—hf

1+Efcp.

(46)

lim C(1, Xi+1, X,+2, ~, Xr+1, A f+2 '+1)

Phfhl

=%2 (4.1)

t YAIXf Y)tfXf

When only a few sites are involved, this expression is

quite simple to evaluate. Even when a large number of
sites appear, there are obvious advantages over the in-
finite determinant with which we started. From (4.1)
we can obtain an expression for any correlation. func-
tion involving a finite number of sites in row 1. For ex-

ample, by letting Xi, ~ ~,~f~~ keeping all h; —X fixed,
we 6nd

(al, ii+lal, ir+2' 'al, ir+iai, ir+2)

F,=(x —x,)/(1 —x,x), 2=1, , f. (4.7)

Df is obtained from Ef by letting all the X„—+~ keep-
ing every X;—X fixed. Equation (4.4) can be applied.
to the case of a dislocation" by putting all x =0.

(iii) Finally, we can use (4.1) to see how reliable cer-
tain decoupling methods are. Matsudaira' has used such
a method in calculating the frequency-dependent mag-
netic susceptibility, from a general formula which he
has derived, for the square lattice. He is particularly
interested in the behavior near the critical point and has
pointed out that his decoupling method does not
give the correct analytic behavior. I et us see where
the difference arises for a simple case. Consider
(al, ill, i+,al, 2+r), where r is very large, which is de-
coupled as

Cp CXI—)t2 C) I—gf
ML(ai, i&1,l+r)+(al, la1, 2'r)+(0'l, l+r012+r) 2M ). (4.8)

Cp

(4.2)

which reduces to the expression given by Stephenson"
when f=2. In this case we have

Stephenson, J. Math. Phys. 7, f)23 (1966).

( la, l la, l+r 1a2+r la.l +,rid, 2+ )r
&1,1 &1,1+r&1,2+r&1,1+8&1,2+8

=M/ cp(Qp"+'+Op'+')+—c, „0,-,"+'+c„,Q„-;+"
+Or+'0'+' —0 r+'0 '+'] (43)

which vanishes as (T.—T)2'2.
When T&T., ni&1(a2, so that inda(f) WO. However,

indalQ) =0, where alp') = fa(f), 'so that the canonical
factorization ai '(P) =G+(P)G (P) exists. We can repeat
the procedure of Sec. 3 and v e see immediately that all
correlation functions containing an odd number of sites

By using the results of Wuo for the asymptotic form of
the pair correlation function, we see that for J1=J2= J,
p«1, and «(r+1)»1, the decoupling approximation
gives

(ariel, 1+~12+r,) Mcp-, M2[—32m.p2(ry1)27-1, (4.9)

because the pair correlation functions are asymptotically
proportional to M'. This expression vanishes like
(T,—T)"'.The asymptotic form of the exact result can
be derived from (4.1) and (3.24), was given in P, and is
proportional to Me near the critical point.

It is

(al, i+1,l+ra1, 2+r) Mcp Mp/8ll 2 (r+1)'] ', (4.10)

which vanishes like(T, —T)2~'

' S. Amelinckx, The Direct Observation of Dislocations (Aca-
demic Press Inc. , New York, 1964), p. 294.
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APPENDIX k —m= l to obtain

If we write

(A1)

y), „=p V)(+)V)+. a( ' —» ."+',
1=0

and for k) n we put n —m= l, which gives

(A3)

it follows from (3.7) and (3.8) that V(„=Z V(+~ „(+)V(( ' fl» —."+'
1,=0

(A4)

,(+)p (—) —r. j)0
@=0 (A2)

(+)p .(—) —r . j)0
r( =0

If we then make use of the fact tha, t here a '(Q') = u(f'),
we see that v, =c,. Finally, in (3.13), for k(n we put

By using (A2), we see that (3.20) is veri6ed.
It should be noted that (A2) follows almost immedi-

ately, in a way identical to that of Appendix 3 of P,
from the theorem concerning inverses of Fourier series
proven by Edrei and Szego."In passing, we might also
note that we can easily prove these results by means of
the contour integration procedure used in P.

A. Edrei and G. Szego, Proc. Am. Math. Soc. 4, 323 (1953).
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Two-Dimensional Antiferromagnetism in Mn (HCOO) '2H&0$

J SKAL&'&, J&.) AND G. SHIRANE

Brookhaven Ãationa/ Iaboratory, Vpton, 1Veto York 11073

AND

S. A. FRIEDBERG

Carnegie-Mellon Ums'ersity, Pittsburgh, Pennsyh ania 15Z13
(Received 23 June 1969)

Long-range two-dimensional magnetic correlations have been observed in Mn(HCOO)2 2H20 by the
&~uasi-elastic scattering of neutrons. A direct indication of the two-dimensional magnetic character of the
system is the occurrence of the scattering near "lines" in the reciprocal lattice. The "lines" are parallel to
a, indicating that long-range correlations are occurring in planes of atoms parallel to (100). The two-
dimensional character is observed below T& =3.6'K and persists to at least 2T&. Observation of the q
dependence of the scattering above T,v is consistent v ith a decreasing two-dimensional correlation length
as the temperature increases. Another interesting property of this crystal is the different degree of ordering
exhibited by two types of Mn moments which occur in the primitive cell at two pairs of inequivalent posi-
tions (A sites and B sites). The A sites and B sites form alternating layers of atoms parallel to (100) and
strong intraplanar antiferromagnetic coupling exists only for the A sites. Measurements of magnetic Bragg
peaks below T~ indicate that (p,g) is an order of magnitude larger than Qg), which is in agreement with a
molecular field model with very small interplanar coupling. The sublattice magnetization (p~) was found
to vary as (3.62 —T)'~~0-" from 2.00 to 3.48'K, the initial slope of the magnetization just below T„z being
larger than that obtained in isotropic three-dimensional systems.

INTRODUCTION

"EUTRON diffraction techniques have recently
been utilized by Birgeneau et al. ' to give direct

evidence for long-range two-dimensional magnetic cor-
relations in K.2NiI'"4 over a wide range of temperatures.
Structural, thermal, and magnetic measurements of
several other compounds suggest the existence of a
similar two-dimensional character. One of the most

f Work performed under the auspices of the U. S. Atomic
Energy Commission, U. S. Ofhce of Naval Research, and the
National Science Foundation.

'R. J. Birgeneau, H. J. Guggenheim, and G. Shirane, Phys.
Rev. Letters 22, 720 {1969).

attractive is Mn(HCOO)2 2H20, a well-studied anti-
ferromagnet with a feel temperature at 3.7'K.

The structure of Mn(HCOO)~. 2HgO has been de-
termined bv Osaki el al.2 and an (010) projection is
indicated in Fig. 1. The space group is P2(/~c with four
molecules in the primitive cell, and the Mn atoms
occupy two pairs of inequivalent positions. The two
sets of sites (2 and 8) are contained alternately in
planes parallel to (100).An A site is coordinated through
formate groups to four other A sites within a plane and

' K. Osaki, Y. Nakai, and T. Watanabe, J. Phys. Soc. Japan 19,
717 (1964).


