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Theory of a Two-Dimensional Ising Model with Random Impurities.
III. Boundary Effects
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We study the effects which immobile random impurities may have on magnetic properties and spin-spin
correlation functions of a ferromagnetic system near the Curie temperature. This is done within the con-
text of the model introduced in the first paper of this series by computing the spin correlation functions on
the boundary of a half-plane of random Ising spins, where the boundary row is allowed to intereact with
a magnetic field @.We find that as T ~ T,—the average boundary spontaneous magnetization vanishes as
T.—T. However, the average boundary magnetic susceptibility is shown not to exist for a finite range
of temperature about T,. Furthermore, at T, the average boundary magnetization behaves as
—E ' sign{@1/ln EP, ~@~j ', where E ' is a measure of the width of the distribution of random bonds.
Whenever T—T,=O(N~), the average spin-spin correlation function for tmo spins on the boundary is
shown to approach its limit at infinite separation as some inverse power of the separation instead of as an
exponential. At T& this average correlation function behaves asympotically as N ' (lnmN~) ' when m,
the separation between boundary spins, is large. Finally, we make the probabilistic nature of the boundary
spontaneous magnetization more precise by computing its probability distribution function.

l. INTRODUCTION
' 'N the preceding two papers of this series' ' we have
~ ~ introduced a modification of the two-dimensional
Ising model that incorporates random impurities, and
have studied its specific heat and the spin-spin correla-
tion functions of the bulk. This latter study was
extremely complicated, when the separation between
spins was large, due to the necessity of dealing with
Toeplitz determinants of a large dimensionality that is
proportional to the separation. These large deter-
minants also arise in the much simpler case of spin-spin
correlation functions in the bulk of Onsager's lattice
and delayed a full understanding of the asymptotic
behavior of these functions for years. ' However, it has
recently been realized4 that if one considers a half-plane
of Ising spins, one may compute the spin-spin correla-
tion functions of spins near the boundary row in terms
of determinants of a small dimension that does not
increase when the separation between the spins be-
comes large. In this paper we exploit this fact to study
the spin correlation functions on the boundary row of
our random Ising model.

%e consider a half-plane of Ising spins where the

81,1(m @) (&1,0&1, ) ~ (1.2)

The values of K~ and St, t are, in general, di6erent for
the different lattices in our collection even in the
thermodynamic limit. This is in distinct contrast with
the free energy and magnetization of the bulk, which
are known to approach a value in the thermodynamic
limit that is the same, with probability 1, for all
lattices of our collection.

A significant aspect of these boundary spin correlation
functions is that, even though they are not probability-1
objects themselves, their average values provide lower
bounds on certain probability-1 properties of the bulk.
In particular, we use a theorem of GrifBths' to demon-
strate in the Appendix that for all temperatures T

(P}t(@))E,&M (H) (1.3a)

boundary row (called 1) only is allowed to interact with
a magnetic field @ and study the magnetization of this
first row

Ki(@)=(ai, ) (1 1)

and the spin-spin correlation function between two
spins in the first row

' B. M. McCoy and T. T. Wu, Phys. Rev, 176, 631 (1968}.This
paper will henceforth be referred to as I.

~ B.M. McCoy and T. T. Wu, preceding paper, Phys. Rev. 188,
982 (1969)~ This paper will be referred to as II.

'The limiting value of the correlation function when the
separation between spins becomes infinite was announced by
L. Onsager, Nuovo Cimento Suppl. 6, 261 (1949).A derivation of
this result was (essentially) first given by C. N. Yang, Phys. Rev.
85, 808 (1952). See also C. H. Chang, ibid. 88, 2422 (1952).It was
also known to L. Onsager /ibid. 65, 117 (1944)) that if T)T, and
the separation between spins tends to infinity, then the approach
of the spin correlation function to its limiting value of zero is
exponential. However, the complete details of this asymptotic
behavior (for T&T, as well as T&T,) were obtained only much
later, for the case of two spins in the same row by T. T. Wu [i''.
149, 380 (1966)j and for two spins in different rows by H. Cheng
and T. T. Wu /ibid. 164, 719 (1967)j.

4 B.M. McCoy and T. T. Wu, Phys. Rev. 162, 436 (1967}.This
paper will henceforth be referred to as IV.

(81,1(wig)))Es( ((&l,0&1,m)bulk)Es (Sm(+))E2 ~ (1 3b)

Here H is a magnetic field that interacts with the entire
lattice and is numerically equal to @, M(H) is the
magnetization of the bulk, and ( )E, denotes an
average over the set fEs(j)) that specihes the collection
of lattices. These lower bounds may be used to draw
conclusions about the critical behavior of the bulk
properties if we know that both the bulk and the
boundary spontaneous magnetizations vanish at the
same temperature as I' is increased from zero. Ke have
not been able to show this directly. However, we will

' R. Gri%ths, J. Math. Phys. 8, 478 (1967); 8, 484 (1967).
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M(0) ~const(T, —T)e (1.4a)

see in Sec. 2 that the boundary spontaneous magnetiza-
tion vanishes at the same temperature T, at which the
observable specific heat found in I fails to be analytic.
Thus, if we could show that the bulk spontaneous
magnetization vanishes at the same temperature at
which the specific heat fails to be analytic, we would
have

(Ki(0))E,——M(0) =0 for T) T, . (1.3c)

Indeed, this identification of the temperature at which
the order parameter vanishes with the temperature at
which the specific heat is nonanalytic is universally
made in the literature on magnetic critical phenomena. '
No general proof of the validity of this seemingly
natural assumption exists, but neither has a counter
example been found. Therefore, we will assume it to
be the case, and find from (13a) and (1.3c) that

&»O)&~@IZ=o&E2& ~M(H)/»IE=o (1 3d)

It has become common to parametrize the behavior
of ferromagnets near the critical temperature in terms
of a set of "critical exponents. "' In particular,

and, if T& T„
tbul)r+ fbouudur)re (1.5e)

The primary purpose of this paper is to demonstrate
that, in general, there is no reason to assume that an
impure, and hence realistic, magnetic system near T„, is
described by the "critical exponents" defined by (1.4).
We demonstrate this by studying (Ki(@))E, and
&81,2($)&Er for the case of the particular probability
distribution considered in I and II:

0Eg
P(E2) =/4()1) =.()(() E)(-' ' if 0&)(()(()

(9.
=0 otherwise, (1.6)

where A= tanh2E2/)/ and p= (kT) '. In Sec. 2 we study
&Ki(@)&E2 when T T,=O(—X ') and @=0(/V '). We
find in (2.35) that as T~ T,

&K)(0))E2~C)/.V(T, —T),
where

Cir ——(22r)'"kp '(1+s2,~')si, '/2(1+xi, )
X (E((1—si,)+E,'(1—s2, ') }r (1.8)

as T~T~—,
si = tanhEgP, s2'= tanhE'P, (1.9)

BM(H)
const(T, —T) 2'

H-0

const(T —T,) 2

if T~T,—

if T—+T,+ (1.4b)

M(H) sgn(H) const~ H
~

"' if T= T, (1.4c)

and if, in addition, m is large,

(S (0))E, constm' d " if T=T, (1.4d)

Pbu lk jaboundary &

Ybulk +boundary )

~bulk+ ~boundary y

Qbu Ik /boundary p

(1.5a)

(1.5b)

(1.5c)

(1.5d)

' We follow the standard notation as given, for example, by
L. P. KadanoH, W. Gotze, D. Hamblen, R. Hecht, E. A. S. Lewis,
V. V. Palciauskas, M. Rayl, J. Swift, D. Aspnes, and J. Kane,
Rev. Mod. Phys. 39, 395 (1967). This article contains extensive
references to earlier work. The standard notation seems to have
been applied only to lattices in which the spin-spin correlation
function depends only on the relative separation between spins
and approaches a limit as the separation becomes infinite. Our
definitions (1.4d) and (1.4e) are therefore somewhat more general
than have been considered previously.

(S (0))E2~M'(0)+constm e /2 if T& T, . (1.4e)

In (1.4d), d is the dimensionality of the lattice, which
in our case is 2. In (1.4e) the correlation length P
depends on T and u may be different for T above or
below T,. If we define a similar set of "critical ex-
ponents" for (K)(@))E,and (81,2(m, o)&E„and if we
use (1.3), we find

and the subscript c means T= T,. This is in conformity
with (1.4a). However, we also find that K)(@) is not
an analytic function of @at @=0 when T—T,=O(X ').
Most striking is the fact )see Eqs. (2.50) and (2.63)j
that there is a temperature range about T, where
&BK2(@)//8@~o=()&E2 does not exist because, when b,
which, as defined by (2.11),is proportional to N2(T —T.),
is neither zero nor an integer plus —,', one has

&Ki(C)&E,-(K1(o))E,
+C(h) sgnC) X-'y.

l 0 I X)
+O(g&4i'i)+O(A) . (1.10)

Here

C(g) —22(4—1/2)ps 1/2(1+x )
—1]24—1

Xz2,~24)r'"Lr(b) j ' cscir(2 —b) (1.11a)

if T& T, and

C(g) 2—3(4+1/2)LE 1/2(1+s )
—1j—24—ls 02r(2 2b)

Xr(1+&)Lr(—b)r(1 —S)7-' cscE(-', +h) (1.11b)

if T&T,. When T(T„we need the additional restric-
tion that

~
b

~
is not an integer. For the values of 8 at

which C(b) is zero or infinity the form (1.10) breaks
down. These exceptional values are studied also in
Sec. 2. In particular, when T=T,(8=0), Eq. (2.71)
shows

&Ki(e))E -—(sgno) X2 '"
Xsi, '"(1+xi„.) '"/V 'plnV/3, [@)g '. (1.12)

Therefore the assumed "critical-exponent" forms (1.4b)
and (1.4c) do not at all describe the behavior of
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(&~,~(rn 0))z I ~=0—'zg '(I+zL, )'-X "-LlnX -'nz?'. (1.13)

Furthermore, (3.48) shows that if the scaled tempera-
ture 8 is of order 1 and m&&A',

(P~ ~(m, O))E,——,', z~,
—'(I+zg, )'cV-'-

&((maxi —8,0j+D(8)(1V'/m)'~~~) (1.14)
where

D(8) =4T(2
I 81)Ci'(I &

I
)?'

X[-,'z2, 'z~, '(I+z~,)'?"-~ ~. (i.i5)

Therefore the critical-exponent forms (1.4d) and (1.4e)
fail to describe the behavior of (E&,~(m, 0))@, near T.
and (1.5) implies that 'gbgjg and $b„$k for T) T, and
T T,=O(X ') do —not exist.

Not only are the average values of the boundary spin
correlation functions of interest, but also the proba-
bility distribution of these functions gives us additional
insight. into the microscopic details of our random
Ising model. In the previous paper' we interpreted
lim „(S„,'")z, as a measure of the local magnetization
in a row and used the value of Iim„„(lnS„,)z, and the
lower bound on M(0) of this paper to speculate about

0 0 1 1
D U D U

0 D 'ic 0
0 UO —ic s
1 D —z ja
1 —b

2 D

b

—z,(1)

($}q(o))z,. Hence (1.3) and (1.5) imply that for our
random Ising model yg„)k and bi,„)g do not exist.

It is not surprising that forms (1.4b) and (1.4c) are
violated in our model because they have been abstracted
from calculations on pure, homogeneous lattices in
which the only relevant length scale is the coherence
length P defined by (1.4e). In some sense our random
lattice possesses two length scales, the coherence length

P of the pure Onsager lattice, which is known' ' to be
proportional to ~T—T,

~

', and some sort of length
associated with the impurities. Because the specific
heat computed in I deviates appreciably from its
Onsager value only when T T, =O—(X '), we expect
that this impurity length scale has the order of magni-
tude E'. In Sec. 3 we try to make these concepts more
precise by studying (S~,~(m, @))z, when m=O(Ã'),
T—T, =O(LV ') and @=O(V ') When m«A' this
average correlation function approaches its Onsager
value. However, when m)).'t ' and T= T„(3.54) shows
that

f(n) = 4kP, (1+z„')(Eg(I —zg,)+E,'(I —-2.') )
X r(-,'n) L2-»-'z„-»'-(I+». )3-. (1.17)

Therefore, as T~ T,—all moments of )VS}~(0) have
the same order of magnitude.

We discuss this behavior when &V%~ is of order 1 as
by constructing in (4.29) the probability

distribution which has the moments (4.20):

$(93}~)= 2cmÃc &'m~'~'"(cmA'PPq)" -t~~ '/I" (~ 8~ ), (1.18)

where
c =2"'z "-"(1.+z ) ' (1.19)

This then serves to make more plausible and precise
the discussion of P(S„'")of Sec. 6 of II.

2. AVERAGE BOUNDARY MAGNETIZATION

The general technique for studying spin correlation
functions of our random Ising model has been explained
in detail in Sec. 2 of II. The modifications needed to
study spin correlations near the boundary of a half-place
of Ising spins that interact with a magnetic field @
applied to the boundary row (called 1) have been
discussed in Sec. 2 of IV. From these sources we find
that for any lattice of our collection

$}j(g))=z+ (1—z')5 '(1,0; 0 0)DQ, (2.1)
where

21 '(1,0;0,0)Dc =(2z) ' d8t 8 (8)jyg&, oc. (2.2)

The required inverse matrix elements of B(8) are
computed as

[8 '$, g, p& = cofactorK, '~, ,~/detK, (2.3)

where I= U, D, I'= U, D Lcompare with (7.5) of IV), and

2
~ ~ ~

BR—1
U D

(2.4)

the probability distribution of this local magnetization.
In Sec. 4 we study the probability distribution of

Kqg)), which is the measure of the local magnetization
in the boundary row. We examine (9)}~"(@))~,and
show, in particular, from (4.20) that as T +T-, and-
if n is of order 1,

(K,"(0)), f(n).A' "+-'(T,—T), (1.16)

2

M —1. U
5R D
mZ U~

M
—z, (m —1)

zg(St —1)
M'

b
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Lcompare with (2.8) of I].Here

c(8)= —2 sin8~1+e"
~

—',
s= tanhp@,

(2.5)

(2.6)

and
dx

~(x)—=U(q) =L2&2(&)] 'e " "'""+''.
and u and f/ are defined in (2.7) of I. In terms of C(1,BR),
D(1,0E), and D(1,5K) defined in Sec. 2 of II we find

detK= —cL—cC(1,917)+z-'D(1,Bit)]. (2.7)

We similarly evaluate the relevant cofactor and 6nd

L8 ]in //i/= zD(1,9R)Lz D(1,%)—cC(1,0R)]
= zLz2+ cx(l,~n)]-i, (2.8)

(K,(5j))e,=-,'z„-'/'(1+z„)2r-'X-'z

We may now follow the procedure of I and II and break
the 8 integration in (2.9) up into two regions: one region
where 8 is of the order 1V ' and a second where ~8~ is
much greater than LY '. The contribution from this
second region is (at least to leading order in iY) a con-
stant independent of 6 and z. We find

where x(1,0R) is defined by (2.21) of II. Then we apply
the argument of Sec. 2 of II to find

(Ki(&p) )z, ——z+ (1—z')z(22r) —'

x dQ dqU(q)(z2+4e ') '

+const+0(X ') . (2.16)

d8 dx/ (x)Ls2+cx] '. (2.9)

In this paper we will conhne our attention to the
distribution function /ip) given bv (1.6). In this case
we know from (4.1) of I that T, is located from

lngz2 ~'(1—zi,)/(1+zi, )]= —-'V!' '. (2.10)

Throughout this paper we will make comparisons be-
tween quantities computed for the random lattice and
for the corresponding Onsager lattice with the same
Ej and T,. For this Onsager lattice E2=E2, where
z2, '(1—zi,)/(1+zi, )= 1. When X is large, usually the
difference between E2 and E2' is important only in
locating T„so that to leading order in )Y we will often
be able to replace E2 by E2'. The boundary magnetiza-
tion Ki (g)) of this Onsager lattice has been studied in
detail in Sec. 5 of IV and the boundary spin-spin
correlation of that lattice, pi, i (222,@)= (ei,oe l, na) was
studied in Sec. 8 of IV.

We confine our attention to the temperature region
considered in I and II where

8= (T—T,)/V24kp, 2(1+z2.~')
X{Ei(1—si,)+E2'(1 —s2, ')} (2.11)

is of order I. In addition, it is easily seen from the
expression for 2(x) L(4.4) of I] that unless z=O(E '),
(2.9) will not be sensibly different from its value for
Onsager's lattice. We therefore deine

We may replace the upper limit of the p integration
by ~ if we use the fact Lwhich is easily seen from
(2.15)] that

lim L'(q) = 5(q), (2.17)

to And for large p

dqU(q) zL2+« ']—'-y '

Therefore

(Ki(@))z,= 2zi, '"-(1+—zi, )2r 'X 'z

(2.18)

dqU(q)(z'+« ') ' (4+1) '—
+lnÃ2+const+O(X ') . (2.19)

The constant in (2.19) may be determined by de-
manding that the 8 ~ &~ limits of (Ki(@))z2 agree
with the T T, behavior of 9pio(@) that may be ob-
tained from Sec. 5 of IV. For the purpose of this paper
we will not need this constant and will not compute it
here. However, it is not without interest to study the
manner in which (2.19) approaches its Onsager limit.
For example, consider the case T= T, and z —+~. We
write

z= z/$ 4g 1/2z i/2(1+ ) i

and recall the definition of p ((4.16) of I]:
y= —SX '"si.(1+zi,) -'/3 '8.

Then

(2.12)

(2.13a)

dq U(q) (z'+4 e-')—' —(4'+1)—'

dqU(q)(z '+4) '

x=Xg'/2e 2+O(E ') (2.14)

c=i' & '/'z '(1+zi )'p&'—2d!+O(p —2). (2.13b)

When g and 8 are of order 1, we 6nd from Sec. 4 of I that
XLI —4(e '—1)(z'+4) '

+@'(e ' —I)'(z'+4) ']—(4+1) ' (2 2o)
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We cannot neglect (t( in comparison with z' in any of If B)0, (2.28) surely is zero. If 8(0,
these terms. %hen p is large,

(Kg(o))s, = -'"sg,—' '(I+zg, )s—'X-'

and

QQ

dq U(q)e '= K&((t()(Ko((tp) = ——lnK((((t )

-1+-'y-' —-'y-' (2.21)

X[1'(l bl)] ' da dq'
0 00

Xexp[ —ttq' —e(('j (I+a'e ') ', (2.30)

o = e&'"o.'

we obtain
Using these approximations, we hnd that (2.20) is
approximately given b& (K&(0+))z =2 '"s~ "'(1+s( )(V '

Xi (l+ lt'I)/I'(lbl) (2 32)

2K ( )+K ( )j&K ( )
from which, if we interchange the orders of integration
and let

-4 '[1+( '4)4 '3 (2.22) (2.31)

At ("+e) '(4+-I)-'+O(z-')

= —lnz' —-', z 'lnz'+O(z '). (2.23)

Consequently for T= T, as z ~~

(K,(A))@, —,'z~, '"(I+z(,)s. 'rY 'z{—21n(AY ')
+const ——,'z 'lnz'+O(z '))

—4x 's ~'s lns, (2.24)

which agrees with (5.31) of IV.
We proceed to analyze (2.19) in several stages. First

we will determine the spontaneous magnetization and
then will study the behavior when z 0 for b)0, 8&0,
and 5=0.

A. Spontaneous Magnetization

The average boundary spontaneous magnetization is
defined to be

(K((0+))z,= firn (K((@))z
@~0+

(2.25)

Clearly the contributions to (2.19) from values of p
greater than some small positive number e will vanish
ass~0. Then if we let

When b~ —~, (2.32) is approximated as

(K((0+))z,=2 '"s( '"(I+sg )2V 'lbl""-

X[i—,'Ihl-(+O(a-') j
(I+sic){(Tc T) P ~(1+s2~ )s2('

X [E~(1—z&,)+E2 (1—z2.')j) '(-'. (2.33)

This last expression is seen to agree with the Z =T,
behavior of K& (0) as given by (5.29) of IV if we note
that near T,

1+(T—T,)kP, '[E(s(, '(1 —zg, ')+2E,'j
1+(T T,)kP '-'s( '(1+—z„)'(1+s„)

X[E&(1—sg,)+Eg'(1 —sg, ')]. (2.34)

When 8 —+0,

(K,(0+))z s((~2-»2z, —«~(i+s, )$'-(lhl . (2.35)

Therefore, the average boundary spontaneous mag-
netization vanishes linearly as T—+ T,—as opposed to
the square root of the Onsager case. Finally, for the
case E& E2O we compare ——(2.32) with K& (0+) by
plotting them in Fig. 1 for the same values of E and 8
considered in Fig. 3 of I.

and

we find

q= q' —ln-,'y (2.2u)

(2.27) N=
N= 100
N4 50

- 2.4

X lini
z ~0+

do[2K)(v2zu) j ' (f(1'(2 '"zo)'

lim (K~(@))z,=2 '"s '"(I+s& )s—'X—'
Q ~0+

N =25
2.0

O

{.6

m~
l. 2 ~

Xexp[ f(q' e'( ——z'n'—e2"—j' (1+a'e '') ' (2.28)

En the z~0 limit we may omit the term proportional
to z' in the exponential. VVe may also expand for small p

2K (4) I'(l bl)(-,'g) ~'~, (2.29)

and replace the upper limit of n integration by infinity.

"{.2 -I.O —.S ".6 -4 -,2

0 tT/Tg-I)

FIG. 1. Comparisons of SQI {0+)and (p}&{01))1,
for several values of 1V for the case LI =F20.
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B. s near Zero, S)0
('onsider first the restriction

n ——,
' &b(n+

where n is a non-negative integer, and write

(2.36)

When 8 —+~, we may use the relation

dK)(&t)
I~k 1(41)= —bg 'Ek($) ——

dp
and the asymptotic expansion'

(2.43)

(Z2+&tle ') '=&tl 'e' P ( z—2&f1 'ek)k
k 0

+( zklfl
—&E2)n(z2+lflz —

2)
—1 (2.37)

where the first summation is to be omitted if n= 0. Ke
may introduce this expression in (2.19) and write

(Stl(A))E,--,' "in ' "(1+21,)2i

If (4)-(l )"'-(b'+~')-'"
Xexp[ —(b +&tl')"'-+b sinh '(b/@)] (2.44)

to find

(&fermi(C)/~C I s, =o)E2-P.»2n

X(—lnlV 'b+ln2 —1+const+b '422r}

P,—2z„~' r2' ln(T —T,)+O(1), (2.45)

which is seen to agree with BKio(O)!&lSQI @=2 given by
(5.32) of IV. However, from (2.41) we find that as bk-,'+

X( Q Ik+ I„&"+constZ+z in.l'), (2.38)
k 0

(~~i(O)/~C I e=o)E,
—

2r
—1P z 0—l(b 1)—1+O(1) (2.46)

—( 1)kz2k+1 d4 [2I& (y))—]@—k—1

= (—1)"z'"+' dlf'(ll' " 'Ii 1+4 4(4tk)!%(&t')-

and
—(/+1) 'bk o}, (k(n) (2.39)

&1) —( 1)nZ222+1 d~[21f (~)]

Xexp[(k+1 —b)q —-'2@(e2+E-')]—(4+1) 'bk, o

Therefore the average boundary susceptibility at zero
field diverges at a temperature above T,. This is com-
pletely different from the zero-field susceptibility of
either the bulk or the boundary of Onsager's lattice,
which are known to be finite for all temperatures
TNT'

When z is small, we may study I„(') exactly as we
studied the spontaneous magnetization. The contribu-
tions from values of &b greater than 2 are O(z2"+').
When lfl 0, we use (2.26), (2.27), (2.29), and (2.31) and
find

x „[(„b) 2~( 2+,))( 2+@,), (240) I„"'=sgn(z)( —1)"('zi 'v2)"2'"[I'(b)] '

Because of the restriction (2.36) the integrals in (2.39)
and (2.40) converge. We will see shortly that for b fixed
and greater than-'„I &"=0(z) aszk0. However, when
b~n ——,', I„ i will tend to infinity. More specifically,
if (2.36) holds and b n 22, we —may study the singular
part of I 1 by using approximation (2.29) to write

1 = (—1)"z2n—'1'(b —22) [1'(b))—'

X2 n&jC (ly) 2&—4 ) n+(O)1—

dq' exp[-'q' —e']

eexp( —rII~I
—ll2)

&fa'&2" &4 "'(1+&2") '

+O(Z2.+')yO(lzi ). (2.47)

The o.' integral may be approximately evaluated as

e exp(—q'Is( 1/2)

&fo~o12&4 n1 (1+o~2)—1—

—( 1) +&z2 lan&&2[np( 11)2)
—1

X2 "(b—21+12) '+O(1), (2.41)

where O(1) means finite as b —4n 2—
If b)-'„we may use (2.38) to write the average

boundary zero-field susceptibility as

(~&i(C)/~C I e .)E,=f1.2z2 ~'=~-'

X &y[&b-'It i 4(&t)/I~i(y) —(&t+1)]

+in.h'2+ const+0( & ') (2.42)

= 2(2i CSC (ir2+Il —b)

+z "+'"+'[(b 22 ') '—+O—(1-)]}, (2.48)

where O(l) is a term that does not diverge as b —e n+
Therefore

I„&'&=(—1)"sgn(z) Izi
"2-4-1&2[r(b))-12i212

Xcscir( 2+22 b)+ ( 1)"z'—"+'—
X firl"[F(22+2')) '2 " '(b —n ——,') '+O(1)}

+O(z44)+O(z2&'+'&) . (2.49)

' JFigher Transcendental Ficnctions, edited by A. Erdelyi
(McGraw-Hill Book Co., New York, j953), Vol. 2, p. 86,
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This contribution to (Sf~(hp))E, clearly fails to be analytic at g)=0, since the nth derivative does not exist.
Indeed, if 0&b&-„(K~(9))E,is not differentiable at all at @=0, so the zero-field susceptibility will not exist.

It remains to lift the restriction (2.36) by allowing b to be half an odd integer. We first explicitly exhibit

(Ki(@))z, when (2.36) holds as
1I—2

(K&(5j))z,=-',
zing '"(1+zfp)s. '.4 '{Q I/,.+( 1)" '—z'" '[s'"(I'(n ——')) '2 "(b—n+ —') '+O(1)]

+sgn(z)IzI "2 ' '/2[r(b)]-'z3/ cscs.(~~ —b)+(—1)"z-'"+'[m / (I'(n+~)) ~2 " '(b —n —~) +O(1)]

+O(z'~)+O(z"+')+lnX +const) . (2.50)

In this form we may now let 8 —+n' ——,
' from either above or below and find

i/' —2

hm (Sty(!c/))z, ———',zg, '/'(1+z~„)s. '.l '{Q I/, +( 1)"'z'"2 —"'+'[F(//' ——,')] '
h~u' —I/2

Xsgn(z)z'"' —' ln'
, z

I

+O(z'"' ')+lnX'+const) . (2.51)

Therefore, for all positive b [at least that are O(1) as X~~ ], (9)f/ih /))E, is not an analytic function of @at Q = 0.

C. z near Zero, 6(0
The analysis of (K&(O))z, when b&0 is only slightly more complicated than the case b) 0 just treated. When

8&0, we may use the results of Sec. 2A to write

(9H&(N))z, ——sgn(z)(P)&(0+))z.,+g'/, '"(1+=~,)z. 'l 'z

dy /I/f{[2ft&(@)]
—

&z
—&z—/y/2&/«+e ~) [I'( bl)]—~(ty)l/'Ie —&a—(p/2/«)

)&(z'+Pe ') ' —(&+1) ' +lnX'+const+0(. l' ') . (2.52)

When b& —2, the second term is O(z) as z —+0; therefore

(»i(9)/~C I v=0)z,

2P /- 0—l~—1 (/@ @' /$//e e{[2g ) (@)]—/ e
—& v—(0 / & ) ( «+ ~ &) [I'(

I
b

I )]—
& (~@) I & I e

—& e—(4 /2 ) «)

—(/+1) ' +in.l 2+const+0(l ')

2P ~ 0—1~—1 d/t/{@ [E///I+y(/b)/K~y~(/f/) —24/
I bI ]—(/1/+1) )+lnX +const+0(X ) (2.53)

which, if we use the recursion relation' which is exactly the same as (2.42) except that b is
replaced by I

bI. Thus

fthm~/+i(4)

=%-ib/(4)+2 I b14 '&///(/t) (2 54)

becomes

(aK, (SP)/ag Io= )z =2P z ~'~-'

X 4t [4-'&i-ia/(4)/ft ia/(4) —(4+1) ']

+InX'+const+0(X ') (2.42')

8 Reference 7, Vol. 2, p. 79.

(aK, (sj; b)/as' I g, .)E,
= (»~(8 —b)/~8 I e=o)z (2 55)

and the zero-6eld susceptibility diverges as a simple
pole when 8 —+ ——,

' as well as when b —++-,'+.
tA'e may also use the procedures of Sec. 2 8 to show

that, in addition to a Taylor series in IzI, (K&(g)))E,
contains terms proportional to IzI ~'~'. Values of @)e
contribute only to the odd terms in this series. Any
divergences in these terms as {I)

—+ —n'1-,' and any other
terms come from the region 0&&&&. Consider 6rst
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the case

n —,'&—fb
f
&n+-,', (2.56) L2rc, (y)7- =r(f ~j)- (-;y) '

b~ —n, (2.57) X{2 & (l4)"+(le)'&'&F(1-j&I)

where n is a non-negative integer. XVhen p 0, we use

the complete expansion

2&&~&(y) =~(sinl )ln) '

XLF(1+ f bj)7
—' g 8„$2&'+O($'!'&)}, (2.59)

k=p

where the only properties of AI, and BI, we need are

X{g (-',y) -& ~&Lu!F(a+I —faf)]
Ie 0

and, as {II~—n
.40= BP= 1 (2.60)

—2 (2+)'"+"!L&'I'(&+I+
f ~f)]}, (2.5g)

k=p

A&, =0(1) for 0&k&n 1, —

a.= —r(1—
f
8

f )/Ln! I'(n+1 —
f 6j)7.

Using these approximations, we 6nd

(2.61)

(2.62)

2 fl—2

(9)ll(0))E,=sgn(z)(9J& i(0+))z,+sgn(z) 2 ~'"&
I =! '+(sgnz)X 2z„-&»(I+z„)&r-' ) -'

X {f
z

f

"2' ' "z cscs (—'+ &1) I'(-' —28) F(1+8)Lr (I—
&1)I'( —$)]—'

+ fz f

" '((—1)"2 "(&I+n——') 'I'(2n —-')F(——n)f F(n+ —')I'(n —-')] '+O(1))

+z2"(2 " '&2&rrP+2n)(n!) 'L(n —1)!] '(&I+n) ')

+ f
z

f

2m+1(( 1)n+12—n—&(g+n+ &)—&F(2n+3) F(& n) f F(n+ 3)F(n+ 1)7—1+O(I))+O(z—28+2)+O(z—48) } (2 63)

where the coeScients&1&r+& with 0&2(n —1) are analytic
in 8 for f8f &n+ ,' Note th-a.t the coefficient of z'" has
a pole at 8= —n and the coeScient of z2" ' has a pole
at 8= n+~ W—e may. now lift the restriction (2.57)
by letting II}~—n to obtain

lim (g3t, (S&))z,——sgn(z)(K&(0+))x,

2n —1

+sgn(z) P M "&
f
z

f

'

Therefore, not only does (K&(@))&r, fail to be analytic
at @=0because of the presence of terms proportional
to sgn(z) Iz

f
",but also

t9

lim (931,(@))z,@~0+
/gran

does not exist if n)
f

&I f+2. In particular, the zero-field

susceptibility does not exist if ——,& 5&0.

+sgn(z) X-,'z&, '"(1—z& )z '.) '
f
z

f

'" D. z near Zero, S=O

X{2—"—»2z.r(-+2n) (n!) 'L(n —1)!] It remains to study the case 8=0. The previous
approximations fail in this case because neglected terms

Xlna2+O~r~ ~+O~e-+I&
O(z'&'&) become important. From (2.19) we have

and we may lift restriction (2.56) by letting 8 ~ n'+-,'—
to obtain gg g=p —2Syc +Bye Ã Z

lim (Kq (@))&r, ——sgn(z) (Kq (0+))z,
b~n'+1 j2

2@'—2

+sgn(z) P M&'&jzj"

+(s nz)X-'" '&'(I+- )z-'4' —'fzj'"' '

X{(—1)"'2-"'r(2n' —-', )r(-,' —n')

XLF(n'+-', )F(n' ——',)]-& lnz'+O(1)}. (2.65~

x d|t, dqL2&oQ)7-'

XexpL —2y(e +e- )7

X (P+@e-')-'—(0+1)-'

+InX'+const+0(&& ') . (2.66)
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a lort.e pnly to a Taypf p& & cont '
roximate

As before, valu o
— hen @&q1, we appseries» odd powers of ~

w ere, from Sec. 2

Pf
—'(1,m', 0,0)D/:

=(2~)-' dg ima[g '(g) j1D "1

(2.68)

roxj mated (2.27), we mav app(2 26) and

i1=0

I /2 (I+:.i,)T(sg~) X2

's constant, ;ind7)216 is Euler s cpnwhere &

2
—1/2ev,

=(2x)-" (3.2a)g, „,//[.,2+ex(lan&;

g—1(1,0; 1,m)»

—(22ri) ' Ij 1 (3.2b)fg
—im//[x(1 "311' g)+

. 2r ument sim ilar to $ec.nd, using an a'g

p»
—1(0 0; O, m)1 /'

eil

dia[ln[& II.

1]—1 (3.2c)(7 e ,„,2[ +,.-2x(1,9E; g)(22ri) '(2.69)'(1+ "c

we m» exp andBecause «(1,

[lnl" o~~
X 1 Innilnlz[ &+

( g~))„=&gnIC)»

[In[~[~j
. . . ) . (2.70)

2),terms in the aPPro ''rhen we may obta1 „oders of integra 1o

(1 .2)(2ar)

by interchanging
'

tegratjpn by ~ tpreplacing the uPper
obtain

dg dX1 (42
00

—1—1 p2+(, 2X2//Ic;maa[22+cixIX«(x»xa) (
2 1) (3.3)

—1 —1[Ca+2 X2im//I
earn ac[XI+2 CI+e

(sgnz) X2

-'[In[ where

(m (W').*

X

3 1) js recog»x
e (3 1) over

—QO

The first term In
f S 2 of 11 to averaghe discussion o '

ble function «(» *2
pp y t

f the two-varia eaII (R)» ""
and obtain

22r

(2.72)

w}lei e

—2 ln2 ~
=r —,))r('-)=-& ' "g, — —r

N CORREL&TIONGE SpIN SpIN
pUNQ+IONS

~t s in spin correlaurse, manx distinct sp
t}1 b d v os ins near

rest
h i the bp dto e .P

l f S'8 fIUen use eth forma ism o
' lattice in our6nd that for any lat

'

2 ' —2) 'j-'= 1 —sa)([5 '(1,0;0,0)DU+ 2

—[5 1(1,m; 0,0)DUj'
—5 '(1,0; 1,m)DDPI '(0,0;O,m UU

l l than any fractiotion»Clearly
d is therefPre no

t2 71) vanishes m«
t of the formf g, as Sj o " " .

b, , the "critic~i
power o;

arametrized(1 4c) which
ppexponent

1+(1—&')ar dg dx (x)[2 +cx] '

+(1 .-2)2(22r) ' dg (/X1

(3.4)X«x»2)[-'+""'~ ['
alld

(3.5)c,= c(g,)

To studv the leading
2 14). ~e also de

term of (3.

m= @~0
I. 1/2 I (1+sic)

e then cPnsidhe revious sections
0& &. ,y—2 and

As in p
integrals from ~ '

to
ution to the ~~

0 the contributions
trl u»

.))y—' separately
0 from these g

Fpr m~ )

lar ets';nd@ ( a ' '
~ —1 1m)DD

pf
—1(1 m; Oi0) DU an

'b tion to pf
—

(1,0;ma~ be neglect ed. The contn u io
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Ther fore we haU
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ds on() on
~

$, independent of ~ afrom g))q —' is to»wes Order in

0d 2

$ 2

] $ 2le —1(2(1+»..)«rO))s, =(%1'(0))z*+['"
slIlm(1(

( i 2) (3 7)(fq '(q)
0

z2 cos«n(f(1 cos~
+ f(m)

e «(+—z2)($2e "x &'(q q-)
„+@—,—

)(@ +"*")
(q(—1(1 0 f,m) nD from

'ntribution to 2

QO

wh«e f(~& "
Ic/

2 ) —2Z2(9)f12(A))e«=L2-"

„e—«2) —(@2+) ' ('+1) ][ +4'X U(ql q2) [ '+~'
'2 2—

«) ' —(4+ 1)(f@ (fqU(q) z ++2 ln.~ '

(3.8), ~1„~-2 +.const'+o(1(fqU q +~ —
«)

——((t(+1) '~++const

(3.9)

(3.10)

„(3.g) the upper l

rom Sec. 4 of II that as p~ —+~

. 2. The constants in (3. ma p y
Th 1'for t e purh urposes of this paper. e

(3.10) to sh ow that for @2 large

cos~Sln q Z~ COS q COS

Z2 @~e && Z

dq2U(ql, «)
e )(-"+~-"')(@.+e««z') (y,e +

e—«(+z ) ', (3.11)«2 —' —z 2
— U 1) cosm(t(1 ((fl(e "+z' —z2@2 ' cosr(2(f(2 dql ql e "+zdqlU(ql) sin~( (e «'+(f12 —' —z—sin~~

(20

left-hand side of (3.e - ' 3.11 tends toe 2. If yg is large, the eh
'

tegrable for large @2. ~i, e

00

which Is in egr

2 z2 d2 ld22
~

recalling

an
f('( 1 q2)(lql(fq2

(q2 dependence ma e ezplicIt bX rec~ ~ andt e.aUe been replaced b~'
~ .

f y integration haUeI
f

sin 1 in 2 («+e««z2) ' —z2(t 1
—' cos~sln22(4(1 (tq2 U(q2) sln221(t(2 (/2 e — cos 1 e—«2+z2 —1dqlU(ql) coslr((t(2 (gke "+z' (3.12)

'ntegrable for large P~.e ~. Therefore,which is not integra

+[-'Z —' "(1+el,)«r-—1 2$ —2 d@l(81.1(222,@))z, = (Kl'(@))z,+ 2zl. dql dq2

Z COSTI COS~2

0(X-'), (3.13)(fq 5'(q) —+
@+e~z2

1 sin~
Z'ale "+z')(42e "+z )-

X L (ql, q2) (sinr(14(1)—

OC ec

m of (3.7) by absorbing awhere we ave m ohave redefined f(m) o

of
IYlu lp tÃ.lti le of m 'cosm.

the only way) oOne @ray thoug

«N is to study thedetermining f(222 is o s u y
3.13). In this limit the term

f Ã must agree ware independent o
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8.96)(~) given bytoapproximation
1 t by writingin thi»mif Iy. g'e study ( '

(3.1

a,nd

( +1)—' cosz're= d(e *—' &&(1+5 ) (3.17)4)@.= +jZ

xima
' . an(l (2.17) to obtainximatior)s (3.10) anand using approxima . an

9),) (m, 9))z, ! o=o —e )o

—"'(1+z)e))r2~le

—2

dn(n+1) ' sinzomn

so that

0—2.- 2
l o=o~(&)-'(&&))z,—4z -'--o,' '--(Z), )(m&&))z., l o=o~

+ dn(n+1) ' cosz'mn
0

Now

+f(m) dnn ' ' ' . 315)dn(n+1) ' sinz mn.
+ doe—e&m)~(1+ P)—)

-*'=r(1+~')-). (3.18)+ f(m) d(e-* "
dn(n+1) ' sinz'mn

Since

=(2i) ' dn(n+1) —'e'*' Z")th = 2S'2,. 2'Zm= -.0 '2m (3.19)

dn(n+1) 'e '" with 8.96) of IV if(3.18) will agree w)t

—2g 0—I~—I8$7l 2g ~ (3.20)
1~

—oem'(1+ p)—) (3.16)
~ is completely expressed asTherefore (I ),&(m,@))z, is comp e

(I 00

d@1 df2 dg I
—I 2$ —2'" 1+z),))r(S),)(m,9))z, = (g})o(

sin~
+ U )

0 —QO

C))ze+o(z). (

Z Cos~) Cos~sinz)4)o z

(4)e "+z')(0 e '*+z—
X U(q), qo) sin)))et)

+o(X '). (3.21)

Tqe() &) q (o Io) (ee+e e)+o (p— — —

s detailed Therefore,a s f (3.21) requires (ieta) e

+o()V ') . (3.23)
his """d t th

r o conane ourselvcon es

. To see is,
2

r of this paper, con

hie f t o q .

the remainder o
g

is easily seen to car)ce

'E 'lim d(tee '4'

ral that occurs in

l

ral QO

explicitly evaluated, since . o

dVoU(C) Vo) = U(V)) . (3.22)

s Hm e '& sinrrz)()=)'rz), '(1+sr,)')r ')V—' lim

X&) o(4)l&o(@)+o('-o X—'), (3.24)
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which, using (2.43), may be reexpressed as

(C~g, g(m, 0))g, =-',zi, '(1 —"g.)-"z.—'X—'

In general, (S&,&(m,0))E, cannot be expressed in terms
of tabulated functions. When ~8~ =-,' or —,', however,
more simplification is possible.

X —&+6—hm
c -+0

deaf e 'i'(sinr/t4) In this case

x—»It, (4) . (3.»)
d@ and we 6nd

Jr/z'(k)+ I ~/z '(5)-= '/~-& ) (3.30)

Furthermore,

oo cl

dpe 'i'(sinmit) ln—Eibi(p)
dye

= —-', g', 6~+(2i) 'lim
a~0

oo

dye(im ~ )i — !n[yl&ilt i&l(4'))
dye

In the first (second) integral, we may deform the con-
tour of integration to the positive (negative) imaginary
p axis. Then, using

(e'en//2() [Silt (ei:ni/2()

Fl&l(6)&iJI&l(()), (3.27)

where xiii($) and Visi($) are the standard Bessel func-
tions of the first and second kind, ' we find the desired
result

(Rg, g(rn, O))g, ——gzr, '(1+zg, )zgr 'X '

X -', g[—6+
~
8~)+2m ' d]e—'"&$—'

X[I' li I'(k)+I li I'(5)) ' +o(-~ ') (3 28)

In this form, it is clear that

lim (Sq, q(m, O))g, ——xzq, '(1+st,)'X '! 5~ if T( T,

if T&T,

In this case

~ / '(k)+ F / '(k) =(2/ t)[1+r'), (3 32)

and, using (3.16), we find

(Sr,/(m, 0))g, =-', z&,
—'(1+z&,) 'z.-6'-z

x —,'g[ —~+-', )+m-'— d/z(a+1) ' sinmiz

Letting n'm '=o.+1 we obtain
+o(X—') . (3.33)

(Sg, r (m, 0))g,
(1+sin) 7r / t/ (z 7r[ i!+ )+—m-

—sinm Cim+ cosm sim)+o(cV '-'), (3.34)

where Cim and sim are dered as the sine and cosine
integrals. " When m is small, this may usefully be
written as

(8g, g(m, 0))g, =-,'zi,-'(1+z„)'z.-'X—

(Ci, i(m, 0))g,=uzi. '(1+zan)'
X (z.—'E—'-,'z.[—l!+-,')+m ')+o(/V ') (3.31)

To leading order in S the difference between(Pr, i(m, O))g,
and (Pr r(~,0))g, is precisely equal to the leading term
of the T=T„@=0expansion of Sq P(m, rO) for large
m given by (8.89) of lV. Furthermore, (3.31) approaches
its m —+ limit as m '. But since T&T„this slow alge-
braic approach to the m —+~ limit contrasts dramati-
cally with the exponential approach to the m ~~ limit
exhibited by Sr,P(m, 0) and assumed by the critical-
exponent description of correlation functions discussed
in the Introduction.

=[&~'(0+))', (3.29) X zz[ —/1+zz)+m ' —sinm

where the last equation may be obtained from (2.33).
This is exactly the value that is obtained in the Onsager
lattice. This contrasts strongly with the value of
(Sh(@))g, obtained in Sec. 2 and is a vivid demon-
stration of the fact that Pq, q(mg&) is not a probability-1
object. It is expected that (3.29) should be equal to
lim@ 0+(Kr (Q))g, where this limit is calculated
directly from expression (3.8). This is indeed the case,
as we will demonstrate in detail in Sec. 4.

' Reference 7, Vol. 2, p. 6.

( 1)nmzn, —

X v+»m+ P ——cosm
n=l (2 )!2////

( l)nmzn+1
X -', z.—Q +o(iV-'). (3.35)

»-i (2//+1)!(2n+1)

To leading order in ii/' (S~,r(m, 0))g,—(Q»(C0,0))g, is
clearly not eqziaJ to the leading term of the T= T„gt=0
expansion of Sr, ro(m, 0) given in IV but approaches it

'" Reference 7, Vol. 2, p. 145.
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X(-',sL —6+-',]—P (—1)"(2e)!m '"—'}. (3.36)
n=l

Again we see that the approach to the m —+~ limit is
algebraic rather than exponential.

With the orientation provided by these two special
cases, we turn to the general case and study the most
interesting limiting cases of (3.28): (a) m fixed,

I
h

I
~~;

(b) fi fixed, m —+0; (c) hWO fixed, m~~; and (d)
8=0, m —+~.

(a) m fixed, Ibj~~. In this limiting case, when
7V', we expect the term which is independent of .V

to agree with the leading term of either the T —+T,
limit of expansions (8.41) or (8.52) of IV of gi, io(m, O),
which are valid for mj T T, I))1,—or with the leading
term of the t ~~ (t'~~ ) behavior of Si,i (m, 0) given
by expansion (8.87) or (8.88) of IV, which are valid for
mj T—T,

I
=O(l). We do not expect to be able to

reproduce more than the 6rst term that depends on m
of these expansions because our approximations to
(Sq, i(m, @))ii, neglects all terms of order 0(cV ').

To obtain the desired expansion, it is convenient to
return to (3.24) and use the asymptotic expansion
(2.44) to obtain

(Si,i(m, O) )g, -. x.i,—'(1+-„)'s—'.3'—'-

I~j

X —~m ~+1&m ape '& sin~

as m ~ 0. When m, is large, we have the asymptotic
expansion

(Si,i(m, 0))g, xs„—'(1+si,.)'s —'.4'—'

00—Q (1 3 (2k —1)) I'(-', + I
6

I
+k)

~$ a-o
xLr(-', +I&I —k)]-'2 "$ '

- (2/~k)(1+s(4~' —I) k '+ (3.41)

where for our limited purpose we retain only the 6rst
two terms. We then write

«$s "i(2/s')f '[I'lb['(5)+~[i['(5)] '

p

«ke "'((2/s') v'(&'I~I'(()+Jlil'(k)] '

—I+i(4~' —1)(1+8) ')

The 6rst two terms in this expansion do not depend
on .V when

I hj cV' and, as expected, agree with the
leading term of (8.87) of IV if T) T, and the first two
terms of (8.88) of IV if T( T,.

(b) 8 fixed, m~O. In this case, also, we expect to
make contact with IV. Inparticular, we expect that when
m 1V ', the term in (Si i(m, O))~,—(Si &(~,0))x,
which is independent of X should agree with the T= T„
m~~ behavior of Si io(m, 0) given in (8.89) of IV.
We have previously seen in the special case IS I

=
~ and

5 =-', that this is the case but that in the case of
5 =2 the approach to this limit is somewhat com-

plicated by the presence of terms involving lnm.
To studv this limit in the general case, we note" that

for large $

~lbl (5)+I [ill (5)

Since

lim

xL4 —1(42+)2)ll2+1d (@2+)2)—i] (3 37)

«hoyle
'4' sln~lfl '(Ip+P)'"

+ d$e "'&{1—z(4P —1)(1+@)—") (3.42)

In the 6rst integral, we write

e "&=1—m)+-', m'P+(e "&—1+m( —-', m'f'). (3.43)

=l~l&I+I~I «](—&e
—ml& li(P I)&/2 The last integral is of the same form as was studied in

the special case
I

h
I
=-,'. Thus

and

d~(g'+6') ' sinm@=~se

(3.38)

(3.39)

d(e ~i(2/s)$ 'Ll i~i'(()+Jinni'(k)] '

=.40(8)+miff i(8)+~m'32(b)+0(m2)+m '

we explicitly And

(Qi, i(m, O))x, qsi,
—'(1+xi,)'s.—'.'1 —'

j&j~~

where

—s(4P —1)I sinm Cim —cosm sim], (3.44)

~~(~) = 4 P((2/s')t 'Ll'ial'(6)+Jinni'(()] '

x —', ~L~ —
I

a
I ]+ I

~
I

«5& '&(f) —1+g'(4P —1)(1+@) '), j=0, 1, 2. (3.45)

+ .~e—rn I b
I (3.40) "G. iV. Watson, A Treatise on the Theory oj Bessel Functions

{Cambridge University Press, New York, 7945), p. 449.
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Ke may use the expansions of Ci and si and obtain

(S],](m,o))Eg ]rz]p (1+z]c)
m O

X{-',]r[—6+]b]]+m '+Ao(b)

'—z—(46' 1)——g'(4bz —1)m lnm

+m[A (b) —]i](4bz —1)(p+ I /18) ]
+m--, .1,(b)+O(m-) }. (3.46)

As expected. when m X ', the term independent of X
agrees with (8.89) of IV.

(c) m —+~, bWO. The most unusual feature of (3.28)
is its asymptotic behavior as m —+~. We have already
seen in the special cases ]b] =-,' and ]b] = z that this
behavior is algebraic rather than exponential and is
therefore not of the form assumed by the critical-
exponent parametrization. To see that this behavior
holds for general values of b we approximate for small g

[I']]i'(5)+ Ji] i'(k)] '

= ~'[I'(lb I)] '(k()'" {1+2(l()'-'(I—
]
&])-'

+2(-,'])']'] cos(] b] ]r)r( —
]
8 [+I)[N I $]+1))—'

+O($41]'I)+O(P I~ I+2) } (3 47)

and thus find that (3.28) asymptotically becomes

(S],](m,o) )z, —~ ]'iz]„-'(I+z],) '-.] —'-'

X{i[—&+] b]]+2[1'(]& )]--'

X [(2m)—'~'~ I'(2] 6] )+2(2m) —'~' ~

—-'

XI'(2] &]+2)(1—
] &]) '+2(2m) ""'

Xcos(] &]~)1'(I—
] b])1(4]b])(r(1+]bi))-'

exponent description allows a spin-spin correlation
function to approach its limiting value in a power-law

fashion as parametrized by (1.4d). In the bulk of the
two-dimensional Ising model, q = ~, while on the
boundary, g= i. However, we have just seen that,
if ]b] is made suff]ciently small, then in our random

model, even if TA T„(8],](m, o))» may be made to
approach its m, ~~ value in a power-law fashion with
a power as close to zero as we please. Therefore, it is
expected that at T„(S],](m,o))]r, will not be of the
form (1.4d). To see that this is indeed so, we approxi-
mate for small $

[I' "-($)+J '($)] ' [4]r '(in)/A')'+ I]-]
~-']r'(In&/A') '
X {1—-']r'(In//A') '+ }, (3.50)

where

Therefore,

(C, ,(m,O))„], .

.4'=2e &+'. (3.51}

—](1+z] )2]]—2 d$e
—

entail(]n(/4

~)—z

X{1—i4]rz(1n &/A ')—'}

= —m —,',z], ](1+z],)'t —'

X[(ln)'.4')—' ——,', ]rz(in)/A') —'], (3.52)

where to obtain the last expression we have integrated
by parts. We now may let x=m( and expand the
logarithms as

[lnx/mA'] ' (—lnmA') '[1+(Inx)(lnmA')
+(lnx)'(lnmA') '+ 7 (3 53)

+O(m —]]
~ r])+O(m —4]]

~

—
&)]}. (3.48) to obtain the desired result

When
] b] = —,

' or z, the terms in m ' that are explicitly
given here agree with the preceding results. Ke may
study the case ]8] = 1 by letting ] b] ~ 1 in (3.48) and
find

(C],](m,O))»] ~]] ~
=] ..]'rz„-'(I+z„)' ] -'

X {-',L
—b+

I
b I]+-',m-'

+-,'m —4[—3 lnm+4]+O(m 4) }. (3.49)

When 0&]b] & iz, while the leading term in (3.48) is
still correct, the neglected terms of order O(m ']']) are
now larger than the retained terms of order O(m z'" ')
and thus these higher terms are no longer meaningful.
Indeed, when

]
b

]
~ 0, (3.48) loses its validity

altogether.
(d) m —+~, b= 0. The final limiting case of

(P]](m,o))» to be considered is m~~ and T=T,
This is the one temperature at which the critical-

(S],i(m, o))»]]=0 —,'6zi. '(I+z],)'X '(lnA'm) '

X{1—y(lnA'm) ]+(y' ——,', ]r')(lnA'm) '}. (3.54)

This vanishes more slowly than any power of m and is
obviously not of the form (1.4d).

4. PROBABILITY DISTMBUTION OF /gal

We now turn to the question of the probability
distribution that describes the random variable K](@)
in the thermodynamic limit 5R —+~, X—+~. A con-
venient way to discuss this distribution is by studying
its moments (K]"(@))».The first moment (I=1) was
discussed in detail in Sec. 2. Only in the Fp ~0 limit
were the results particularly simple. Similarly, in Sec. 3
we discussed lim„„(S],](mg)))». An explicit answer
was obtained for the ca.se ]c]=0, but a general discussion
requires a detailed discussion of the two-variable
function ](x],xz). However, our principal interest lies
in this O=0 case because of the analogy Sh(0+) has
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rC

(jan

X lH11 Z flf1 d@»
S ~0+

0 —Qo

( ' 4,4.)L(z-'+4 ~--)-'-(4 +1)-'7

XI.("+4 —*)-'-(4 + I)-'7+0(-~ --')

~ 2 the contributions to the @1 and p2 integrals
g'o P6 an $2)e give no c

the @—+ irn .0+ limit. We therefore o ow
analogous to Sec. 2 by writing

—lIl ~ @~ (4.3)
and

(4.4)
to 6nd

lim (Ki"'(@))z2=[2 '/2zi, i/2(1+zi. )2r '-~ '7'
Q ~0+

Qce/i

d~1 (AX9 F1 dg 2
z ~0+

0 0 —00

}no(222 —'"; v2z(22, v2z(22)&(U(q,
' }nzn,2-—'/2, q, —nzn, — ',.

2 —((("—i/1+(222e —22') —2+0( ) —2) (4 5)X(1+(2i'z "
4 of II we find that U(qi, q2) satisfies the

partial differential equation w ic is
order 0(1) as X~~7

X lim

8—+—t ((qVti q )
Bg 1 BIIIP-

+—(&—l@ L
"—"7) '(q q-)

+—(~--',4.Lz- *-~"7)U(qi, q.) =o
8/2

which was interpreted in II as awithlim „(5 ' ), w ic
'

11 as a
he local magnetization in a r

reasons we will, in this paper, con ne
special case,&o ~0+.

As we remarked in Sec. 3, we expect

lim(Si, i(m, O+))222 ——lim (%22(Q))y.„4.1
d side is giveii }iy (3.29). We will

by corn uting t e rigdirectly verify this by p
m (3.8). In so doing we wi nee

'
bl f io (*,* ) hi h

ssed in II in a different context. Ke wi

immediately generalizab e to a v unc
'

4

number of variables.
'f '

(3.8) we use thein b remarking that i in
f L', Eq. (2.15), as was done in Sec. 2,

L'/ ~ t but towe see that no term containing q can
the Q ~0+ limit. Therefore

~—l )'—Iy},2(9));.,= L-,'z„.-' '-'(l+z„)~- .)'-, -'

+- U(q, q.)+ (~—+,~"-) U(q, q.)
Off}'o

If we note that

+ (~+-'4 z")U(qi, q.) =o (4.7)
Bgg

8
(t(ie" I}(qi+}n(t(i—q2

—}n4/2)
Bg1

+&2e" 8(qi+}n4 2
—

q2
—}n@2)==0 4.8)

ling»

we find that a solution of (4.7) is

U(qi, qi) = constb(q, +}n@,—q, —}n@.,

xexpL —2~(qi+q2) —2(424 )"-e'"""'".

ust satisfy the subsidiaryNow the exact U(q, ,q, ) must sa
'

{322). When 4(i and (f(2 are small and qi an q2condition
are large, t is gives a subsidiarv condition on U

(I(I ~ f '((I g i(I2)

I'(~ (I[)7—(e—&2(—{((/2/ ~ ((2 (4 Ioa)(2(f i

and

dqi U(qi, q2)

= 242)" LI'(l~~)7 """'"'"', (4.1ob)

have used the approximation to E', ((t),where we have use
at 4.9 will satisfyE . (2.29). It is now easily seen that

4.10) if we choose the constant so
q.

o that

U(q q-)
= LI'(I 6 l)7-the ~.7~'~ "h(q+»4, -q, -}4,)

i 1/2z{21+22i/27 (4 11)»( e"pl —2(2(qi+q2) —2(4(i(f(2 e

of II written in a form that

symme ry in

articular solutionf II was to demonstrate that the particu
(4.9) to the partial differential equation . i
the correct solution and to inv g

'
vesti ate the sense in

which U is an approximation to . hehe conclusion o
that analysis is that for suitably limited purposes such

d
'

45) we may indeed replace U(qi, q2)
as envisage in . w

XI. McCo&

&+ I; it in (45) it is impo«»tTo compute the + ' ' ",in the regionte that we only need tp know U g»V2to no -
I t} '

regio~ f&(qi q') ma-'are largewhere q1 Rn q'-,
h hsatishes theslmplerbe approxiiiiated b) ~'(q 'q- '

equation
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e - «'+
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m ~
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—

limit. a"
~ 00

&I(j r/

he z~
(t@//

c

—00

—2

U(qi
8; . q)

i.
-1 ~gi-

,„)=o, (4»)
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&&exp(r/ ' 2 q«) I '. (4.»)
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a simple matter to use (4.19) in (4.16) to find

lim (Ki"(@))s,
@~0+

—[2—3/2s —1/2(1+z ) V
—1]n

XF(—n —b)/F(I bI)+o(V ") if T(T,

1,5

I.O
ptrrtI

=0

If b~ —~,

if T& T, . (4.20)

0.5

(K&"(0+))e,~ [Kro(0+)]"+0(b-'), (4.21)

while if b —+0, 0.5 I.O I.5 2.0 2.5

(Ki"(0+))/r,

[2 "si, "'-(1+st,).V ']"
I
b

I
F(sin)+0(b2) . (4.22)

We also note that the approximations leading to (4.20)
are surely invalid for sufficiently large e. In particular,
Ki(0+) must, for any set {E,), be less than the value

it would have if we replaced all E,(J) by E'. We know
from I that such a replacement raises T, by 0(X ').
SincefromIV we know that K~ (0+) const(T, —T)'"
as T —+ T, , we conclude that

K&(0+)(const V "-. (4.23)

Therefore the approximations in (4.20) must fail for

n 0(iY=) . (4.24)

and let

m= 23/'sg '/2(1+st ) '/VKi(0+) (4.25)

p(m)dm=g(Ki)dK).

Then from (4.20)

(4.26)

/fmm" y(m) = r(-,'n+
I

b I)/r(l b I) . (4.27)

From its definition and from (4.23) it is clear that

p(m) = 0 if m& constant'/2. (4.28)

If we ignore this restriction, then it is easily verified that

p(m)=2e™m'~'/ '/F(IbI) (4.29)

will satisfy (4.27) for all n This functio. n is surely
incorrect when m=O(X'/2) because it fails to satisfy
(4.28). However, if n=O(l), the region of m=O(1V'")
makes a negligible contribution to the integrals (4.26)

We now may use (4.20) to investigate $(Kq), the
probability that at @=0, Ki(0) assumes a value K& in
the interval rlKq Clearly. if T&T„{I(Kq)=b(Kq), so
we restrict ourselves to T& T,. Because of the limitation

(4.24) we cannot hope to compute $(Kq) exactly but
it is not difficult to find an approximation to $(Kq) in

the sense that it will yield the moments (4.20). Define
a scaled magnetization

FIG. 2. Plot of the probability density function p(m)
versus I for several values of 5.

and hence we conclude that (4.29) is an accurate
approximation to p(m) if m=O(1).

Finally, we may use (4.29) to make contact with the
discussion of Sec. 6 of II. We plot p(m) of (4.29) in

Fig. 2 for several values of Ib I
and note that while it

diverges at m=0 if
I

b
I
(-,', there is always a tail to the

distribution that extends out to values of I of order 1.
It is this tail that is giving the important contributions
to (Ki") for n& 1 even though the major contribution
to the normalization integral comes from the integrable
divergence atm=0. This peaking atm=0 and long tail
were inferred indirectly in II by making use of the
smallness of exp[(in%(0+))z, ]. In the present case
we may compute (lnKi(0+))z, as

(inKi(0+))z, ——in[2 '"-y ' "(1+s, ) V
—']

+ dm p(iit) lnm. (4.30)

Since lnm=o(m) as m —&~, approximation (4.29) is
accurate enough to give the terms in the integral of
(4.30) that are 0(1) as S~~. We therefore find

(lnKi(0+))z, =in[2 '"s '/2(1+zi, )lV

+z+(Ib I)+o(I) (4»)
This is valid for b negative and of order 1.We now may
let b —+0—and find"

(lnK, (0+))„-—l~—',
I
b I-~ —-'&

+in[2 '"si,—'"(1+zi,)]+0(IbI). (4.32)

Therefore we infer that the geometric mean of+i, i(~; 0)
as 8 —+0—is

/'V 'e'/" s '(1+z„)'e (4 33)

This is to be compared with the corresponding geometric
mean of 5„ in the bulk as 8 —+0—,which is given by
(6.36) of II. Both geometric means vanish exponentially
rapidly as b —+ 0—and the geometric mean of Pi q(~,0)

"Reference 7, Vol. 1, p. 47.
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vanishes more rapidly than the geometric mean of 5„
of the bulk.

5. CONCLUSION

AVhen taken together, the results of this paper, as
summarized in the Introduction, demonstrate dramati-
cally that the magnetic properties of impure ferro-
magnets may be drastically different from those of pure
ferromagnets. Indeed, it would be most desirable to
compare the qualitative features of our results with
precise experimental data as we did previously for the
speci6c heat computed in I."However, to our knowl-

edge, sufFiciently detailed measurements of magnetiza, —

tions, magnetic susceptibilities, and asymptotic be-
havior of spin-spin correlation functions have not yet
been made in the temperature regime near T, where the
specific heat of the sample rounds oE. Only such experi-
ments can decide the question of whether the descrip-
tion of magnetic phase transitions in terms of critical
exponents, besides failing to provide a complete
description of this random Ising model, also fails to
provide a complete description of real, impure samples
upon which all experiments are ultimately conducted.

where
—0E+1(j&31K, (A2)

—@+1(&&X, (A3)

and we impose cyclic boundary conditions in the
horizontal direction. Now M(H), being a property of
the lattice as a whole, is a probability-1 object, so

M(H) = ((pi, pop))g, . (A4)

Consider any lattice out of the collection of lattices
specified by a set of energies (E&(j)} where j satisfies
(A2). The magnetic 6eld @ interacts with the row j= 1
only. Therefore, Gri%ths's theorem says that for any
(E&(j)},if H is numerically equal to A,

M(Q)&M(H). (A5)

We are interested in the relation between M(H) and

to that of the magnetic field. If we call this extra spin
00, then, if H interacts with all spins, the magnetization
may be written as a sum of spin correlation functions

M(H) = lim (4011St) '( Q ir, in p,), (A1)
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APPENDIX

Griffiths' has proven that in any Ising model whose
interaction energies are never negative, if we increase
(decrease) the strength of any bond, we cannot decrease
(increase) the value of any spin-spin correlation func-
tion. Furthermore, the interaction of a magnetic 6eld
with some sites of the lattice is equivalent to having an
extra spin which can only take on the value +1 and
interacts with those same spins with a strength equal

"B.M. McCoy and T. T. Ku, Phys. Rev. Letters 21, 549
(&968).

where ( ~ )iiI means a thermal average in an Ising
lattice where the rows j satisfy

1&j&m
instead of (A2). If we replace all vertical bonds between
the row j=0 and j= 1 in the original lattice specified
by (A2) by zero, we may apply Grifliths's theorem again
to 6nd

Ki(@)&M(H). (A8)

But this inequality holds for every collection of bonds
{Ep},so it holds for the average as well; so

(Ki(@))g,& M(H), (A9)

which proves (1.3a). A similar argument applied to
S (H) = (~pp~p)est, abli, shes (1.3b).


