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We study the effects which immobile random impurities may have on magnetic properties and spin-spin
correlation functions of a ferromagnetic system near the Curie temperature. This is done within the con-
text of the model introduced in the first paper of this series by computing the spin correlation functions on
the boundary of a half-plane of random Ising spins, where the boundary row is allowed to intereact with
a magnetic field . We find that as 7 — T.— the average boundary spontaneous magnetization vanishes as
T.—T. However, the average boundary magnetic susceptibility is shown not to exist for a finite range
of temperature about 7. Furthermore, at 7. the average boundary magnetization behaves as
— N1 sign(9)[In NG| §| T, where N1 is a measure of the width of the distribution of random bonds.
Whenever T—T'.=O(N~?), the average spin-spin correlation function for two spins on the boundary is
shown to approach its limit at infinite separation as some inverse power of the separation instead of as an
exponential. At 7. this average correlation function behaves asympotically as N=2 (InmN~2)~! when m,
the separation between boundary spins, is large. Finally, we make the probabilistic nature of the boundary
spontaneous magnetization more precise by computing its probability distribution function.

1. INTRODUCTION

N the preceding two papers of this series!:* we have
introduced a modification of the two-dimensional
Ising model that incorporates random impurities, and
have studied its specific heat and the spin-spin correla-
tion functions of the bulk. This latter study was
extremely complicated, when the separation between
spins was large, due to the necessity of dealing with
Toeplitz determinants of a large dimensionality that is
proportional to the separation. These large deter-
minants also arise in the much simpler case of spin-spin
correlation functions in the bulk of Onsager’s lattice
and delayed a full understanding of the asymptotic
behavior of these functions for years.? However, it has
recently been realized* that if one considers a half-plane
of Ising spins, one may compute the spin-spin correla-
tion functions of spins near the boundary row in terms
of determinants of a small dimension that does not
increase when the separation between the spins be-
comes large. In this paper we exploit this fact to study
the spin correlation functions on the boundary row of
our random Ising model.
We consider a half-plane of Ising spins where the

! B. M. McCoy and T. T. Wu, Phys. Rev. 176, 631 (1968). This
paper will henceforth be referred to as 1.

2B. M. McCoy and T. T. Wu, preceding paper, Phys. Rev. 188,
982 (1969). This paper will be referred to as II.

3 The limiting value of the correlation function when the
separation between spins becomes infinite was announced by
L. Onsager, Nuovo Cimento Suppl. 6, 261 (1949). A derivation of
this result was (essentially) first given by C. N. Yang, Phys. Rev.
85, 808 (1952). See also C. H. Chang, ibsd. 88, 1422 (1952). It was
also known to L. Onsager [zbid. 65, 117 (1944)] that if 7> T, and
the separation between spins tends to infinity, then the approach
of the spin correlation function to its limiting value of zero is
exponential. However, the complete details of this asymptotic
behavior (for T<T. as well as 7> T.) were obtained only much
later, for the case of two spins in the same row by T. T. Wu [ibid.
149, 380 (1966)] and for two spins in different rows by H. Cheng
and T. T. Wu [zbid. 164, 719 (1967)].

4 B. M. McCoy and T. T. Wu, Phys. Rev. 162, 436 (1967). This
paper will henceforth be referred to as IV.
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boundary row (called 1) only is allowed to interact with
a magnetic field § and study the magnetization of this

first row
PDU(D)= (o1,m) (1.1)

and the spin-spin correlation function between two
spins in the first row

@1,1(”!,@):(0’1,00'1.";)- (1-2)

The values of I and &, are, in general, different for
the different lattices in our collection even in the
thermodynamic limit. This is in distinct contrast with
the free energy and magnetization of the bulk, which
are known to approach a value in the thermodynamic
limit that is the same, with probability 1, for all
lattices of our collection.

A significant aspect of these boundary spin correlation
functions is that, even though they are not probability-1
objects themselves, their average values provide lower
bounds on certain probability-1 properties of the bulk.
In particular, we use a theorem of Griffiths® to demon-
strate in the Appendix that for all temperatures 7

DU(D)) e <M (H) (1.3a)

and

(€1,1(m,9)) £, < ({01,001 m)bulk) Bs= (Sm(H) )5, (1.3b)

Here H is a magnetic field that interacts with the entire
lattice and is numerically equal to 9, M(H) is the
magnetization of the bulk, and (---)g, denotes an
average over the set { £5(7)} that specifies the collection
of lattices. These lower bounds may be used to draw
conclusions about the critical behavior of the bulk
properties if we know that both the bulk and the
boundary spontaneous magnetizations vanish at the
same temperature as 7 is increased from zero. We have
not been able to show this directly. However, we will

s R. Griffiths, J. Math. Phys. 8, 478 (1967); 8, 484 (1967).
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see in Sec. 2 that the boundary spontaneous magnetiza-
tion vanishes at the same temperature T, at which the
observable specific heat found in I fails to be analytic.
Thus, if we could show that the bulk spontaneous
magnetization vanishes at the same temperature at
which the specific heat fails to be analytic, we would
have

PD4H(0)) g, =M (0)=0 for T>T.. (1.3¢)

Indeed, this identification of the temperature at which
the order parameter vanishes with the temperature at
which the specific heat is nonanalytic is universally
made in the literature on magnetic critical phenomena.®
No general proof of the validity of this seemingly
natural assumption exists, but neither has a counter
example been found. Therefore, we will assume it to
be the case, and find from (1.3a) and (1.3c) that

(OM(D)/ 0D | 9=0) £, < OM (H)/0H | mo. (1.3d)

It has become common to parametrize the behavior
of ferromagnets near the critical temperature in terms
of a set of “critical exponents.”® In particular,

M (0)~const(T,—T)~# (1.4a)
asT'—»T,—,
AM(H)
E— ~const(T,—T) if 7T>T,—
0H lp=o
~const(T—T,)~" if T>T,4+ (1.4b)
M(H)~sgn(H) const|H|Y® if T=T, (1.4c)
and if, in addition, m is large,
(Sm(0)) g,~ constm?—d—n fT=T, (1.4d)
and
(Sm(0)) g,~M?(0)+ constm—e™/€ if T T,. (1.4¢)

In (1.4d), d is the dimensionality of the lattice, which
in our case is 2. In (1.4e) the correlation length §
depends on 7 and ¢ may be different for T above or
below T.. If we define a similar set of ‘critical ex-
ponents” for (M1(H))k, and (S;,1(m,D))g,, and if we
use (1.3), we find

Bbulk < Booundary » (1.5a)
Ybulk=> Yboundary » (1.5b)
bulk= Sboundary , (1.5¢)
Noulk < NMboundary » (1.5d)

¢ We follow the standard notation as given, for example, by
L. P. Kadanoff, W. Gétze, D. Hamblen, R. Hecht, E. A. S. Lewis,
V. V. Palciauskas, M. Rayl, J. Swift, D. Aspnes, and J. Kane,
Rev. Mod. Phys. 39, 395 (1967). This article contains extensive
references to earlier work. The standard notation seems to have
been applied only to lattices in which the spin-spin correlation
function depends only on the relative separation between spins
and approaches a limit as the separation becomes infinite. Our
definitions (1.4d) and (1.4e) are therefore somewhat more general
than have been considered previously.

RANDOM
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and, if T>T.,
gbulks Eboundary .

The primary purpose of this paper is to demonstrate
that, in general, there is no reason to assume that an
impure, and hence realistic, magnetic system near T, is
described by the “critical exponents” defined by (1.4).
We demonstrate this by studying (D (D))s, and
(©1.1(D))E, for the case of the particular probability
distribution considered in I and IT:

dE,
P(Ey)—=p\)=VA VAV 1 0<A<)g
d\

=0 (1.6)
where A=tanh?E,8 and 8= (k7). In Sec. 2 we study
M(D)) e, when T—T,=0(N-2) and H=0(N"1). We
find in (2.35) that as T — T, —

otherwise,

D1(0)) g, ~CuN(T—T), (1.7)
where
Car=(2m)' kB2 (14225 )21 2 (14 210)
X{El(l_zlc)+E20(1‘z2co)} s (18)
zy=tanhEi3, 32,°=tanhFE,'3, (1.9)

and the subscript ¢ means 7’= 7. This is in conformity
with (1.4a). However, we also find that 9?,($) is not
an analytic function of § at O=0when T—T .= O(N2).
Most striking is the fact [see Egs. (2.50) and (2.63)]
that there is a temperature range about 7. where
(0PU(D)/ 0D | g=0)r, does not exist because, when 8,
which, as defined by (2.11), is proportional to N*(T'—T,),
is neither zero nor an integer plus %, one has

(%1(@))3,"’ <§Inl(0)>E2
+C(5) sgn(H)NT(B:| D | N)2131

+0(H*N+0(9). (1.10)

Here
C(8) = 236123 112(14 )L o1

X 29 2[T(8) ] cser(3 —6) (1.11a)
if 7>T, and

C(a) — 2_3(“'”2)[2“1/2(1-{-Zlc)—l:l_“—lchMI‘(% _25)
XT(14+8)[T(—8)T(1—8)] cser(3+6) (1.11b)

if 7<T,. When T<T., we need the additional restric-
tion that [8] is not an integer. For the values of § at
which C(8) is zero or infinity the form (1.10) breaks
down. These exceptional values are studied also in
Sec. 2. In particular, when T=7,(§=0), Eq. (2.71)
shows

(D)) g~ —(sgnD) X 27572

X212 (14 2)r 2N [InVB, | §| T (1.12)

Therefore the assumed “critical-exponent” forms (1.4b)
and (1.4c) do not at all describe the behavior of
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D)), Hence (1.3) and (1.5) imply that for our
random Ising model ypy1x and dpuix do not exist.

It is not surprising that forms (1.4b) and (1.4c) are
violated in our model because they have been abstracted
from calculations on pure, homogeneous lattices in
which the only relevant length scale is the coherence
length ¢ defined by (1.4e). In some sense our random
lattice possesses two length scales, the coherence length
£ of the pure Onsager lattice, which is known?®* to be
proportional to |7T—7,|~!, and some sort of length
associated with the impurities. Because the specific
heat computed in I deviates appreciably from its
Onsager value only when 7—7,=0(N"2), we expect
that this impurity length scale has the order of magni-
tude V2. In Sec. 3 we try to make these concepts more
precise by studying (Si,1(m,D))r, when m=0(N?),
T—T.=0(N"2), and H=0(N"1). When m<< N2, this
average correlation function approaches its Onsager
value. However, when m>>N\? and T'=T., (3.54) shows
that

<@]-1(m70)>1i'2l 6=0
~sz1 T (14 20) 2V 2 [n N2 1L (1.13)

Furthermore, (3.48) shows that if the scaled tempera-
ture § is of order 1 and m>N?2,

<@1,1(m,0)),,.2~ﬁ210—1(1 +zlc)21\v_2

X {max[ —8,0]+ D(8)(N?/m)*1*1} ,  (1.14)
where
D(8)=4r(2[s[T(|8])]
X [322.%17 (14-21.)2 2181 (1.15)

Therefore the critical-exponent forms (1.4d) and (1.4e)
fail to describe the behavior of (€;,(m,0))g, near T,
and (1.5) implies that npu and & for 7> 7T, and
T—T.=0(N7?) do not exist.

Not only are the average values of the boundary spin
correlation functions of interest, but also the proba-
bility distribution of these functions gives us additional
insight into the microscopic details of our random
Ising model. In the previous paper? we interpreted
lim,, . o(Sn!/?) g, as a measure of the local magnetization
in a row and used the value of lim,, .,(InS,) g, and the
lower bound on M (0) of this paper to speculate about
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the probability distribution of this local magnetization.
In Sec. 4 we study the probability distribution of
Pe1(DH), which is the measure of the local magnetization
in the boundary row. We examine (J¥*(9))r, and
show, in particular, from (4.20) that as 7— 7.— and
if » is of order 1,

M(0)) g~ f()N—(T—T), (1.16)
where
J(n)=4kB.(1+ 22" N E1(1 —210) + Eo*(1—22.°) }
XT(En) 2732272 (1421,) 7. (1.17)

Therefore, as T— T.— all moments of NJt;(0) have
the same order of magnitude.

We discuss this behavior when N9, is of order 1 as
N—>x by constructing in (4.29) the probability
distribution which has the moments (4.20):

PE) =2cmNe Cm RO e NP)121-1/T(]8]), (1.18)

where
cm= 2325, 112(14-2,,)". (1.19)

This then serves to make more plausible and precise
the discussion of P(S,!2) of Sec. 6 of II.

2. AVERAGE BOUNDARY MAGNETIZATION

The general technique for studying spin correlation
functions of our random Ising model has been explained
in detail in Sec. 2 of II. The modifications needed to
study spin correlations near the boundary of a half-place
of Ising spins that interact with a magnetic field
applied to the boundary row (called 1) have been
discussed in Sec. 2 of IV. From these sources we find
that for any lattice of our collection

D(9) =2+ (1—24)A(1,0;0,0) pv, (2.1)

where

A-1(1,0;0,0) pr = (21r)—1/

0

27

do[B~(0)Jip,ov. (2.2)

The required inverse matrix elements of B(f) are
computed as

[%_l]jl,j’ = cofactor@jry ,,—l/det@ s (23)
where /= U,D, I’= U,D [compare with (7.5) of IV], and

2 2 M—1 I M
D u .- U D U
22(1)
ia b
(2.4)
—-b —ia
z’a Zz(ﬁn—l)
—z,(OM—1) ia b
b —1a
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[compare with (2.8) of 1]. Here and
) dx
c(0)= —2 sinf|1+¢%*| 2, (2.5) v(x)—=U(q) =[2Ks(¢) T lebe— @/ (etted | (215)
z=tanhB9, (2.6) dq

and @ and b are defined in (2.7) of I. In terms of C(1,2M),
D(1,911), and D(1,917) defined in Sec. 2 of II we find

det@= —c[—cC(1,9M)+22D(1,9m)]. 2.7
We similarly evaluate the relevant cofactor and find

[(Bip.ov=2D(1,9M)[22D(1,90) —cC(1,9m)
=z[22+cx(1,9M) ],

where Z(1,917) is defined by (2.21) of II. Then we apply
the argument of Sec. 2 of II to find

DM(9)) pa=2+(1—22)z(2m)~!

(2.8)

X/ ﬂd@/w dav(x)[224cx ]t (2.9)

In this paper we will confine our attention to the
distribution function u(\) given by (1.6). In this case
we know from (4.1) of I that T, is located from

ln[22c°_1(1 _Zlc)/(l‘f—zu)]: _%‘,\r—l .

Throughout this paper we will make comparisons be-
tween quantities computed for the random lattice and
for the corresponding Onsager lattice with the same
E, and T.. For this Onsager lattice E,=E,, where
2, '(1—21,)/(14321)=1. When X is large, usually the
difference between E, and E,° is important only in
locating T, so that to leading order in N ! we will often
be able to replace E, by E,’. The boundary magnetiza-
tion P4HO(D) of this Onsager lattice has been studied in
detail in Sec. 5 of IV and the boundary spin-spin
correlation of that lattice, ©;,12(m,D) = (01,001,m), Was
studied in Sec. 8 of IV.

We confine our attention to the temperature region
considered in I and 11 where

6= (T =T )N*4kB2(1+2:.")
X{E1(1=21)+ E°(1—2:.9)}  (2.11)

is of order 1. In addition, it is easily seen from the
expression for »(x) [[(4.4) of I] that unless z=O(N-Y),
(2.9) will not be sensibly different from its value for
Onsager’s lattice. We therefore define

B=aN AN 22y 2 (1 200) (2.12)
and recall the definition of ¢ [(4.16) of 17]:
= —8)\0"”2216(1+z1c)‘21\'20.

(2.10)

(2.13a)
Then
c=15No" 51,7 (14210)°N2p+O(N"3).  (2.13b)

When ¢ and ¢ are of order 1, we find from Sec. 4 of I that
2= A%+ O(N ) (2.14)

We may now follow the procedure of I and IT and break
the 6 integration in (2.9) up into two regions: one region
where 8 is of the order N2 and a second where |4| is
much greater than N2, The contribution from this
second region is (at least to leading order in ) a con-
stant independent of § and 2. We find

(D)) Ba=321.712(1421)7 N2
N2 0
X { / d# / dqU(g) @-+pe-9)1
0 —
+c0n5t+O(A\'”1)} . (2.16)

We may replace the upper limit of the ¢ integration
by « if we use the fact [which is easily seen from
(2.15)] that

lim U(q) =6(q), (2.17)
¢ >0
to find for large ¢
| at@Etor ey

Therefore
DUOD))po =321 (1 F21) 7 LN~z

X { /0 ’ d¢[ / ) dqﬁ(q)(22+¢e~Q)—1—(¢+1)—1}

—0o0

+ln‘\'2+const+O(A\'—1)} . (219

The constant in (2.19) may be determined by de-
manding that the § — 3= limits of (N (D))x, agree
with the '~ T behavior of I°(H) that may be ob-
tained from Sec. 5 of IV. For the purpose of this paper
we will not need this constant and will not compute it
here. However, it is not without interest to study the
manner in which (2.19) approaches its Onsager limit.
For example, consider the case =T, and z—x. We
write

/ dd)l:/ dqU(q) (22+¢€_q)_1_(¢+1)_1:|

~ f d¢| / dqU(g)(z"2+¢)™!

X[1=g(e1—1)E )
- -] 220
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We cannot neglect ¢ in comparison with 2% in any of
these terms. When ¢ is large,

* d
/ dqU(q)e 7=K1(¢)/Ko(op) = —&; InK (o)

~143gmi =7 (2.21)

and

/ dqU(g)(e1—1)=[Ko(¢) — 2K 1(¢)+ K+(9) ]/ K o(9)
- ~o ' [14+(/ 4. (2.22)

Using these approximations, we find that (2.20) is
approximately given by

Cnz—} / B(F+6) (6 +1)+0(E)
0

= —Inz2 =14 Inz2+0(4). (2.23)

Consequently for 7=T,as z2—=

D(D)) g,~2z17 2 (1+21) 7 INT1Z{ —2 In(EN 1)
+ const —327* Inz’4+-0(z74)}

~ —471712,, %2 Inz,

(2.24)

which agrees with (5.31) of IV.

We proceed to analyze (2.19) in several stages. First
we will determine the spontaneous magnetization and
then will study the behavior when 2~0 for >0, §<0,
and §=0).

A. Spontaneous Magnetization

The average boundary spontaneous magnetization is
defined to be

(9R1(0+))E,=éim DL(D))E,- (2.25)
>0+

Clearly the contributions to (2.19) from values of ¢
greater than some small positive number e will vanish
as Z— 0. Then if we let

g=¢—In}e (2.26)
and
6=V2|Z|«, (2.27)
we find
lim (D1(D)) gy =2""221,722(1 421, ) LN
o0+
€/2V2 w©
X_lim/ (l'a[ZK;(\/?:éa)]_l/ dg'(2-122q)8
i 0 —%
Xexp[ —d¢' —e?’ —32%%e= 7] (14-a2~¢)~". (2.28)

In the Z— 0 limit we may omit the term proportional
to 2% in the exponential. We may also expand for small ¢

2K5(¢)~T([8]) (o)1, (2.29)

and replace the upper limit of « integration by infinity.

BARRY M.
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If §>0, (2.28) surely is zero. If §<0,
IN4(0)) g, =212y 712 (1 42y, )a— LV 1
xee(s) 1 [ daf a
0 —
Xexp[ —d8¢' —e?] (14a2e~)"L, (2.30)

from which, if we interchange the orders of integration
and let

a=e? 2| (2.31)
we obtain
(D(04)) g, = 2732, 12 (142, )N~
XTG+18])/T(l8]). (2.32)

When § —» — =, (2.32) is approximated as

D (0+)) 5= 2731, (1 21 )N 8] 12
X[1—3[8]740(57%)]
~21 2 (14 21) {(Te—T) 3Bk (14220 22,71
X[E(1—z10)+ E(1—2:0) T} 2. (2.33)

This last expression is seen to agree with the I’'=T,
behavior of MM,2(0) as given by (5.29) of IV if we note
that near 7',

ay~ 1+ (T =T kB Erzr ™ (1 —212) 4 2Ex"]
~ 1+ (T =T kB2 (14 210)* (14-22.)
XLE(1=210)+ E*(1—25°)]. (2.34)

When 6 — 0,

(D(04)) gy~ w2273, 712 (142 )N 8 . (2.35)

Therefore, the average boundary spontaneous mag-
netization vanishes linearly as 77— 7',— as opposed to
the square root of the Onsager case. Finally, for the
case E;=FE,° we compare (2.32) with 9%4°(0+) by
plotting them in Fig. 1 for the same values of N and &
considered in Fig. 3 of I.

N=o 24
fit
) M0 20 5
N=25 ~
e ¥
1
12 ®
18
{4

—— i

2 -10 -8 <6 -4 -2 o
104 (/7 -1)

Fig. 1. Comparisons of %,°(0+) and (M1 (0+))r,
for several values of NV for the case £, = F,°.
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B. Z near Zero, $>0

Consider first the restriction

n—i<é<nti, (2.36)
where # is a non-negative integer, and write

n—1
(e ) =¢let 3 (—2%"e?)"

k=0

+(=2¢le)"(Z+¢e )", (2.37)

where the first summation is to be omitted if z=0. We
may introduce this expression in (2.19) and write

D1(D)) pa~321,72(1 421, )LV

n—1

X( X I+1,M4constz+21n\2), (2.38)
k=0
where

L= (= 1)zt /

0

d¢>{[2Ka(¢)]*'¢“"“/ dq

Xexp[ (k+1—06)g—3¢(et+e9) ]—(¢p+1)16x .0}

©

=(=1) 22+ [ do{¢™* ' K1res()/ Ks(o)
—(o+1)""6k0}, (B<n) (2.39)
and
ro=(ve a2k e [
0 —
Xexp[ (n—8)g—3¢(et+e9)](E+pe 9. (2.40)

Because of the restriction (2.36) the integrals in (2.39)
and (2.40) converge. We will see shortly that for § fixed
and greater than 3, 7,=0(Z) as Z— 0. However, when
8—n—1%, I, will tend to infinity. More specifically,
if (2.36) holds and é~n—%, we may study the singular
part of /,_; by using approximation (2.29) to write

I,_y=(=1)"22"'T(6—n)[ () ]

xz [ daoren-om)
0

— (_1):1-}—122;1—1".1/2[[%” _%)]¥1
X2 (6 —n+3%)"140(1),

where O(1) means finite as § > n—3.
If 6>3, we may use (2.38) to write the average
boundary zero-field susceptibility as

(OP(D)/ 99D | $=0) £, =PB.222, 17!

(2.41)

X { / d6[6~ Kro()/ Ko(@) — (6+1)]

+In.\V2+4-const4+-0(N"1) ¢+ . (2.42)

ISING MODEL WITH RANDOM
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When § — <, we may use the relation

dK;(9)
Kis1(¢) = —06¢7'Ks(¢) ——

do

(2.43)

and the asymptotic expansion”

Ki()~ () 252444
Xexp[ — (62+¢?)2+ 6 sinh~1(8/¢)] (2.44)
to find
(ag.n](‘b)/a\ij l ~9=0>E2~,30222c0-17r_1
X{—InN-25+In2 —1+const+5{r}

= 825, In(T—T)+0(1), (2.45)
which is seen to agree with 098:2(9)/99| g0 given by

(5.32) of IV. However, from (2.41) we find that as 6—1+

(IMU(D)/ D] g=0) ks
— 81 (3= 1)1+ 0(1).

Therefore the average boundary susceptibility at zero
field diverges at a temperature above T'.. This is com-
pletely different from the zero-field susceptibility of
either the bulk or the boundary of Onsager’s lattice,
which are known to be finite for all temperatures
T#T..

When Z is small, we may study 7, exactly as we
studied the spontaneous magnetization. The contribu-
tions from values of ¢ greater than e are O(z>7*!).
When ¢~0, we use (2.26), (2.27), (2.29), and (2.31) and
find

1, =sgn(z)(—1)"(1z] /v2)*2' 2T (5) ]!

(2.46)

X / dq’ expliq'— ']

eexp(—¢l2[~1/2)
X/ da/ /23— (14-a2)~!
0
+O0@E)+0([2[#).  (247)

The o' integral may be approximately evaluated as

eexp(—q’|2|~1/2)
/ do/o/26= (14-0/2)!
0

=3{m cscw(3+11—0)

e[ (5—n—1)"'40(1) ]}, (2.48)

where O(1) is a term that does not diverge as 6 —n-+1.
Therefore

1,0 = (—1)" sgn(z) | 2|202-5-12[ T(5) ]2
Xcsew(34+n—8)+4 (—1)nz2nt
X (LD (r+4) 1233 —n— 1) 4+0(1))

+0@E)4-0(6+V).  (2.49)

" Higher Transcendental Functions, edited by A. Erdélyi
(McGraw-Hill Book Co., New York, 1953), Vol. 2, p- 86.
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This contribution to (D4(P))k, clearly fails to be analytic at $=0, since the nth derivative does not exist.
Indeed, if 0< 8<%, (M1 (D)) x, is not differentiable at all at H=0, so the zero-field susceptibility will not exist.

It remains to lift the restriction (2.36) by allowing & to be half an odd integer. We first explicitly exhibit
(D1(D)) g, when (2.36) holds as

n—2

D)) pa=1z1 21421 )m I N"Y Y b (= 1) 122 V(D (n —3)) 127 (6 —n+3) ' 4-0(1)]
k=0
+sgn(2) | 2| 2275121 (8) w32 esemr (3 — 6)+(— 1) "2 Ha XL (n+3)) 127 (6 —n—3) 7' +0(1) ]
+0(24)+0(22*+2) +In.V24const}.  (2.50)

In this form we may now let § —#n’—2 from either above or below and find

n’'—2

lim  DU®))g=321" (14217 N L Lt (=) w227 [T (' —3) ]
s>n'—1/2 k=0
Xsgn(z)z27 ' 1In 2| +0(E**" ") +InN24-const}. (2.51)

Therefore, for all positive & [at least that are O(1) as N —= J, (D(H)) g, is not an analytic function of H at H=0.

C. z near Zero, d <0

The analysis of (D1(H))r, when §<0 is only slightly more complicated than the case 6> 0 just treated. When
§<0, we may use the results of Sec. 2 A to write

(D))o, =sgn@DLO+) gt fare (1 421)m N 12
X { / dd{ ] A [2Ko($) T e er o —[T(15)) ] (39) lebom(erer)
0 0

X(22+¢e“1)”‘—(¢+1)_1]+lnA\'2+const+()(.\'_1) . (2.52)
When 6< —3, the second term is O(Z) as Z— 0; therefore

(OM1(D)/ 0D 9=0) E2
=282 / d‘b[&l/ dger{ [ 2K () e tam @/ et ([ §]) ]! (30) 1leda—(#/2e)
0 —o0

—(o+ 1)‘1]+lnA\'2+const+()(.\*_‘) l

=285 ! / dp{e™'[K s141(¢)/ K 31(¢) —2¢7" 5]:l—(¢+1)"}+1nA\'2+C0nst+U(A\"‘)] , (2.53)
0

which, if we use the recursion relation® which is exactly the same as (2.42) except that § is

} replaced by |8]. Thus
K 5131(0)=K1-15/(¢)+2] 8|7 K 51(8), (2.54)
(3M(D;6)/0D | $=0)
b
ceomes = (OM(D; —0)/0D| o—dry (2.55)
(OM(D)/ 0D | 9=0) B2 = 2822w

and the zero-field susceptibility diverges as a simple
o0 pole when § — —3~ as well as when 6 — +31+.

X { / dé[ ¢ K1-151(9)/ K 51 (¢) — (6+1)71] We may also use the procedures of Sec. 2B to show

0 that, in addition to a Taylor series in |Z|, (D:(D))z,

+In\N2+4const4+0O(N~Y) ¢, (2.42") contains terms proportional to |Z]!2!, Values of ¢>¢

contribute only to the odd terms in this series. Any

divergences in these terms as § — —#’+1% and any other

& Reference 7, Vol. 2, p. 79. terms come from the region 0<¢<e. Consider first
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the case
n—i<|8| <n+i, (2.56)
o7 —n, (2.57)

where 7 is a non-negative integer. When ¢~0, we use
the complete expansion

2K[5|(¢) =1r(sin! 6|1r)_1

X{ z (36)%151) [T (k41— 5])]

—fi: ()40 RN (k+14[5])]},  (2.38)

2n—2
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to find
[2K 5(p) 1 =T(]8])'(Go)"*!

X{ ; A,(36)+(36)2IT (1 — [8])

X[ (14+]8])]! ki:) B +0(¢41)}, (2.59)

where the only properties of 4, and B; we need are

Ao=Bo=1 (2.60)

and, as 6 — —n,
Ar=0(1) for 0<kLn—1, (2.61)
Ap==TQ1—|8])/[n'T(n+1—]8])]. (2.62)

Using these approximations, we find

M(D)) Ba=5gn (@) M1 (0+)) g +sgn(2) 3 M®| 5] F4(sgnz) X tz1, 21451 )m L\ 2
k=1

X {|2]~2020-V2g cscr(3+6) [ (3 —28) I (1+8)[T(1—8)T(—3) ]!
+z[ 2 (= D)2 (6+n—3) ' T (2n—5)T G —n)[T (n+$)T(n—1)T'40(1))

(2T (54 20) (1)L (0 1) 1ot )

+ 2] 2 ((—= 1) 1271 (54 n+3) T 20+ )T 3 —n)[T (45T (143 T HO0(1))+0(E2+2)+0(4)},  (2.63)

where the coefficients M ® with k< 2(n—1) are analytic
in & for |8 <n+3%. Note that the coefficient of 22 has
a pole at 6= —» and the coefficient of 227! has a pole
at 6= —n-+3. We may now lift the restriction (2.57)
by letting § — —# to obtain

lim (D04(9)) 2, = sgn @D (04)) 5,
+Sgn(2)2§1M"" [z]*
k=1
+sgn(2) X321 2(1 =z )m LV~ 2] 2
X{2= 127 (34 2n)(n )" [(n—1)!]2

XInz24+-0(1)}+0@E"+) | (2.64)

and we may lift restriction (2.56) by letting 6 — —n'+1
to obtain

lim  (D4(D)) e, =sgn(@) (D1 (0+))k,

§>—n’'+1/2

2n'—2
+sgn(z) 3 M®|z[*

k=1
+(sgnz) X351, V2 (1421 )m LV 1 2| 271
X{(=D" 27T 2w —HTE —n")

X[ 43T —3) ] Inz24-0(1)}.  (2.65

Therefore, not only does (I1(9))x, fail to be analytic
at §=0 because of the presence of terms proportional
to sgn(z) |2|%*, but also

n

gig]g( @(9.721(@))&

does not exist if > |é]|+%. In particular, the zero-field
susceptibility does not exist if —3<4§<0.

D. z near Zero, $=0

It remains to study the case 6=0. The previous
approximations fail in this case because neglected terms
O(241%1) become important. From (2.19) we have

DU il soo= her 211 )2
x| [ o] [ acenior
Xexp[—bo(er+e9)]

X (@ oo @+ 1) |

+ln4\'2+const+O(A\"‘)} . (2.66)
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As before, values of ¢>¢ contribute only to a Taylor
series in odd powers of 2. When ¢<1, we approximate

Ko(p)~ —[Ingp+v]+o(1)

= —[In(¢pA27V*)40(1)], (2.67)
where y=0.577216 is Euler’s constant, and
A=2"12, (2.68)

Then using (2.26) and (2.27), we may approximate

(DU(S)) Es| 5-0
~ — (sgnz) X 2-3/25,, 12 (142, )\ !

e/|z]
X/ do[In|z 1]

0

X f dy'e7 (1+a2e=7)~1.  (2.69)

Because ex1, we may expand

[In|zlad T'~[In|2] 4T

X {1—Ine/In|z| A+---}. (2.70)

Then we may obtain the leading terms in the approxi-
mation by interchanging orders of integration and
replacing the upper limit of the « integration by = to
obtain

DU(D)) e, | =0~ — (sgnz) X 2~/
X217V (14-2,,) ' 2N —1[In| 2] A T

X{1=3[In[z[ATYE)+---}, (2.71)

where

YO=T'G)/T)= =212, (.72)
Clearly (2.71) vanishes more slowly than any fractional
power of  as §— 0 and is therefore not of the form
(1.4c), which is parametrized by the “critical
exponent” 4.

3. AVERAGE SPIN-SPIN CORRELATION
FUNCTIONS

There are, of course, many distinct spin-spin correla-
tion functions for two spins near the boundary of our
half-plane of Ising spins, and we will confine our interest
to the special case when both spins are in the boundary
row 1. We then use the formalism of Sec. 8 of IV and
find that for any lattice in our collection

S1a(m,D) = (1=2)([A1(1,0;0,0) pr+ (z1 —2)~' ]
-[ﬂ_l(lam; OyO)DL']2

_2[—1(170; I)m)DDg[—l((LO; O;’"’)UU} ) (31)
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where, from Sec. 2,

9[_1(1’7”’; 010)1)(.'

=(27r)_1/“ d0e [ B='(0) hiv .ot

=(21r)—‘z/ dOeim®[z24-cx(1,1;60) ]!, (3.2a)
0

and, using an argument similar to Sec. 2,

9[_1(1,0; l,m)DD
2T
=(21r'i)‘1/ dOe [ E(1,0; 0)+22% 1],  (3.2b)
0
A-1(0,0;0,m) -
= —(21ri)_'/ dOe= O c+222(1 05 0) 1. (3.2¢)
0

The first term in (3.1) is recognized as P¢,1(H)2. We may
apply the discussion of Sec. 2 of II to average (3.1) over
all {E£.} by use of the two-variable function »(x,xs)
and obtain

(S11(m,9)) = (D (D)?) ks

2 27 %0 %
—(1 —22)(21r)‘2/ dﬂl/ dez/ dxl/ dxs
0 J 0 —% —

Xv(x1,200) {z2em0163m02 3241061 ]~ [324-Coxa ]!

+emhemiy 5% 7 [t ], (3.3)

where

(9}?1(@) 2> E3

=32 [ 1+(1 —zz)w’I/ ’ de/ dxu(x)[zﬂ-f—cx:]_‘

27 27 £ £
+(1 —22)2(21r)‘2/ (101/ d02/ de/ dx,
0 0 —%0 —

XV(Jcl,xz)[22+61x1]_1[22+62x2]_1l (3.4)

and

;= c(6)). 3.5)

To study the leading term of (3.3) when 6=0(1) we
make the substitutions (2.11)—(2.14). We also define

m=gNo' %21, (14-210)2 N 2m. (3.6)

As in the previous sections, we then consider the con-
tribution to the 6, integrals from 0<@~N—? and
6;>>N~? separately. For m>0, the contributions to
A=1(1,m;0,0) by and A~(0,0; 0,m) v from these large 6
may be neglected. The contribution to %~(1,0; 1,m)pp
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from 6>>N2 is to lowest order in .V independent of & and 2, and depends only on m. Therefore, we have

A2 N2 % 0
<@l.1(m,3:7)>1h=(97312(@))1?:4‘[%21?"2(1+zlc)1r“1]-\"2/ (i¢1/ d¢2/ dql/ dqs
0 0 —% —0

sinig, sinrig, 2% cosngr cosrige
(0 +¢17'2%) (pate2%) (g1 " +2%) (e 2+2°)

where f(m) is the contribution to 27 ~1%~'(1,0; 1,m)pp from [6]>\ 2,

. * ®  _ sinme¢ )
><U(q1,q:»)[ :|+f(m) / d¢ / dgU(g)———+o(\72), (3.7)
0 . o+e2z?

@nl?(@))l«:z:[%Zlc_l/2(1+Z1c)1r"]2‘\'“222{/ dd)l/ ([(f)‘z/ (1q1/ dgs
0 0 —% —%
X Ulg1,g2)[@4dre= )" — (1 + D) [ (B+poe™ )" — (g2 +1)7"]

+2 1“‘”/ i f UL E-Fe) - —(6-+1)]+(n)2)?
0 —xc

+C0nst[/ dq&/ dgU(Q)[(E24-pe )" —(o+ 1)_‘]+ln.\‘2} +const’+0(N"Y) 1, (3.8)
and ’ -
U(gr,q2)dqrdga= v(x1,x2)dx1d x5 . (3.9)

In (3.8) the upper limits of ¢ integration have been replaced by « and the N? dependence made explicit by recalling
from Sec. 4 of IT that as ¢; —>=

Ulg1,g2) — 8(q1) U(gn) (3.10)

and following the procedure of Sec. 2. The constants in (3.8) may be explicitly computed but they are not needed
for the purposes of this paper. The upper limits of ¢ integration in (3.7) may be replaced by infinity if we use
(3.10) to show that for ¢, large

ol ® . sin?p; sinrfigps 2% costupy COSMe
/ gy / dwU(q,,qz)[ - ]
J — (e +¢17'22) (P t-e222)  (Pre™1+2%)(poe™ 2+22)

0

~¢y! simmbg/ dq1U(q1) sinmgpy (e~ -4¢132) "' — 22! cosmqsg/ dg,U(qy) cosmgy (dre~+2 )", (3.11)

which is integrable for large ¢.. If ¢, is large, the left-hand side of (3.11) tends to

0

sinn‘u[:l/ dg2U(g) sinmgpy (go+e032) 1 — 52, cosmqbl/ dg1U(qu) cosmgs (poe=22-+22)~" (3.12)

—o0

which is not integrable for large ¢:. Therefore,

(©11(m,D)) 5y = DHD) ) 5t [hne 2 (1 21,1 N2 / iy / i / dgn / dgs
0 0 o e

% Lﬁ(qhq?)[(simf@x)( - 1\ sinri: 22 costip; COstigps :|

I P )

mep )
—+0(\72), (3.13)
¢+ei2’

sin

+ f(m) / i f dqT(g)

where we have redefined f(m) of (3.7) by absorbing a  determining f(m) is to study the §=0, Z— limit
multiple of m~! cosm. of (3.13). In this limit the terms in (&, (m,D))g, that
One way (though by no means the only way) of are independent of N must agree with the T'=T,,
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~m~? approximation to &,,%(m,) given by (8.96)

of IV. We study (3.13) in this limit by writing

(3.14)

and using approximations (3.10) and (2.17) to obtain

S11 (m,9)) By s=0— (D4A(D)) ps
_E%Zlc_l/2(1+zlc)7rV1]2~\'_222

X “:/” da(a+1)"1 sinézﬁux]
+l:/°° dala+1)"! Cosézma:l.}

+ f(m) / i dafa+1)~" sinz2ma.  (3.15)

b= aj22

Now
/ do(a41)"" sinz2me
0
=(2/i)“{/‘ da(a+1)"leima
0 o0
__/ da(a_{_l)-le—ii’ﬁa}
0

= / dbe (14 £2)-1 (3.16)

McCOY 188

and

/da(a—{—l)”‘cosE?ﬁLa:/ die #mEg(14-£2)7, (3.17)
0 0

so that

(E1.1(m,D)) Bl 50— (DO2D) ) g — 47 220,025

% {U e |
0
% 2
+U ffse—f“"fs(1+s?>“]}
0

+ f(m) / dee (L4 E)1. (3.18)
JO

Since
2m=22,.""2m, (3.19)
(3.18) will agree with (8.96) of 1V if
F(m)= 2722, 01y (3.20)

Therefore (€,,1(m,D)), is completely expressed as

<®1,1(m,©>>m=<%2(©>>E,+%[zlc—l'2(1+zlc>rl:m'—2{ f iy / don / dgy / dgo

1 B 1\ sintfigs

X U(q1,92) [Smmdh (e"‘“—{-dn‘"éz

In general, a study of (3.21) requires detailed
knowledge of the two-variable function U(qgy,gs).
Fortunately, in the important special case =0, (3.21)
simplifies to an expression involving only the one-
variable function U(g). To see this, consider first the
term in the integral over ¢; and ¢, proportional to 22
Values of ¢; and ¢, greater than ¢ do not contribute in
the 2— 0 limit. Therefore, in this term ¢; is small,
cosgp~1, and this term is easily seen to cancel the
similar integral that occurs in (N42(D)) g, of (3.8). In
the remaining term in the integral over ¢; and ¢, of
(3.21), 2 may be set equal to zero and the ¢, integral
explicitly evaluated, since [(4.30) of I1]

f dgsU(guge) = Ugy). (3.22)

2% costpy COSMps :|

Jortenz (grent+22) (oot 22)

. 0 00 R sinm¢
o / d¢ / dqU(q) -
0 —o0

} +o(N-2). (3.21)
g+euz?

Therefore,
(@1,1(7”,0))3, = %zlc-l(l'*‘zlc) 1N —2

X { / dé / dqU(g)(e2—1) sinm¢+m—l}
+o(N-?). (3.23)

We will, in the remainder of this paper, confine ourselves
to this special case.
To analyze (3.23), it is useful to write

(€11(m,0)) &, .
= ka1 (121N 2 lim / dpe—S[2K () T
0 /o
X(smn’up)/ dqe(l‘ﬁ)q—(¢/2)(eq+e'¢)+0(}\'—2)

0

=321 (1421.)20"IN2lim | dge ¢ sinme
>0

X Ki-s(9)/Ki(d)+o(N72), (3.24)
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which, using (2.43), may be reexpressed as

(€11(m0)) gy =321 (1 —510)%r 1\ 2
X{—%wé—ling/ dpe<¢(sinrigp)
€ > 0

d
X— an;(d))} . (3.25)
d¢

Furthermore,
o d
lim / depe<¢(sinmigp)— InK |3 (¢)
>0 ° d¢
=—1r]s| +(2i)—1lirr(}

* d
X {[ dget"=¢—In[¢*'K 13 ()]
0 d¢

© 1
—/ d¢e‘<"’7'+‘”"— 1n[¢"'K|a|(¢)]} - (3.26)
Jo d¢

In the first (second) integral, we may deform the con-
tour of integration to the positive (negative) imaginary
¢ axis. Then, using
(e=r i) Ky (e575120)

=301V 15(DF i 15(8)], (3.27)
where J5,(£) and V5(¢) are the standard Bessel func-

tions of the first and second kind,® we find the desired
result

(€11(m,0)) py=%217" (1+220) LV 2

X %W[—5+16|]+27r—1[ dtemEe!

JO

><[Y|a.2<s>+fm2<s)3—l}+o(.\'~2>. (3.28)
In this form, it is clear that
lim (@11(m0)) ma=bin— (1H2i )22 8] if T<T.
" =0 fT>T,
=[P°0+)7, (3.29)

where the last equation may be obtained from (2.33).
This is exactly the value that is obtained in the Onsager
lattice. This contrasts strongly with the value of
(M1(D))E, obtained in Sec. 2 and is a vivid demon-
stration of the fact that &;,1(m,9) is not a probability-1
object. It is expected that (3.29) should be equal to
limg .o (MN2(O))r, where this limit is calculated
directly from expression (3.8). This is indeed the case,
as we will demonstrate in detail in Sec. 4.

¢ Reference 7, Vol. 2, p. 6.
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In general, (&;,1(m,0)) g, cannot be expressed in terms

of tabulated functions. When |8/=% or 2, however,
more simplification is possible.
i 8] =%
In this case
Ju(E)+ 112 () =2/78, (3.30)

and we find

(@1,1(7”,0))};2: 321 (14 210)?
X (rIN -2 =6+ 3 T+ 1} +o(V-2). (3.31)

Toleading order in NV the difference between (€1,1(m,0)) g,
and (&;,1(«,0))x, is precisely equal to the leading term
of the T=T,, D=0 expansion of S;,°(m,0) for large
m given by (8.89) of IV. Furthermore, (3.31) approaches
its 7 — oo limit as 7. But since T T, this slow alge-
braic approach to the 7 — o limit contrasts dramati-
cally with the exponential approach to the 7 — o limit
exhibited by &;,1%(m,0) and assumed by the critical-
exponent description of correlation functions discussed
in the Introduction.

i |8]=3
In this case
Jo2(§)+ Va2 (H)= 2/m)[1+£72],
and, using (3.16), we find
(©1.1(m,0)) pe=%217 (1421021 \ 2

(3.32)

X %1r|:—8+%]+m“1—/ da(a+1)"! Sin'rfla]

0

+o(\N72). (3.33)
Letting o/ '=a+1 we obtain
(S11(m,0)) &,
=327 (1421 m V2 G — 6+ 3 ]+m?
—sinmn Cir+cosm sim}+o(N72), (3.34)

where Cim and sism are defined as the sine and cosine
integrals.’® When 7 is small, this may usefully be
written as

(S1,1(m,0)) s =%21 (1421,) 2L\ 2

X {%w[—- 0+ 14m ! —sinm

o (_ 1)nm2n
X [’y-{—lnm-}— > —] —cosm
n=1 (21)12n

© (__ 1)nm2n+l
i 0
a=1(2n4+1)12n+1)
To leading order in N (&1,1(m,0))5,—(S1,1(«,0)) g, is
clearly not equal to the leading term of the T'=T,, $=0
expansion of ©,,,°(m,0) given in IV but approaches it
10 Reference 7, Vol. 2, p. 145.

]} +o(A2). (3.35)
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as m — 0. When m is large, we have the asymptotic
expansion

<@l,l(m,0)>E2~%Zlc—l (1 +Zlc)27r_l‘\v_2
X (da[—3+3]— T (—)"@n) 21y, (3.36)

Again we see that the approach to the m— limit is
algebraic rather than exponential.

With the orientation provided by these two special
cases, we turn to the general case and study the most
interesting limiting cases of (3.28): (a) 7 fixed, |§| —= ;
(b) & fixed, m—0; (c) 80 fixed, m—o; and (d)
6=0,m—>x.

(a) m fixed, |§|—o. In this limiting case, when
| 8] ~ N2, we expect the term which is independent of V
to agree with the leading term of either the 7 — T,
limit of expansions (8.41) or (8.52) of IV of &,,12(m,0),
which are valid for m|T—7T,|>>1, or with the leading
term of the {— (') behavior of &;,1°(m,0) given
by expansion (8.87) or (8.88) of IV, which are valid for
m|T—T,=0(1). We do not expect to be able to
reproduce more than the first term that depends on m
of these expansions because our approximations to
(&1,1(m,D)) g, neglects all terms of order o(NV2).

To obtain the desired expansion, it is convenient to
return to (3.24) and use the asymptotic expansion
(2.44) to obtain

<@1,1('m70)>Ez —_— %zlc-l(l—kzlc}g’r_l‘\;z
[8] >0

o

X ‘ ——%rﬁ-}—lin& / depe*? sintigp
€—> 0

><[¢—1(¢2+62>”2+%¢(¢2+62)—1]]. (3.37)
Since
lin(}/ dpe<? sinmig ¢~ (P24 62)1/2
= Jo
=%wl6l+£61f dggte T2 — 1)1 2
1
=3[ 6| +/6] dgE KL (8) (3.38)
and el
f(1¢¢(¢2+52)“‘ sinthg =3mwe= ™18 (3.39)
0

we explicitly find
(@1,1(m)0)) &, PP 3217 (1421,) 2 LV 2

©

dEEK(8)

m|é}

—{-;}we*”‘“”} . (3.40)

x[—%«[a—!amwl
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The first two terms in this expansion do not depend
on N when |8|~N? and, as expected, agree with the
leading term of (8.87) of IV if 7> T, and the first two
terms of (8.88) of IV if T<T..

(b) 6 fixed, m— 0. In this case, also, we expect to
make contact with IV. In particular, we expect that when
m~N7% the term in (&;,1(m,0))g,—(S1,1(~,0))x,
which is independent of N should agree with the T=T,,
m — behavior of &,,,°(m,0) given in (8.89) of IV.
We have previously seen in the special case |§| =% and
|8] =% that this is the case but that in the case of
|8| =% the approach to this limit is somewhat com-
plicated by the presence of terms involving lns.

To study this limit in the general case, we note!! that
for large ¢

J152(8)+ Y 15%(8)

2 »
~ L L3 QR DIT G 8] 44)
XD GA+68] —k)]12-kg2k
~ /) {1+3@e =12+ ),

where for our limited purpose we retain only the first
two terms. We then write

(3.41)

/ dte 2 m) LY 129+ 52 T

- / dEe 62/ E LY 15 2O T (O T
C1H3E— 1))

+ / dee 1 -3 —1)(1+E)) . (3.42)
0

In the first integral, we write
e =1 —mi+ 3P4 (e ™ —1+mE—im2g2).  (3.43)

The last integral is of the same form as was studied in
the special case |§| =2. Thus

/ dge ™ (2/m) LY 15 2(8) +T 15 2(8)
0

=40(8)+mA1(8)+3m?42(8) +o0(m2) 41w

—3(462—1)[sinm Cim—cosm sim], (3.44)
where
44(8)= f 48 B(2/m)ELY 1050 +T 42 T
—1+3@e—-1)+8)"), j=0,1,2. (343)

u G. N. Watson, A Treatise on the Theory of Bessel Functions
(Cambridge University Press, New York, 1945), p. 449.
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We may use the expansions of Ci and si and obtain

(@1,1(m,0))m_—; 3217 (1 42,) 2N 2

X{3w[—o8+4] 8| J+m14-A4(5)
—m(462—1)—3(482—1)m Inm
+m[A(8) —§(46*—=1)(v+1/18) ]

+m231,(8)+0(m?)) . (3.46)

As expected, when 7~ N2, the term independent of .\’
agrees with (8.89) of IV.
(c) m—ax, §%0. The most unusual feature of (3.28)

is its asymptotic behavior as 7% —». We have already

seen in the special cases |8| =% and |8 =% that this

behavior is algebraic rather than exponential and is

therefore not of the form assumed by the critical-

exponent parametrization. To see that this behavior

holds for general values of § we approximate for small ¢

and [8]#1

LY 2O+ 201!

==[T(|8])I2Go* P {1+2GH* 1 —(s])
+2(3§)*%! cos(|8|mT(—[s]+ DT (ls]+ 1]

+O(E1)F0(g 1)}, (3.47)

and thus find that (3.28) asymptotically becomes

(&1,1(m)0)) g, — 321, (1 42,)2 N 2

X{E[—o+8}]+2[1(]6])]
X[(2mm)=2181T (2] 8] ) +2(2mm) 21812
XT(2]8|4+2)(1—18])~"42(2m)~*
Xcos(|8[m)T(1—[6[)T(+ 8] )(I(1+8]))"
+O@R—18) F-O(m4151-2) ]},

When |§] =% or 3, the terms in 7' that are explicitly
given here agree with the preceding results. We may
study the case |§| =1 by letting || — 1 in (3.48) and
find

(@1,1(m,0)) s 1511 T:;%z,;’(l-}-zh)?\‘—?

(3.48)

X{5[—o+ 58] J+3m

+1m =3 lom+4]+00r—)) .
When 0<|8| <3, while the leading term in (3.48) is
still correct, the neglected terms of order O(m=°1%!) are

now larger than the retained terms of order O (m2%1-2)
and thus these higher terms are no longer meaningful.

(3.49)

Indeed, when |8 —0, (3.48) loses its validity
altogether.
(d) m—w=, 6=0. The final limiting case of

(S4,1(m,0)) 5, to be considered is m—» and T'=T..
This is the one temperature at which the critical-
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exponent description allows a spin-spin correlation
function to approach its limiting value in a power-law
fashion as parametrized by (1.4d). In the bulk of the
two-dimensional Ising model, n=%, while on the
boundary, n=1. However, we have just seen that,
if || is made sufficiently small, then in our random
model, even if T#T,, (&1,1(m,0))g, may be made to
approach its i —= value in a power-law fashion with
a power as close to zero as we please. Therefore, it is
expected that at T, (©;,:(m,0))g, will not be of the
form (1.4d). To see that this is indeed so, we approxi-
mate for small £

[V (O + T ()T ~[4n2(Ing/A")*+ 1]
~ir(Ing/A")~

X{1—gz*(Ing/A")*+---}, (3.50)
where
A'=2e 71, (3.51)
Therefore,
<@1,1(m,0))Eg]a=o
~ez1 7 (1421,)2V 2 / dte ™€ 1(Ing/A") 2
0
X{1—3n2(Ing/A")~2}
=~z (121N / dtee
0
X[(Ing/4") ' —5r2(Ing/4")~3], (3.52)

where to obtain the last expression we have integrated
by parts. We now may let x=m¢ and expand the
logarithms as

[lnx/mA’ ] '~ (—InmA")"'[14 (Inx)(InmmA4’) !
+ (Inx)?(InmA")2+---] (3.53)

to obtain the desired result

(S1,1(m,0)) g, | s—o~Ts21." (14 21,)2 N2 (In4 ') !
X{1—v(lnd'm)" '+ (y? —157®)(Ind'm)2}. (3.54)

This vanishes more slowly than any power of 7 and is
obviously not of the form (1.4d).

4. PROBABILITY DISTRIBUTION OF IR,

We now turn to the question of the probability
distribution that describes the random variable ¢,(9)
in the thermodynamic limit 90—, 91 —x. A con-
venient way to discuss this distribution is by studying
its moments (IN1*(H))k,. The first moment (=1) was
discussed in detail in Sec. 2. Only in the £ — 0 limit
were the results particularly simple. Similarly, in Sec. 3
we discussed limpm-(S1,1(m,9))k,. An explicit answer
was obtained for the case $=0, but a general discussion
requires a detailed discussion of the two-variable
function »(x1,x5). However, our principal interest lies
in this §=0 case because of the analogy I(0+) has
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with lim,.,(S»!/?), which was interpreted in II as a
measure of the local magnetization in a row. For these
reasons we will, in this paper, confine ourselves to the
special case § — 0+.

As we remarked in Sec. 3, we expect

}’jgr}o(@l,l(m,0+)>xz=s}ilfll+<mxz(5§)>m, (4.1)
where the left-hand side is given by (3.29). We will
directly verify this by computing the right-hand side
starting from (3.8). In so doing we will need a few
properties of the two-variable function »(x1,x,) which
have been discussed in IT in a different context. We will
here recast some of that analysis in a form which is
immediately generalizable to a » function of an arbitrary
number of variables.

We begin by remarking that if in (3.8) we use the
explicit form of U(g), Eq. (2.15), as was done in Sec. 2,
we see that no term containing U(g) can contribute to
the § — 0+ limit. Therefore

Jim D))k =[Far (1 Fzi)n V]2
H 04

X lim 22/ ({d)]/ 11¢gj dql/ dqs
=0t Sy 0 —w —%

X U(g1,92; $1,82)[(F+bre= ) = (g +1)71]
X[ (@ +doe ) = (2+1) 7" ]H0(N72).
As in Sec. 2, the contributions to the ¢, and ¢, integrals
from the region ¢;> € and ¢»,> € give no contribution to

the © — 0+ limit. We therefore follow a reduction
analogous to Sec. 2 by writing

(4.2)

0=/ ~Inle, (43)
and
¢,~=\/22a,~ (44)
to find
dim () g =[27 20172121 )T

€/z €/z Eg £
X lim / doy / day / dgy / dgy’
20+ 0 0 — —oQ

X U(([ll —lnéa12‘”z, qQ'—lnéaﬂ_l /2; \/22(11, \/22(12)
X (14a?e ) (14ae )" 140(N72).  (4.5)

From Sec. 4 of II we find that U(q,g.) satisfies the
partial differential equation [which is accurate to
order o(1) as N —= ]

9 9.
[——+A:| U(gu,q2)
g1 9q»
9 3
+—{6—3d:[ e —en ]} U(g1,q2)
6(11

9 .
+—{6—2¢:Le 2 —en [}U(g1,g2)=0. (4.6)
(9(12
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To compute the Z— 0+ limit in (4.5) it is important
to note that we only need to know U(gs,g.) in the region
where g1 and g¢. are large. In this region U(g1,g,) may
be approximated by U(g1,g:), which satisfies the simpler
equation

a9 ad 72 _ a9 ~
[—+ ]U(ql,qz>+—~<a+%¢,em}U(ql,qn
(9(]1 a(]r_) 6(/1

a9 _
+—{ 6+%¢23q2} U((]],(]g) =0,
GQQ

4.7)

If we note that

l¢]
d18—5(q1+1Ind1 — g2 —Ing,)
aql

d
+¢26—05(q1+1ng1 —ga—Ingy) =0,

¢

(4.8)

we find that a solution of (4.7) is

U(g1,42) = constd(gi+Ing, —¢q2—Ing,)

Xexpl —3(q1+g2) —h(na) Pt 2], (4.9)
Now the exact U(gi,g;) must satisfy the subsidiary
condition (3.22). When ¢; and ¢, are small and qi1and ¢,
are large, this gives a subsidiary condition on U of

/ dg2U(g1,42)

=(3¢o1) PILT(|8]) ] e da—(d1/2)ems (4.10a)

and

/11‘]117(41,@)
=(%¢2)[6I[[‘([5|)]—le—6q2—(¢2/2)e?2’ (4.10b)

where we have used the approximation to Kj(g),
Eq. (2.29). 1t is now easily seen that (4.9) will satisfy
(4.10) if we choose the constant so that

U(‘leqﬂ)
=[I(] 5])]“lfid)nﬁﬂ"”/25(91+ln¢1—q2—ln¢2)
Xexp[ —38(g1+g2) =3 (drgp2) V2e( 0t 2] (4.11)

This is recognized as (4.56) of IT written in a form that
is suitable for the §=0(1) region and that exhibits the
symmetry in the ¢; and ¢, variables. The difficult task
of II was to demonstrate that the particular solution
(4.9) to the partial differential equation (4.7) is indeed
the correct solution and to investigate the sense in
which U is an approximation to UJ. The conclusion of
that analysis is that for suitably limited purposes such
as envisaged in (4.5) we may indeed replace U(gs,qz)
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by U(g1,q2) of (4.11). Making this replacement, we find
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e/z €z 0 0
lim 2()) ga=[2- 22112121 )~ N=12LT(| 5]) ] Lim 20181+ / doy / das / dgy’ f dgs’
S0+ = 20+ 0 0 o —

X[ g1 — g2’ N[ Banas JUE1H01/2 exp[ —38(gr' +-¢2") —e@+ 20 2] (14 %) (1+ape~ )1 40o(N72).  (4.12)
If 6>0, .
lim (MN2(D))e,=0. (4.13)
D0+
If 6<0, we replace ¢/Z by =« and find \
lig RO =[N0 (aDT [ it [ ettt ) oy
0+ 0 0
=232, 7 V2(1421,) NV 2T (1—6) /T (| 8] ) +o(V2)
= hm (@1,1(M,0+)>E,, (4.14)

as expected.

It is now straightforward to generalize this procedure to study limg.o (N1"(D)) ks, at least if # is not too large.
We may write out a complete expression for (Jt,"(9))z, when §=0(1) and 2=0(1) as was done in (3.8) in terms

of L(Ql, :
contributes to the Z— 0+ limit and we have

hm (932{'(\3))1.,—-[1,,;0 2(14z1,)m V" ']" hm z"/ dr- - / {]d),,/ dyy- - / dq.,
0

X U(l]x,‘ ..

-,¢») and U functions of a smaller number of variables. However, only that term involving U (q1,- -

“3Gn)

©

®

gn) I=Il [E+ee ) —(g+ 1) JHo(N7), (4.15)

which, if we note that the region ¢,> € gives no contribution in the Z— 0 limit, may be written using (4.3) and

(4.4) as

lim (D)), =[27""%
D0+

X lj(([ll ‘-1112(!12"”2, o

We obtain a partial differential equation for

U(q,- - +,gn) from the integral equation (2.47) of II
for v(x1,- - -,x,) in a manner identical to that of Sec. 4
of II. We find

n a 2 N
[Z ____:] [J(qlf o ;Qn)

J=1 aq,

n 0 "
+3 —to=3oLem—en ) Ul (.17)

=1 8g;

4n) =0,

where, in addition, U(qy, - -,g.) satisfies the subsidiary

condition

/ d’q]'[:r(qu' IRELZ TR )qn)

= Ey(‘ll, Cdi-uY9541, :‘ln) . (418)

When all the g; are large of the order —Ing;, we approxi-
mate U(qy,-:-,ga) by U(gy-:+,qs), which satisfies

g —InZa, 2712 V230, - -

€/2 €2 ” 5
U""/2(1+:15)W“1A\'”’]"_lilll): / day - - / (lau/ dgy - / dq.
== Jo 0 —» —x

230 1_1 [(14aeo' 1 T+o(N~"). (4.16)

(4.17) with the terms in e~% omitted. We then find that
a solution to that equation which satisfies the subsidiary
condition (4.18) for U is

Ol -0 =L0(18)T-CIT 363000

n—1
X H1 8(9i+1Ing;—gjp1—Ind;i1)
pin

Xexpl{—n~'6 3 ¢;—3[ 1T ¢;]"
J=1 j=1

Xexp(n“iq,‘)} . (4.19)

The major difference separating the special case n=2
of (4.11) from the general case #>2 is that in the general
case we do not possess the detailed analysis of II that
makes precise the sense in which U is an approximation
to U. If, however, we are willing to accept 4. 19)
without an elaborate justification such as in II, it is



1030 BARRY M.

a simple matter to use (4.19) in (4.16) to find
lim (D4U"(D))

H->0+
=[2-32%,712(1421,) V1]
XT(3n—28)/T(]8])+o(N—") if T<T.
=0 if T>T,.. (4.20)

If 6> —o,
M (04)) g, — [DO(0+)I+0(™"),  (4.21)
while if § =0,

<9nln(0+)>l‘12
~[27322; 12 (1421 ) N 1] | 8| T(3m)+-0(82) . (4.22)

We also note that the approximations leading to (4.20)
are surely invalid for sufficiently large #. In particular,
IN1(0+) must, for any set {E.}, be less than the value
it would have if we replaced all E,(j) by E.°. We know
from I that such a replacement raises 7. by O(N ™).
Since from IV we know that 3?,°(0+ )~ const(7.—7T)!/?
as T'— T, we conclude that

M1 (04) < constN 12, (4.23)

Therefore the approximations in (4.20) must fail for
n=0(N). (4.24)

We now may use (4.20) to investigate P(), the
probability that at §=0, M1(0) assumes a value P, in
the interval d%. Clearly if T> T,, B) =86y, so
we restrict ourselves to 7’< T'.. Because of the limitation
(4.24) we cannot hope to compute B(P?;) exactly but
it is not difficult to find an approximation to P(Pty) in
the sense that it will yield the moments (4.20). Define
a scaled magnetization

m= 232y, 12(14-21.) NI (0+) (4.25)
and let
pm)dm=PER)dM, . (4.26)

Then from (4.20)
/mdmm"b(m)ﬂ“(%n-i-l5%)/1“(161)- (4.27)

From its definition and from (4.23) it is clear that
pm)=0 if m>constN/2, (4.28)

If we ignore this restriction, then it is easily verified that
pam) =2~ m21%1-1/T(| 5]) (4.29)

will satisfy (4.27) for all ». This function is surely
incorrect when m=0(N'?) because it fails to satisfy
(4.28). However, if #=0(1), the region of m=O0(N'2)
makes a negligible contribution to the integrals (4.26)
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I'16. 2. Plot of the probability density function p(m)
versus m for several values of 5.

and hence we conclude that (4.29) is an accurate
approximation to p(m) if m=0(1).

Finally, we may use (4.29) to make contact with the
discussion of Sec. 6 of II. We plot p(m) of (4.29) in
Fig. 2 for several values of || and note that while it
diverges at m=0 if |§] <3, there is always a tail to the
distribution that extends out to values of m of order 1.
It is this tail that is giving the important contributions
to (P4") for n>1 even though the major contribution
to the normalization integral comes from the integrable
divergence at m=0. This peaking at m=0 and long tail
were inferred indirectly in II by making use of the
smallness of exp[(InM(0+4))g,]. In the present case
we may compute (InI(0+)) g, as

AnM(04) ) pa=1In[ 273725, 71 /2(14-321,) N1 ]
+ f dmp(n) Inm. (4.30)
0

Since Inm=o(m) as m—, approximation (4.29) is
accurate enough to give the terms in the integral of
(4.30) that are O(1) as N —« . We therefore find
(In1(0+4)) g, =1n[273/22, 712 (1421 ) N 1]
3 ([8))+o(1). (431)
This is valid for é negative and of order 1. We now may
let §— 0— and find??
(InPM1(0+)) y~ —InN —3 [ 8] "1~y
+1In[27322, 712 (14-2,.) ]+ O(| 6]). (4.32)
Therefore we infer that the geometric mean of &;,1( ;0)
as 6 —0—is
N=2/3kz, ~1(142,,)%e7. (4.33)
This is to be compared with the corresponding geometric
mean of S, in the bulk as § —0—, which is given by

(6.36) of II. Both geometric means vanish exponentially
rapidly as § — 0— and the geometric mean of &, (o ,0)

12 Reference 7, Vol. 1, p. 47.
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vanishes more rapidly than the geometric mean of .S,
of the bulk.

5. CONCLUSION

When taken together, the results of this paper, as
summarized in the Introduction, demonstrate dramati-
cally that the magnetic properties of impure ferro-
magnets may be drastically different from those of pure
ferromagnets. Indeed, it would be most desirable to
compare the qualitative features of our results with
precise experimental data as we did previously for the
specific heat computed in 1.’ However, to our knowl-
edge, sufficiently detailed measurements of magnetiza-
tions, magnetic susceptibilities, and asymptotic be-
havior of spin-spin correlation functions have not yet
been made in the temperature regime near 7', where the
specific heat of the sample rounds off. Only such experi-
ments can decide the question of whether the descrip-
tion of magnetic phase transitions in terms of critical
exponents, besides failing to provide a complete
description of this random Ising model, also fails to
provide a complete description of real, impure samples
upon which all experiments are ultimately conducted.
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APPENDIX

Griffiths® has proven that in any Ising model whose
interaction energies are never negative, if we increase
(decrease) the strength of any bond, we cannot decrease
(increase) the value of any spin-spin correlation func-
tion. Furthermore, the interaction of a magnetic field
with some sites of the lattice is equivalent to having an
extra spin which can only take on the value +1 and
interacts with those same spins with a strength equal

13B. M. McCoy and T. T. Wu, Phys. Rev. Letters 21, 549
(1968).
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to that of the magnetic field. If we call this extra spin
00, then, if H interacts with all spins, the magnetization

may be written as a sum of spin correlation functions

MH)= lim (AMN)"YD 0,100, (A1)
M >oc, N >0 J.k
where
—MAH1< <IN, (A2)
—N+1<k<I, (A3)

and we impose cyclic boundary conditions in the
horizontal direction. Now M (H), being a property of
the lattice as a whole, is a probability-1 object, so

M(H)=({01,000))E, - (A4)

Consider any lattice out of the collection of lattices
specified by a set of energies {F,(j)} where j satisfies
(A2). The magnetic field  interacts with the row j=1
only. Therefore, Griffiths’s theorem says that for any
{E2(j)}, if H is numerically equal to 9,

M©)<MH). (AS)
We are interested in the relation between M (H) and
9)31(3:3)= (01,00())111’, (A6)

where (---)pp means a thermal average in an Ising
lattice where the rows j satisfy

1< j<am (A7)

instead of (A2). If we replace all vertical bonds between
the row j=0 and j=1 in the original lattice specified
by (A2) by zero, we may apply Griffiths’s theorem again
to find

M(D)SM(H). (A8)

But this inequality holds for every collection of bonds
{ E,}, so it holds for the average as well; so

D4(D))e,<M(H), (A9)

which proves (1.3a). A similar argument applied to
Sm(H)=(00,000,m) establishes (1.3b).



