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Theory of Phonon Dispersion Curves in Silicon Carbide Polytyyes*
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A theory is presented to explain Gne-structure-dependent details in the phonon spectra obtained by
Raman scattering measurements on silicon carbide polytypes, using the method of interactions between
planes or atoms. Doublets of small energy splitting represent discontinuities in the dispersion curves
within the large zone and are analogous to the band gaps appearing in nearly free-electron band structures.
They give a measure of the range of interplanar interactions and of small energy differences between poly-
types. These results are used to comment qualitatively on the relative stability of silicon carbide polytypes.
The theory also accounts satisfactorily for the infrared (ir) strengths of the weak modes observed in these
structures.

I. INTRODUCTION

ECENTLY, Feldman et a/. ' have measured phonon
dispersion curves along the t,"axi& in silicon carbide,

using Raman scattering measurements, by exploiting
the existence of polytypes of this substance. Their re-
sults showed that, to a good approximation, the phonon
frequencies are independent of polytype; that is, they
do not depend greatly on the variations in stacking se-
quence which distinguish these different structures.
Nevertheless, there are features in their spectra which
do depend on the detailed stacking sequence. The most
striking of these are the small doublet splittings which
occur at points inside the large zone' and may be as-
cribed to the breaking of translation symmetry in a sense
explained below. Another one is the variation of one of
the optic modes at zero wave vector (TOs) with per-
centage hexagonal stacking. ' These features must arise
from small energy differences between polytypes, the
sort of energy differences which have been discussed in
the problem of calculating stacking-fault energies' and
in the rare-earth metals. ' Their study should provide
a means of investigating such small energy differences,
and of accounting for and correlating some of the other
structure-dependent quantities associated with phonons
in these polytypes (e.g. , the weak ir strengths'). This
may also shed some light on the thermodynamic stabil-
ity and origin of these structures. Although then the
main purpose of the Raman scattering experiments was
to deduce the structure-independent part of the phonon
dispersion curves, we believe that the small structure-
dependent parts are also worth investigating and pre-
sent here a theory which accounts for these features, in
particular the doublet splittings within the large zone.
We use the method of interactions between planes of
atoms which has been used to study stacking-fault en-

ergies, ' the stability and axial ratio of rare-earth metals, '
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and is, in general, useful for analyzing phonon disper-
sion curves along directions of high symmetry in q

space.
Silicon carbide polytype structures are built up by

stacking close-packed planes of carbon or silicon atoms
along the c axis in certain stacking sequences (ABC
etc.).s Figure 1 shows the perpendicular spacing be-
tween these planes along the c axis for the polytype 3C
(zinc-blende or sphalerite structure). The perpendicula, r
spacings for the other polytypes should be the same,
apart from small deviations or lattice distortions, ' but
the transverse stacking positions which we have not
indicated in Fig. 1 depend on the particular stacking
sequence. In terms of the "h k" notation, 7 the pairs of
silicon and carbon planes separated 4b are in either hex-
agonal h or cubic 0 stacking positions with respect to
neighboring pairs. If the force constant between two
planes depended only on their relative separation, and
not on their absolute position in the lattice, then we
should have the same translation symmetry in our prob-
lem as for the 3C polytype, and the phonon spectrum
should be smooth inside the large zone. In general, how-
ever, this translation symmetry is broken and our theory
shows that the doublet splittings inside the large zone
are determined by the magnitude of the symmetry
breaking of the force constants. Indeed, the doublet
splittings are analogous to the band gaps which appear
in the smooth free-electron parabola on introducing the
perturbing lattice potential which breaks translation
symmetry in the electron case.

Some of the assumptions and approximations we have
made in our analysis should be mentioned here. First,
the problem of calculating the small lattice distortions
or the deviations from the regular interplanar spacing
(~b, 4b), ' which must in part contribute to the breaking
of translation symmetry for the force constants, has not
been considered in detail. We believe that the splittings
A(co') in the optical bands, which are rather larger than
those in the acoustic bands, are largely due to a small
variation in the separation of the nearest pairs of planes

' A. R. Verma and P. Krishan, in PolyrrIor phasm arid

Polytypic',

sm
irI, Crystals (John Wiley 8z Sons, Inc. , New York, 1966), Chap. 4.' A. H. Gomes de Mesquita, Acta Cryst. 23, 610 (1967).

7 Reference 5, Chap. 5.
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about the mean value of ~~b. Such variations or devia-
tions from the regular or ideal spacing may also be
studied using the method of interplanar interactions.
However, the theory is not presented here, as there do
not appear to be enough experimental data, either from
lattice parameter measurements such as in Ref. 6 or
from splittings in the optical branches, ' to provide a
convincing verification at present. This matter is still
under investigation. The variation in the —,b spacing
however has very little effect on the acoustic branches,
and particularly on the TA branch, as we shall see
below. We believe that for these branches, what effect
the variation in lattice spacing has may be included in

Eqs. (7) or (23), which give the breaking of translation
symmetry. We shall therefore be chivy concerned with
the acoustic branches in what follows.

For the transverse branches the results of Feldman
et a/. ' indicate a large separation in frequency between
the optic and acoustic branches and this is presumably
due to the fact that the transverse force constant be-
tween the planes separated ~b is much larger than all
others. This means that for the TA branch such pairs
of planes oscillate to a good approximation as rigid units.
The second approximation which was made, therefore,
is to neglect the relative motion of the silicon and carbon
constituents of such double units. The data on splitting
are by far the most complete for the TA branch and we
shall once again restrict our attention to this branch in
most of what-follows. We label our rigid double units
from left to right by the subscript j (see Fig. 1) and let
U, be the displacement from equilibrium of the jth
such unit. Notice that these are not the pairs of planes
in terms of which we previously considered polytype
structures to be built up.

In Sec. II the theory is presented using the rigid-atom
approximation and it predicts a correlation which
should exist between the doublet splittings h(oP) and
certain structure factors characteristic of the h k poly-
type stacking sequence. A plot to verify this using the
experimental data shows the theory presented in Sec.
II to be in some way deficient. We manage, however,
to use our analysis to subtract out the parts of the pho-
non spectra which are polytype-dependent to leave a
dispersion curve which must be that of the 3C structure.
The results are used to discuss qualitatively the small
differences in free energy between different polytypes
which may inQuence their relative stabilities. We dis-
cuss possible deficiencies in the theory in Sec. III and
conclude that it is necessary to take the effects of
polarizable atoms into account as is done in the "shell
model. "' It is apparently more important to take into
consideration the relative motion of the atomic cores
and shells than that of the silicon and carbon atoms in
the double unit. A theory is presented that has been
modified to take these effects into account, and it is

8 W. Cochran, Proc. Roy. Soc. (London) A253, 260 (1959);Phil.
Map. 4, 1082 (1959).
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shown that this now explains adequately the magnitudes
of the doublet splittings. In Sec. IV we discuss the Inag-
nitudes of the weak ir modes4 observed by Spitzer
et al. and Ellis and Moss. "

where E are the interplanar force constants, C is the
dynamic matrix, and M is the mass of one of the double
units. If E;,;+„were independent of j, depending only
on n, which is true for polytypes 3C and 2II, the phonon
curves would be smooth within the large zone. For other
polytypes it happens that E, ,+„has a small j depen-
dence, the reason for which we shall see shortly, and we

say that translation symmetry is broken. We may then
write

E, ,; „=E(n)+DE;,; „, '' (2)

where AE contains the j-dependent part of E but is
small. As a first approximation, Eq. (1) may be solved
neglecting AE and as a result phonon frequencics

(oi,')'= —P E(n)(sin-', gnb)'~ n&0
(3)

with normal modes

P (q) = Dt,
—'~'e'&&' (4)

are obtained. The quantity X is the number of units in
the crystal, and g is the phonon wave vector along the
t, axis. We note that co~' is smooth within the large zone
and we interpret it as being the structure-independent
part of the phonon spectrum.

W. G. Spitzer, D. A. Kleinman, and D. Walsh, Phys. Rev. 113,
127 (1959)."B.Ellis and T. S. Moss, Proc. Roy. Soc. (London) 299. 393
(1967).

II. RIGID-ATOM MODEL

For phonons with wave vectors lying along the t," axis
which is either a triad or hexad axis, the dynamic matrix
may be factorized in such a way that all TA displace-
ments lie parallel to an arbitrary direction in the basal
plane. The problem is thus reduced to that of a linear
chain with scalar displacements. I-et U, be the scalar
displacement of the jth rigid unit. The normal-mode
equation may be written

~~'&, =2 &;,,+.(~~ &~+-) =2—~'~, ~+-&~+- ~ ( )
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TABLE I. Stacking sequence and values of 5& within one repeat
interval r for the polytypes considered in Ref. 1, and the structure
factor S(2q) as a function of the reduced wave vector x=qh/vr
We have trivially reordered some of the repeat intervals and
choose the origins indicated by arrows to give real structure
factors.

Polytype

"h k" sequence
5)

6'(2v)

4II 6II

hk khk
10 010
1' t'

2 3

158

khkhk khkkkhk
01010 0100010

T
5 7

-', cos(2ex) (2/7) cos(4n.x)

and may be shown to be equal to

P 4(sin —',q'nb)(sin~sqrtb)EK(n, q q'), —
n&0

where
K

DK(rt, q
—q') =X ' P (d,Kt „ts t+„ts)e'« '&" (6).

In Eq. (6), l=j+rt/2 is summed over integers or half-
integers according as n is even or odd.

The j or / dependence of the force constants arises
because the interactions between planes must depend
on the relative stacking positions of these planes. For
example, the value of the force constant E'g j+] between
adjacent double units centered at jb and (j+1)b de-
pends on whether the point midway between them at
(j+-', )n is a center of hexagonal or cubic stacking. If we
were to use the so-called "pairwise force" model chieOy
applicable in metals' " the stacking dependence of
E;,;+J.would arise from the interaction between the Si
and C planes separated by ~~5b, for this depends upon
whether these planes are in "equivalent" (A —A, B—B,
etc.) or "inequivalent" (A —B, B—C, etc.) stacking
positions. '

The largest contribution to E;,;+~, however, wouM
arise from the interaction of Si and C planes separated
by 43b, and this would be independent of j, since these
planes are always in "equivalent" stacking positions.
The "pairwise" model shows therefore that we might
expect the j-dependent part of E;,,+& to be smaller than
j-independent part. As will become clear below, the
experimental results show that the j-dependent part of
E;,;+& is indeed very much smaller than the j-independ-
ent part. On the pairwise assumption, this would imply
that the interplanar interactions are decreasing very
rapidly with increasing plane separation, and would
suggest we might neglect Z;,;+2 and other force con-
stants altogether in our problem.
"W. A. Harrison, PsettdoPotentt'ats sn the Theory of Metals (W.

A. Benjamin Inc. , New York, 1966).

Let us now introduce AE as a perturbation and evalu-
ate matrix elements of the corresponding AC between
the normal modes given in Eq. (4). These matrix ele-
ments are given by

(q'( DC
l q) =x ' Q e 'o"'DC;;+„e'«&+"~ '

In covalent semiconductors the pairwise model is no
longer expected to be strictly valid" and so-called
"many atom" forces may be important. However, such
forces should be largest for neighboring atoms or planes
and the conclusions drawn from the pairwise model
above are still almost certainly valid in such solids. A
further conclusion which may be drawn is that the force
constant E;,;+& is virtually unaffected by the stacking
positions of any atoms other than those belonging to
the double planes j and j+1.We may therefore assume
that K;,;+t depends only on whether the point (j+—,')b
is a center of hexagonal or cubic stacking. As a result we

may write Eq. (2) as

Kl '„l+',—Kc—ub+l Kbex Kcub/Sl q (7)

where the quantity in curly brackets is essentially a
structure factor S(q —q'). For periodic polytype struc-
tures S~ will repeat in a certain interval r, i.e., S~= S~+„,
and this restricts the structure factor to being nonzero
only for

q
—q' = (m/r) (2sr/b), (9)

where m is an integer. The quantity v is related to the
number E appearing in the Rarnsdell symbol. ' ' For
rhombohedral polytypes r= 3E, but for hexagonal poly-
types with a 63 screw axis r= ~X. In Table I we plot S~

in its repeat cell for the various polytypes considered by
Feldman et al. , ' and given corresponding expressions for
the structure factors S(q—q'). lt should be noted that
for q= q' the structure factor S(0) is simply given by the
percentage number of hexagonal stacking positions
in the solid, a quantity which has been used to corre-
late some of the structure-dependent properties of
polytypes. "

The perturbing matrix elements (q'lt)C lq) are re-
sponsible for the introduction of small gaps in the pho-
non spectrum when g'= —q, in analogy with the elec-
tron case. From Eq. (9) these splittings occur when

q=rrt7r/rb, or at positions @=ttt/r, inside the large zone
where ot is the reduced wave vector q/q, „used by Feld-
man et a/. ' In hexagonal polytypes with a 63 axis all
these values of q plot back into the center of the small
zone and are therefore accessible by Raman scattering.
In rhombohedral polytypes only those values for which
m is even plot back to q= 0 and are accessible. These are
just the values of q for which Raman scattering has been
observed in the TA branch. ' Solution of the secular
equation for such wave vectors gives

(~.)'=( .')'+~ '((ql~c'lq)~l( —ql~c'lq)l) (10)

"V.Heine and R. O. Jones, J. Phys. C2, 719 (1969).

understanding that in what follows we are only con-
cerned with n=1. In this equation, S~= 1 if the point
lb= (j+—,')b is a position of hexagonal staking, but St——0
if cubic. The second term in Eq. (7) represents AK.
Equation (6) now becomes

~K(1, q
—q') = (K„.—K..b) (~-t pt S«'t -"&") (8)
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Using Eqs. (5) and (8), Eq. (10) becomes

(cue)s= (u e) +(4/3f)(Eh, —E,„b)(sin—qb)s

&&LS(0)~ IS(2q) I j (»)
and in the same approximation Eq. (3) becomes

(case)'= (4/3f)E, b(sin-,'qb)'. (12)

Equation (11) indicates that the doublet splitting
5(&o') at q should be proportional to IS(2q) I (sin —,'qb)'.
In Fig. 2 we have plotted A(cv')/IS(2q) I for the TA
branch against (sin-,'qb)'. The general behavior expected
is obtained approximately, but a deviation from the
straight line predicted by Eq. (11)seems to be indicated.
The reason for this discrepancy will be discussed in Sec.
II. We may also use Eq. (11) to calculate (cuss)' from
the frequencies of the doublet members at q. For each
value of q there are two Possible values of (arse)s accord-
ing to whether E'h, is greater or less than E,„b .The pos-
sible values of (&o,')'/(sin-, 'qb)' are plotted in Fig. 3 and
we see that a straight line passes nicely through the
upper series of values, showing that IC~,„&E,„b. Since
all 5& are zero for the 3C polytype, co~ must represent
the phonon dispersion curve for this structure. Using
Eqs. (11) and (12) our results indicate a value of
E,„b/M of approximately 20 000 cm ', but a value of

(E«b —Es,„)/M of 1500 cm '. As discussed above, if
we neglect the small lattice distortions, and use a pair-
wise interaction model, E.„b—E&, is determined by the
stacking dependence of the force constants between Si
and planes separated &b, but E, b mainly by the con-
stant between those separated ~b. One can show that
the magnitudes of the ~b constants are roughly the same
as their stacking dependence and may deduce that they
are roughly one-tenth the magnitude of the 43b force con-
stant. This suggests that these constants decrease very
rapidly with increasing plane separation.

At certain points in q space the states
I q) and

I
—q)

are no longer distinct, and Eq. (10) is no longer appli-
cable. This happens at q= 0 and at q= s/b, the edge .of
the large zone. Here the shift in frequency (co,)'—(cess)'
is given simply by the diagonal element (q I

AC
I q). This

is proportional to S(0), which is the fractional number
of hexagonal stacking positions in the solid. Such be-
havior is shown by the TO2 mode at q=0 in the optic
branch as reported by Feldman e$ al. ,' and indicates
that a theory rather similar to that for the acoustic
branches is probably valid for the optic branches.
Nevertheless it is diKcult to see why the frequency of
the TO& modes (although not varying with 8, the direc-
tion of propagation) should not be polytype-dependent
in the same way.

At this point we may make some remarks concerning
the thermodynamic stability of silicon carbide poly-
types. There is a connection between E,„b—E&,„, the
difference in force constants for the TA branch, and the
difFerence in interplanar interactions qb

= C;—C„"
which has been used to study the stability and. occurence

"The notation here is that of Ref. 3.
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of rare-earth polytypes. ' If we assume that the interac-
tion between two planes varies smoothly as we make a
relative transverse displacement (e.g., A —A, —+ A —8),
qb is very simply related to the difFerence in force con-
stants by

(3a'/87r') (E„b—Eh,„), (13)

where a is the interatomic spacing in one of the close-
packed planes. We need, however, to exclude in Kq.
(13) any contribution to E;,b —Eq, from the small lat-
tice displacements from the ideal structure, and so far
we have not separated out this effect. Our result that
E, »Eh, probably indicates that at absolute zero the
3C polytype is the most thermodynamically stable of
the polytypes studied by Feldman et al. ' We may also
discuss qualitatively the contribution to the free energy
from the phonons. On the c axis away from the small
zone or superlattice zone boundaries Eq. (11) becomes

(&u,)'—(&u,e)' —(4/3f) (E',„b—Eh, ) (sin-', qb)'S(0) . (14)

Thus, for most of the modes on the c axis, the phonon
frequencies are lowest for the hexagonal polytypes. If
this remains true on the whole for the modes lying off
the c axis, then the vibrational contribution would tend
to stabilize the hexagonal polytypes at high tempera-
tures. We must emphasize here, however, that our
analysis indicates the interplanar interaction p in Ref.
3, as well as the interplanar force constants, to be de-
creasing very rapidly with increasing plane separation.
The interaction p is therefore probably of very short
range. Thus, no thermodynamic theory such as is pre-
sented in Ref. 3 can by itself explain the occurrence of
particular long-period polytypes which may have values
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of E up to 100 or so. To explain the origin of such struc-
tures we must turn to some theory based on other con-
siderations such as the Frank dislocation theory. ' '4

III. SHELL MODEL

In this section it is our aim to examine the reason for
the deviation from a straight line in the plot in Fig. 2,
and to generalize our model to take account of this dis-

crepancy. Perhaps the most serious approximation
made up until now is the assumption that our double-
plane units oscillate rigidly. On a more reined theory
there are two separate effects which could be introduced
here, the 6rst being the relative motion of the silicon
and carbon atoms, and the second the polarization of
the atoms themselves such as occurs in the shell-model
theory. ' By looking at the structure-independent part
of the phonon curves in Fig. 3 we may easily verify that
the second of these effects is much more important than
the erst. The negative slope of the line in Fig. 3 repre-
sents a fiattening of the TA branch towards the zone
boundary and is a manifestation of nonrigid atom or
shell-model effects. In contrast to this the relative mo-
tion of the carbon and silicon atoms would cause a posi-
tive slope in Fig. 3. We choose to generalize our model
still assuming that the Si and C atomic cores within one
double unit oscillate rigidly with displacement U, . How-
ever, we now have to consider in addition the motion of
the atomic shells, ' which will be displaced relative to
the atomic cores. We have for simplicity chosen to con-
sider only the average displacement V, of the shells
relative to the cores in one double unit j, thus ignoring
differences in the atomic properties of the silicon and
carbon atoms.

The magnitudes of the quantities V, indicate the
degree of deviation from rigid-ion behavior. It may be
observed from Fig. 3 that the Aattening of the bands
near the zone boundary in the TA branch is not very
large. Thus, the degree of deviation from rigid-ion be-
havior is not great and the V; are expected to be small.
This will be con6rmed below. Accordingly we shall make
an expansion of the harmonic lattice potential energy
C in ascending powers of the V; as follows:

2 Zi, ~j+i.i+~ I Ui Ui+~ I
+~i i+a

&&L«;-V;,.)*(U;-U„.)+'.]
+»-,.I v, l } (»)

The erst term, which contains E, ,,+, is the usual ex-
pression appearing in the rigid-ion approximation. The
only contribution to Eq. (15) from n= 0 arises from the
interaction of the shells with the cores within one double
unit; they are assumed to be coupled with a spring con-
stant k, which is large but independent of the stacking
sequence. The force constant E and J are expected to
be rather smaller than k, and as stated above V,. is ex-
expected to be small ((U;). Accordingly, we have

"F.C. Frank, Phil. Mag. 42, 1014 (1951).

neglected powers of (V;)' in the terms which arise from
the interactions between different double units. To ob-
tain the equation for normal modes we differentiate C

with respect to the independent variables U,', U which

represent the displacement of the cores and shells from

equilibrium and are given by

U'= U U*= U+V. (16)

This will give the forces acting on the cores and shells.
The shells, however, are assumed to have zero mass and
therefore

=0
aU,' p,- aV, U,.

(17)

In view of Eq. (17) the equation of motion for the cores
becomes

BC
3&v'U =

U.c U, e BU; y,
(18)

+(Vi' —Vi+n ) *&ii+n(Ui Ui+n)—
+(U~' Ui+')*~',i+—-(V~—Vi+-)

+kb. , o(V,')*V„:]. (19)

Let us now write corresponding to Eq. (2)

E;,; „=E(n)+DID;,, „, '

J, ,;,.= J(n)+Z J;,;, ,
with

E(n) =E(—n), J(n) =J(—n).

(20)

(21)

If only the translationally invariant parts E(n), J(n)
were included in the problem, the normal modes (suit-
ably normalized) would be given by

U = Dt
—' 'e' ' V = [V(q)/QZ]e'&~' (22)

When we come to the problem of symmetry breaking
we are going to be involved in taking matrix elements of
A+ between the states or normal modes given by Kq.
(22). We shall therefore determine the translationally
symmetric modes and frequencies by evaluating the
matrix element (qIWI q) and minimizing with respect to
V(q), rather than working from Eqs. (17) and (18).
Using Eq. (19), (21), and (22) the diagonal matrix ele-
ment becomes

(q I
m

I q) = g (2 sin r2qnb) '
n&0

X{&(»)gJ(n)LV(q)*+V(q)])+e~I V(q) I' (»)

Equations (17) and (18) can be written in terms of a
generalized dynamic matrix + acting on a general vec-
tor (U, ,V,). Matrix elements of N taken between any
two states (U *,V *) and (U;, V;) may be shown to be

equal to

(I+ I) =-: 2 L(U' U+-')*&—
, +-(U U+-)—
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Minimization of Eq. (23) with respect to V(q) is equiv-
alent to Eq. (17). As in Sec. II for the rigid-ion model,
terms with n) 1 in Eq. (23) will be neglected. As a result,
we obtain

V'(q) = —L2J(1)/k j(2 sin-,'qb)'. (24)

We see that V(q) is real, i.e., the shells in the double
plane jmove in phase with the cores. The significance of
the force constants Jnow becomes clear. They represent
interactions from neighboring atoms which act to polar-
ize the atom and displace the shells relative to the cores.
The shell-core interaction k on the same unit j acts to
limit this displacement. Substitution of Eq. (24) back
into Eq. (23) gives the translationally invariant phonon
frequencies

M(oi )'/(2 sin-', qb)'= K(1)—8I J(1))'k '(sinsqb)' (25)

The form of Eq. (25) is just that indicated in Fig. 3. If
we assume that J(1) is roughly equal to E(1) then we

may conclude from Fig. 3 that the maximum value of

V(q), which occurs at the zone boundary, is roughly xt.

We now turn to the problem of symmetry breaking.
We shall make the same assumptions concerning the j
dependence of the force constants as before, but shall
also assume that the degree of breaking in E and J is
proportional to E(1) and J(1), respectively; i.e., we
shall write

AK(; (+, hK(~, g; Sie——K(1), ——
(26)

6J( *„(+; 6J i~,*,g;==S,eJ(——1),
where e is some small constant. In an analysis similar to
the development of Eqs. (5)—(8), the matrix elements of
cL4 are calculated using Eqs. (26), (22), and (19) as

(q'I ael q)=4e(sin-', q'b)(sin-', qb)S(q —q')

&& {K(1)+J(1)LV(q')'+ V(q) j) (27)

Finally, using Eqs. (24) and (10) the doublet frequencies
are given by

(,)'= (~.')'+ (»nlqb)'g(q)LS(o)~ IS(2q) ll, (2g)

where the factor g(q) is given by

4tMg(q) = E(1)—16LJ(1)1'k '(sin-,'qb)'. (29)

Using Eq. (25) we may easily deduce empirical values of

g(q) from Fig. 3. In Fig. 4 we have plotted the doublet
splittings in the TA branch A(&u')/S(2q) against g(q)
&& (sin-,'qb)'. Much better agreement with the theory is
obtained than in Sec. II.

IV. INFRARED-STRENGTHS

Our theory, based on the breaking of translation sym-
metry, may also be used to estimate the strengths of the
weak ir modes found by Spitzer et aft. and Ellis and
Moss, " which have been identified by Lyle Patrick.
To do this our theory must be generalized to take ac-
count of the relative silicon carbon motion within one
double unit j, since we shall be concerned with both the

a 4H

to b 6H
c l5R

FIG. 4. Experimental split-
tings 6(aP) divided by {S(2{t){
plotted against g(g) (sin-,'qb)'.
Both axes are in units of 10'
cm '.
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'' Our estimate of 1/400 seems to be in disagreement with the
value of about 1/40 given in Ref. 9.

optic and acoustic modes here. Though we have no
quantitative theory for the optic modes as yet, a formal
generalization may be made in the same way as we took
account of the relative core shell motion in Sec. III.
If translation symmetry held the normal modes would
be given by

fI .c—p csiq js p si —f'I sxssqj b (30)

where U;~, U;s' are the displacements from equilib-
rium of the carbon and silicon consituents of the jth
double plane. The index X in Eq. (30) refers to the optic
or acoustic branch. Of these modes only those belong-
ing to the optic branches at q= 0 will have nonzero di-
pole moments and thes are the strong modes which we
denote by Is). When translation symmetry is broken
these strong modes can mix in small amounts into
others having nonzero values of q=2~m/rb, which we
denote by I q). The result is a weak mode which has a
dipole moment D„given by

D-/D. = L(~,')' —(~ ')'3 '(sl &O'I q) (31)

where D, is the dipole moment of the strong mode and
(sl eh+

I q) is a matrix element of ILL in a similar sense
to Eq. (19).The ir strengths should be in the ratio of
the squares of the dipole moments. Although (s I

eke
I q)

cannot yet be calculated in detail these matrix elements
might be expected to be of the order of magnitude of
the doublet splittings. From the data of Spitzer and
Kleinman' we have estimated the strength of the LO
mode at x= —', in 6II to be 1/400th of the strong mode. "
Using the data of Ellis and Moss" we have estimated a
strength ratio of about 1/4000 for the LA modes in 6II
and 158. From these values and Eq. (21) (sl eke

I q) is
calculated to be 10 000 cm ' and 7500 cm ' for the weak
LO and LA modes, respectively. This agrees satisfac-
torily with the order of magnitude of doublet splittings
observed.


