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yo in Eq. (6) and has been drawn in Fig. 2 for com-
parison with actual data.

For the (400) reflection, four measurements of
(f+6f')'+(Af")s were made with the thinnest crystal
and two with the crystal of intermediate thickness
(44tz). These results are averaged to give the value
listed in Table II. The measured atomic scattering
factor listed for the (511) and the (333) reflections
result from an averaging of ten measurements each on
the thin crystal.

It is interesting to note the similiarity between the
measured form factors of nickel and aluminum. ' For
both fcc metals, the form factor for the erst two reQec-
tions are lower than theory with the scattering factor
of the (200) reflection having the largest discrepancy.
In both cases, the scattering factor of the (511) and
(333) reflections indicate that the core charge distribu-

tion is spherically symmetric. Combining this with the
observation that the (400) form factor of nickel is also
low, leads one to suspect the possibility that the outer
electrons are spread out along directions that have the
smallest atomic density. It would therefore be interest-
ing to perform measurements of atomic scattering
factors in metals with different crystal symmetry and
to compare the results with theoretical data obtained
from accurate band calculations.
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Helicon-Acoustic Dispersion Relations in Metals: Effective-Mass
and Relaxation-Time Dependence*t
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The electromagnetic, constitutive, and lattice equations governing propagation of transverse acoustic
and electromagnetic waves in a metal with conduction electrons possessing a constant scalar effective mass,
and in which there is a uniform magnetic field applied along the propagation direction, are given. These
equations are used to derive a secular equation describing the dispersion of interacting helicon and acoustic
waves, and in which additional structure arising from the difference between the free-electron mass and the
effective electron mass is evident. Magnetoacoustic attenuation, the dispersion and damping of uncoupled
helicon waves, and the helicon-acoustic interaction are then analyzed in turn. Numerical solutions of the
helicon dispersion relation are presented. The dispersion curve displays a branching in the absorption-
edge region. A simple analytic treatment of the relaxation-time and effective-mass dependence of the
helicon. -acoustic interaction is given. The interaction near and in the absorption-edge region is investigated
numerically. A rather large effect of this interaction on the magnetoacoustic absorption of potassium in
the edge region is found.

I. INTRODUCTION

N recent years, the interaction of acoustic waves in
. . metals and semiconductors with the particular
magnetoplasma modes known as helicons has been
of interest. Interaction between transverse ultrasound
and helicons has been observed in potassium by Grimes
and Buchsbaum' and Libchaber and Grimes. ' Shilz' has

*Work supported by Grant No. AF-AFOSR 62—258 and Con-
tract No. AF 49-(638)-1372 from the U. S. Air Force OfBce of
Scientific Research.

t Based on a dissertation submitted to the Polytechnic Institute
of Brooklyn, in partial fullllment of the requirements for the
degree of Doctor of Philosophy (Physics), 1968.

$ Present address: Bell Telephone Laboratories, Murray Hill,
N. J.' C. C. Grimes and S. J. Buchsbaum, Phys. Rev. Letters 12,
357 (1964).

2 A. Libchaber and C. C. Grimes, Phys. Rev. 178, 1145 (1969).' W. Shilz, Phys. Rev. Letters 20, 104 (1968).

studied the interaction of helicons with both longi-
tudinal and transverse ultrasound in lead telluride.
Noteworthy theoretical treatments based on the free-
electron model have been given by I.angenberg and Bok4
and Quinn and Rodriquez. ' '

The motivating interest behind the present investi-
gation was to arrive at a convincing description of the
role of band-structure effects in the magnetoacoustic
interaction in metals. A general theory of the dynamics
and transport properties of localized Bloch electrons
subjected to perturbations with a wavelike character has

4 D. N. Langenberg and J. Bok, Phys. Rev. Letters 11, 549
(1963).

5 J. J. Quinn and S. Rodriguez, Phys. Rev. Letters 11, 552
(1963}.' J. J. Quinn and S. Rodriguez, Phys. Rev. 133, A1589 (1964).
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been developed to this end. ~ The details will be presented
in two forthcoming papers. Certain of the results,
specific to acoustic attenuation and the helicon-acoustic
interaction are given here.

In this paper, we depart from the free-electron model,
explicitly taking into account the electronic effective
mass. The role of collisions is handled in the customary
way through the assumption of a relaxation time.
Starting from the macroscopic equations of motion of
the electromagnetic fields, electronic system, and lattice,
we develop, in Sec. II, the basic secular equation which
describes the propagation and attenuation character-
istics of an interacting helicon and transverse acoustic
wave. In Sec. III we utilize this equation to derive the
effective-mass dependence of the attenuation of trans-
verse ultrasound under a variety of conditions. In Sec.
IU we examine the independent helicon mode and
confirm that the onset of temporal damping occurs at
the expected onset for DSCR (Doppler-shifted cyclotron
resonance), ' ' while the absorption edge for spatial
damping" occurs at a field approximately 2% (0.0195)
higher. It is shown explicitly that this point separates
the normal (spatially damped) helicon branch from
another "backward-wave branch. "The helicon-acoustic
interaction is treated analytically for higher magnetic
fields in Sec. V, with particular attention paid to the
effective-mass dependence of the propagation and
attenuation characteristics of the eigenmodes in the
"crossover region. "With relatively low magnetic fields,
crossover can occur in the vicinity of the absorption
edge of the helicon and acoustic waves. In Sec. VI
numerical techniques are employed to study this regime.
Calculated dispersion and absorption curves are pre-
sented for interaction between the helicon and fast
transverse wave in potassium. A rather large effect of
this interaction on the magnetoacoustic absorption in

the edge region is demonstrated.

II. MACROSCOPIC EQUATIONS

The convenient starting point in a treatment of the
helicon-acoustic interaction is the macroscopic equations
of motion of the electromagnetic field, electron system,
and lattice. We shall confine our attention to the case
of a monovalent metal with cubic symmetry in which
there is a transverse wave with acoustic and/or electro-
magnetic components propagating along a fourfold
axis. We shall further suppose that there is a uniform
magnetic field applied parallel to the same axis. Assum-

ing, then, a space-time dependence e'«' "'& for the

' G. Persky, Ph.D. Dissertation, Polytechnic institute of
Brooklyn, 1968 (unpublished).

8 T. Kjeldaas, Jr., Phys. Rev. 113, 1473 (1959).' E. A. Stern, Phys. Rev. Letters 10, 91 (1963); M. T. Taylor,
J. R. Merrill, and R. Bowers, iNd 6, 159 (1963). ."T.Kjeldaas, Jr. , Bull. Ain. Phys. Soc. 8, 428 (1963); 8, 446
{1963);also unpublished reports.

wave, Maxwell's curl equations can be written

iq&&E= i(o~/c)B,

iq &&B= —i(rp/c) E+ (4rr/c) j,.
(1)

(2)

Here E is the electric field vector, B the magnetic field,
and j, the net current (electronic+ionic). We have
taken the permeability to be that of free space, which is
permissible for nonferromagnetic metals. Elimination
of B between (1) and (2) yields

(q' —oP/c') E= (4s i/c') j, (3)

It is evident from (3) that the displacement current
can be neglected if the phase velocity of the waves of
interest is very much smaller than c. This is always
true for acoustic waves, and must also be the case for
helicon waves in any regime in which helicon-acoustic
interaction is possible. Consequently, we shall delete the
displacement-current term when employing (3).

The remaining macroscopic equations are those of the
lattice and electronic system. Both require prior solu-
tion of the Boltzmann equation for the electron distri-
bution function. The current integral of the distribution
function provides the constitutive equation relating the
electron current to the fields and ion current. The time
rate of change of the momentum density yields the
macroscopic electron-lattice forces, which together with
the macroscopic fields gives rise to perturbation terms
of the equation of motion of the lattice. We have found'
that for the parabolic band model the lattice and
constitutive equations, respectively, take the form

1m
q2 c,o2+——(P—~—1)s2 —~2 1+—(1—P) j+

5M 3f

eBO ee'

pig's++

(1—P)j+g+i PE+
3Ec 3I

j+=o.pG+E+ —{(1—P+y)

i (j—++—J—+) =0, '(4)
HEI r

where, for propagating in the s direction, J+=J,&iJ„,
etc. ; the longitudinal magnetic field leads to circularly
polarized waves. In these equations j is the electric
current due to electrons, J that due to the positively
charged ions, m and m* the electronic free and effective
mass, respectively, 3E the ion mass, n the number of
electrons (or ions) per unit volume, e the Fermi velocity,
v- the relaxation time at the Fermi surface, 80 the s
component of the applied magnetic field, c,o the "bare
lattice" sound velocity (which is due to the microscopic
Coulomb and non-Coulomb interionic forces), and
o a=ne'r/rn* the dc conductivity. The symbol e stands
for the actual electronic charge and is, therefore, a
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negative number. Thus, the cyclotron frequency
a&,*=eBv/m, *cis negative for 8 in the +s direction. G+ is
a wave vector and frequency-dependent conductivity
function given by' '

3 — 1 z(+.tv, * (o—)
'-

1+ +-
4iqvr qvr gv

+co,* vv jq—v z/r — /-a(u, *—tv z
gin — +2~ — ——— . (6)

&cog —(d —gv z/r — 4 gv g'vr

The parameters P and y constitute the generalization of
the free-electron-model equations to a model with a
parabolic band, and embody the additional structure.
P=zrz/m* is the ratio of the electronic free to effective
mass, while y originates in a velocity-dependent de-
formation potential and is sensitive to the manner in
which the self-consistent microscopic potential of the
electron-ion assembly is altered by the lattice strain. '
(There is no scalar deformation potential associated
with shear waves in a cubic Bravais lattice, but com-
ponents of the electron energy involving both the strain
tensor and even powers of the electron energy involving
both the strain tensor and even powers of the electron
wave vector are not ruled out by symmetry. y is associ-
ated with the component of second order in the electron
wave vector. ) Recovery of the free-electron-model
equations from (4) and (5) is accomplished by setting
m*=zw, P= 1, and y=O.

The contributions in the second line of (4) are re-
sponsible for the acoustic attenuation and coupling to
the helicon wave, as well as for changes in the sound
velocity. The dominant term is that containing the
electric field, and here it should be observed that the
net field force on the ions is altered by the factor P.
This modification occurs as a consequence of the back
reaction on the lattice of the field force on the electrons.
A similar effect is observed in the term involving the
applied magnetic field in that the electron current is
present with a factor (1—P). If the electron current were
to balance the ion current, the net result would appear
simply as a multiplication by P of the Lorentz force on
the ions. The last contribution to (4) is due to the "colli-
sion drag force"" on the ions, which is the negative of
the collision-induced time rate of change of the electronic
momentum density. It does not involve the effective
mass.

Examination of the terms within the curly brackets
in (4) discloses that P and y produce a renorrnalization
of the bare lattice sound velocity. This is a consequence
of the back reaction on the lattice of the electron acceler-
ation components directly owing to the motion of the
lattice itself. During passage through a lattice support-
ing a strain wave, an electron at the Fermi surface
suffers perturbations in its motion as a result of the

"T.Holstein, Phys. Rev. 113,479 (1959).

acceleration of the lattice, the inhomogeneities in the
strain field, and the combination of the two. The last
mentioned makes a vanishing contribution to the force
density when averaged over the Fermi surface. The
first mentioned may be identified with the "induced
velocity" discussed by Holstein, "and is always experi-
enced by a Bloch electron when the host lattice is in
nonuniform motion. It gives rise to the renormalization
coefficient multiplying co', which is exceedingly small
and may be neglected. The strain inhomogeneities
result in an electron acceleration proportional to
(q v)', and with a magnitude that is also dependent on
the deformation parameter y, as well as the effective
mass. Consequently, y appears in the associated re-
normalization coefficient. The factor —,

' is a result of
averaging over the Fermi surface. It is not difficult to
see that this renormalization could, in principle, be
appreciable. We have made numerical estimates' of

y for the alkali metals and have found it to be sufficiently
small to justify setting y= 0 in (4) and (5) unless one
specifically wants to study its effects. Upon performing
this step and absorbing (p —1)mv'/5M into a renormal-
ized sound velocity c,=fc,s'+(p —1)zzzv'/5M]'", (4)
and (5) become

+c
~')~'+~ ~ LJ'+(1—P)j'7

me'
PZ+ —z—(P+J+) =0, (7)

m 7

j+=~vG+&+ {(1 P)+—LP~—z~.* (1 P)3G+)~—+ (g)

where p= zrz/3f. —
Inspection of the constitutive equation in its simpli-

fied form (8) now discloses the following properties:
(a) the functional dependence of the electron current on
the electric Geld is of the same form as for the free-
electron model, (b) there is an "induced velocity"
contribution (1—P)J, (c) the collision drag term appears
with a coefficient P; in combination with the induced
velocity term this yields a value of j= —J for E= r= 0,
and (d) there is a cyclotron-frequency-dependent con-
tribution that has no counterpart in the free-electron
model. In part, it arises from the perturbations of elec-
tronic motion already discussed in connection with (4),
but also includes components attributable to variations
in the Lorentz force acceleration resulting from strain-
induced changes in the effective mass. 7

Equations (3), (7), and (8) constitute the required
set of homogeneous simultaneous equations for the three
unknowns j, J, and E Lj,= j+J in (3)). Setting the
determinant of their coefficients to zero will yield a
secular equation from which the dispersion relations of
the eigenmodes can be obtained. However, the form of
this equation is not particularly transparent. It would
be preferable to have a secular equation in which the
coupling of the helicon and acoustic waves is manifest.
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The latter can easily be obtained through (a) replace-
ment of j by the net current j&, as an independent
variable in (7) and (8), and (b) elimination of the con-
stitutive equation. The reasoning is as follows. For a
pure helicon mode there is no ion current. On the other
hand, for transverse acoustic waves in metals at fre-
quencies up to the kilomegacycle range there is quasi-
balance of currents, "which means that the self-consis-
tent electric field produced is just that necessary to make
the electron current equal and opposite to the ion
current. Hence, the acoustic-dispersion relation in the
quasi —current-balance regime may be extracted from
the constitutive and lattice equations with the net
current set equal to zero; the electromagnetic equation
does not play a role. Therefore, the procedure described
above must lead to a secular equation composed of the
product of the independent helicon and acoustic disper-
sion relations and an additive interaction term. Follow-
ing this program, we set j=j,—J in (7) and (8), which

yields

(q —cd WpMcoc )J+

that will provide the basis for the analysis in the re-
mainder of this paper. The first line is the product of the
dispersion relations of the pure helicon wave (for the
proper case of G) and the acoustic wave in the regime of
quasibalance of currents. The second line represents the
helicon-acoustic coupling. The amount of additional
structure present in (13), particularly in the coupling
term, because of the effective mass is made most evi-
dent by comparison with its counterpart for the free-
electron model. The latter is obtained from (13) simply
by setting m*=m, and is seen to be

cu cu,cu ipai 1
q' i ——

~

~rG+ q' ——Wp—+- 1—
c ) cg cg cg r G2 2 2

ip(v (1—G+)'+- q' =0. (14)
C,2r G+

We shall show that the greater complexity of (13) has
only minor consequences for the helicon-acoustic inter-
action, although the (absolute) acoustic attenuation is
highly effective-mass-dependent.

+p ~ (1 —P) i —jc+—+i-P&'=0, (9)

j += oG+~++(p LP~ .*—(1 p) jG+)J—+ (10)

We now use the constitutive equation (10) to eliminate
the electric field in (3) and (9). This results in the pair
of equations

Cq' iP(~./c)'~rG'—7i c'

—LP(1 —G+) Wicd, *r(1—P)6+jq'J+ =0, (11)

cd md, * cpu l 1
q' ~p P+-

c c c r k G

~(
+—(o.*(u 1—

~

—i—
~

1—
~
j,+=0, (12)

P) .& G+)

where ~„'=one'/rn and the first and second of which,
respectively, contain the helicon and acoustic dispersion
relations. Sy equating to zero the determinant of the
coeKcients of (11) and (12), we obtain the secular
equation

cvcu ipse 1 )q'= +p P— —P1——
c,~ c,~ c,'r G~)

'

Clearly, the last two terms on the right-hand side
of (15) must be responsible for any attenuation and
dispersion that may be present. Since both these terms
contain the electron-to-ion-mass ratio p, it is reasonable
to expect the departures from the zero-order wave
vector to be small. Thus, if we let q=qo+6q, where

qo
——&v/c, is the zero-order wave vector, then 8q((qo and

to first order (15) becomes

~q'= (pP/2c )L~~ *—(i/ )(1—1lG')] (16)

In (16), qo may be used as the wave-vector argument of
G+. The amplitude attenuation n is given by the imagin-
ary part of (16), while the variation in phase velocity,
bc„, is related to the real part

n+= (pP/2c, r) Re(1/G+ —1), (17)

III. ACOUSTIC DISPERSION RELATIONS

The dispersion relation for the pure acoustic mode
under the condition of quasibalance of currents is re-
covered from (13) by equating to zero the second factor
in the first line, i.e.,

lcd& cd coed~ zp(d I
q' —i.pl

—cvrG+ q' —Wp—p+——p 1—
kc Cg Cg Cg 7 G2 2 2

Sc„+=—(pPc,/2~) L+~,*—Im(1/rG+) j. (1S)

+(p/. ')LP(1-G )~ .* (1—P)G'3

1 (df 1
cu, *co 1— i

~

1— =0, (13)—
p .k G+

These equations differ from their free-electron-model
counterparts by the presence of the factor P and the
implicit dependence of G~ on m*. For the field-free
case, (17) agrees with Blount's expression" for the
quasi —current-balance transverse attenuation if one
takes his constant

~
2

~

' as equal to unity.

"A. B. Pippard, Phil. Mag. 2, 1147 (1957). "E.I. Blount, Phys. Rev. 114, 418 (1959).
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The most outstanding feature of the transverse
attenuation, when there is a longitudinal magnetic
Geld, is the existence of an absorption edge resulting
from DSCR.' The position of this edge and the shape
of the attenuation curve is not dependent on the effec-
tive mass (for a spherical band). Our present concern
is, therefore, only with the absolute magnetoacoustic
attenuation, which is effective-mass-dependent. We
Grst consider the collisionless limit r ~~. Then, upon
neglecting co in comparison with cv, * and pe, the con-
ductivity function (6) reduces to

3m* ('&Fp+1)
(1—F,') ln~ — ~a2Fp, (19)

4iqprkkp (&Fp
—1/

where

Fp —=co,*/qpv= eBp/hckeq p,

and ke(= m*v/k) is the wave vector at the FerIni sur-

face. Since k~, and hence Fo, is independent of n* the
only effective-mass dependence in (19) is that which is
explicit in the numerator. Substitution of (19) into (17)
and (18) yields

2 pP'qpkkv

3 mc,

+I'o+1
&&1m (1—Fp') ln — — %2Fp, (21)

&Fo

IV. HELICON DISPERSION RELATIONS

When the constraint J=0 is applied to the ion-elec-
tron assembly, the remaining dispersion relations (for
q~~e) are given by the first factor in the ffrst line of (13).
These correspond to + and —circularly polarized
magnetoplasma modes, one of which, termed the helicon
wave, " can propagate in the bulk. The other has an
essentially imaginary wave vector and cannot transport
energy. If Bp is oriented in the —e direction, so that pp,

~

is positive for electrons, the + mode is the propagating
helicon and has the dispersion relation

qP iP(co„—/c)'corG+= 0. (25)

In general, (25) is a transcendental equation, but limit-
ing cases can be treated algebraically.

A. High-Field Limit: (qv/ pp, *)~ p; pp, *~ && 1

In this regime, G+ is well approximated by

G+= (1+i(u,*r) ', (26)

We have also derived expressions for the field-free
attenuation and velocity variation without the current
balance assumption. As frequencies and wavelengths
for which the underlying semiclassical dynamics may
still be considered valid, the results do not depart
signiGcantly from those presented here. When a longi-
tudinal magnetic field is present, the lack of current
balance at reasonable frequencies is closely related to the
helicon-acoustic interaction, and is best examined in
that context.

2 /~ Fp+1)
—Re (1—Fp ) ln~ — ~&2Fp +pFp . (22) andresultsinthewell-knownhelicon dispersionrelation'
3 kaF, —1f

q'=0( / .*)( ./ )'(1+ / .* ), (27)
Therefore, both the absolute magnetoacoustic attenu-
ation (which is present only for Fp(1, i.e., inside the
edge) and sound velocity variation are inversely pro-
portional to the square of the effective mass; this
relationship remains valid when the 6eld is reduced to
zero.

The zero-Geld limit of the attenuation has a different
effective-mass dependence when the relaxation time is

very smalL For Bp=0 and qpvr«1, Eq. (6) can be
expanded as

G=1—'(qo )'+(3/35)(qo )'+"
4nnepp) '".
B,c )

m~ v-na)c)'"
2CJ~ r =

eB,') (29)

for a local conductivity. Equation (27) can be re-
expressed as

q'= (4v-ne/Bpc)(o(1+i/(u, *r), (28)

showing explicitly that the dispersion is independent of
the effective mass (or the free mass), which, however,
does enter into the attenuation

B. Collisionless Limit with Moderately High Field:
pp, *~~~; (qv/pp, *)((l

where we have dropped the superscripts on G, as they
are not relevant to the zero-Geld case. The leading term
in the resultant attenuation expression is

pP puP rk'ke '
n= (qpvr)'= — — P',

$0c,g 10c,'m'

Here we neglect the dissipation, but take into account
the nonlocality of the conductivity that becomes

(24) manifest when qv/&o, is not entirely negligible. Expan-

which displays an inverse cubic dependence on the ef-

fective mass. In this regime, the variation with fre-

quency of tbe ennead velocity is negligible.

I4 P. Aigrain, in Proceedings of the International Conference on
Semiconductor Physics, I'rague, D'60 (Academic Press Inc. , New
Qork, 1961), p. 224; R. Bowers, C. Legendy, and F. Rose, Phys.
Rev. Letters 7, 339 (j.961).
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sion of (19) in inverse powers of I'e yields

G+= (i(o,*r)—'(1+ I/51'os+ )

leading to the dispersion relation

(30)

20 ~ IO

l6

I' = l.02

Bpc 1 Ackrq) '
q' 1+- I+

4~ca 5 eB, )
(31)

Therefore, when the electrons can significantly change
their phase front position during a cyclotron period, the
relation of cu to q falls below the quadratic dependence
of the high-field limit.

In order to treat the more interesting regime of high
spatial dispersion in the vicinity of the absorption
edge, "as well as arbitrary relaxation time, it is neces-
sary to resort to numerical solutions of (25); at the
absorption edge, 6+ has a singularity which makes it
difficult to find useful series expansions in that region.
Utilizing the full conductivity expression (6), we have
calculated the helicon dispersion and absorption for
potassium. The Fermi wave vector was taken as 7.47
)(10 cm ' and co„' as 0.451+10 sec 2, appropriate to
a lattice constant of 5.2 A. Figure 1(a) shows the dis-

persion curve ~ versus q,
—=Re(q) computed for an

infinite relaxation time and a Geld strength of 57.9 kG.
The most signiGcant feature of this curve is that it
branches in the absorption-edge region. The branch
point, which occurs at I'=—(~,*—co/q, v)=1.02, is the
absorption edge for sPatial damping of the left branch. "
This has been observed experimentally. ' on the other
hand, the precise location of the DSCR edge is at I'= 1.
It has been shown' "that the onset of terlporal damping
of the right-hand branch coincides with this edge. That
the dispersion curve actually branches appears to have
been generally overlooked, although the occurrence of
an anomaly in the surface impedance associated with the
point I'=1.02 has been known for some time. ""This
has been attributed to the zero-group velocity of the
helicon at, that point. ' The absorption edge at F=1.02
is understood by noting that
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Fxo. I. Computed helicon dispersion and attenuation in potas-
sium for a magnetic field of 57.9 kG. (a) Over-all dispersion
curve in the collisionless limit; (b), (c) details of dispersion and
normalized attenuation 8 n/q„ in =the absorption-edge region
solid curves: collisionless limit, dashed curves: v = i0 ' sec.

The spatially damped wave includes, therefore, q values

in the range q=q„—n to q=q„+n. At I'=1, n/q„
=4)&10 '

I
see Fig. 1(c)j and rapidly drops as I' ex-

ceeds unity, yielding an absorption edge at 1.02.
Alternatively, one may calculate the energy gained by
an electron whose transverse velocity component is

initially parallel to the electric Geld as

s- * cos
I

——q, Iz ds
kv,

'5A. W. Qverhauser and S. Rodriguez, Phys. Rev. 141,43I
(1966)."J.C. McGroddy, J.L. Stanford, and E. A. Stern, Phys. Rev.
141, 43'f (1966).

where 6=n/q, . Thus, at I'=1 absorption takes place
by electrons having v) v,)v(1 —8).
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A magnified view of the dispersion in the edge region
and a normalized attenuation plot are given respec-
tively in Figs. 1(b) and 1(c). Clearly, the absorption
has reached an appreciable value at F= 1. The dashed
curves in these figures show the results of computations
made with r= 10 ' (for which &o,"r= 1180, assuming
P=1.16)." Collisions blur the edge and disconnect the
branches. The negative attenuation coefficient of the
right-hand branch, as well as the negative slope of its
dispersion curve in the small damping region, suggests
a backward wave. The exact physical interpretation of
this backward-wave branch is not completely clear. It
may be difficult to detect because of the narrow fre-
quency range over which damping is not overwhelming.

V. HELICON-ACOUSTIC INTERACTION:
ANALYTIC TREATMENT

Helicon and acoustic waves interact via the electron
currents that accompany each of these wave types.
As a consequence of this interaction, a set of two new
eigenmodes, neither of which can be identified as purely
helicon nor acoustic, replace the latter as the indepen-
dent propagating waves of the system. The dispersion
relations of these eigenmodes are given by the solutions
of the complete secular equation (13). As discussed in
Sec. IV, with cu,*)0, the propagating helicon is the +
mode. Equation (13) indicates that it is coupled only
to the + polarized acoustic wave. For convenience, we
rewrite this equation in the form

v'= Q"I:1+0''/(Qa' —Q,')),
v'= Qn'I:1+Q''/(Q~' —Qa') j.

(34a)

(34b)

solutions of (32) that, while only approximate, serve to
elucidate the dependence of the helicon-acoustic inter-
action on the relaxation time and effective mass.

Solving (32a) as a quadratic in q yields

v'= k(Q~'+Q. '+Q")
~-:L(Q"-Q')'+Q,"(2Q"+2Q.'+Q")j . (33)

Because the Q's themselves are q-dependent, (33) only
provides a general dispersion relation for each eigenmode
rather than completely delned solutions for q. However,
it is still possible to obtain a good amount of information
from this equation without actually determining these
dispersion relations. Let us, 6rst, de6ne the crossover
frequency co and crossover wave vector q, . These
quantities are taken to be the frequency and wave
vector at which the helicon and acoustic dispersion
relations would (possibly) intersect if the coupling
term Q,z were zero; i.e., with Q;s = 0 and &o= ao the solu-
tions of (33) satisfy the relation Re(q)=q, =Re(Q&)
=Re(Q„). It is also worthwhile to review brie6y the
behavior of (33) with finite coupling for the lossless
case in which Qi„', Q„', and Q,' are positive real. SuK-
ciently far from the crossover frequency IQ&' —Q„'I
))Q,z, permitting the solutions of (33) to be represented
by

(C' —Q")(V' —Q ') —
Q V=0

where

Qg'(q, ai) =zP(ei„/c)'eirG+,

co Per, *o) pPe~ 1 )
Q'(c,~) = +p-

c.s c,s c sz G+)

(32a)

(32b)

(32c)
g =gx~ s Q~ ) (35)

Equations (34a) and (34b) display the tendency of the
eigenmode wave vectors to be increasingly pushed
apart by the interaction as co is approached. The main
feature of the interaction at co=co, is retained if one
assumes that Q;((g and evaluates the right-hand side
of (33) for q= q, . This approximation reduces (33) to

pre ( 1) i( 1
Q"R,~)=—,~.*l 1—

I

—
I

1—,
c,' 4 P) z E G+

XDi(1 G+)+iei,*z—.(1 P)G+j (3—2d).
The quantities Qa' and Q„' are, respectively, the squares
of the wave vectors of the uncoupled helicon and
acoustic waves. The coupling is represented by QP.

Although (32) is transcendental in q except in the
high-field limit, the relatively weak frequency depen-
dence of the conductivity function permits it to be
regarded as a cubic equation in ~. Quinn and Rodriguez'
found solutions of this cubic for the free-electron
counterpart of (32). Their approach permitted study of
temporal damping inside the DSCR edge, but is in-
convenient for the treatment of spatial damping. In
this section, we shall be content with wave-vector

'7 This e6'ective-mass ratio is based on the calculation of J.
Callaway, Phys. Rev. 119, 1012 (1960).

and shows that the degeneracy of the eigenmodes at the
crossover is broken in first order in Q;. The mode
splitting hq, which is defined as the difference between
the eigenmode wave vectors at the crossover, is itself
seen to be approximately equal to Q;. In the crossover
region neither mode is predominantly acoustic nor
heliconlike in character. We shall use the term "Pmode"
to refer to the eigenmode which starts out phononlike
at low frequencies and becomes heliconlike above the
crossover frequency. The mode which is heliconlike at
low frequencies will be called the H mode. Typical P-
and H-mode dispersion curves are sketched in I'ig. 2.
The behavior of the mode splitting and the attenuation
of the eigenmodes for several regimes of interest are
treated below.

A. High-Field Limit: (qv/es, *)~ 0, es,*~))1

This is the local conductivity regime considered in
Sec. IV A. Equation (26) for G+ may be used in (32b)
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FzG. 2. Typical eigenmode dispersion resulting from the
helicon-acoustic interaction. The dashed curves represent the un-
coupled helicon and acoustic modes.

and (32d), yielding

where Q„=(4~ne'/3')'i' is the ion-plasma frequency.
Hence, in this regime the splitting is independent of both
the magnetic field and sound velocity, while the relative
mode splitting hg/q, increases with decreasing crossover
frequency and wave vector. The approximation
Ay=Re(Q;), therefore, becomes inaccurate when the
magnetic field is so high that q, is no longer larger than
Re(q;). For potassium, with a fast sound-wave velocity
of 1.69)&10' cm/sec, a magnetic field strength of 100
kG leads to ~,=815)&10' q =4.82)&10' cm ' and
Ay=0. 84&10' cm '. The relative mode splitting is,
thus, about 17%. At the crossover I'p=4. 25, showing
that the conductivity, which was assumed to be local,
is actually moderately nonlocal.

To 6nd the attenuation of the eigenmodes at the
crossover frequency for the case q ))Re(Q;), 1/co, *r
«Re(Q, )/q„ it is sufficient to approximate (33) by

q' =q.' (1—1/2ico, *r)
+—', Re(Q )ag Re(Q;)(1—3/4ip~, *r). (43)

One then obtains
pipp, *( 1 eBp ( 1

Q,'=~
Pc.'k ~' .* Mcc.' 4 i „* ) (37) nH= —L1+-,p Re(Q, )/I7.j.

4(dq
(44)

G+= 1/L1+ i(pp,
*—(u) r]

in (32c). That equation then becomes

Q '=uP/c P+.pPuP/c P=uP/c

(38)

(39)

where in the second form of writing, we have dropped
only an insignificant constant renormalization of the
sound velocity. Inspection of (36), (37), and (39) dis-
closes that these quantities do not involve the free-
electron mass, while the effective mass enters only
through the dissipative factor 1/ipse, *r To the exten. t
that it is not affected by collisions, we can, thus, expect
the mode splitting to be independent of the mass. The
attenuation of the eigenmodes will necessarily be pro-
portional to m*. Speculations that have been made4
with respect to the possible presence of a factor
(1—m/m*) appear to be unfounded.

To determine the crossover frequency, one equates
(39) to the real part of (37). This yields

(o =4rrnecg /Bpc. (4o)

It follows that the crossover wave vector q is given by

(41)g =4mnec, /Bpc.

In order to avoid introduction of a spurious imaginary
term into Q„', it is necessary to employ the more ac-
curate local conductivity function

Division of o.H and o,p by qH and qp, respectively, yields
the normalized eigenmode attenuations

bn ——(4~,*r) 't 1m Re(Q;)/q. ]. (45)

1 Re(Q,')
1—1/2uu, *r+— —(1—1/uu, *r)

2 g~

Equations (44) and (45) indicate that the attenuation
of each eigenmode is close to half that of the uncoupled
helicon, as given by (29); i.e. , at the crossover frequency,
the dissipation of the pure helicon is shared almost
equally between the two. The lack of complete equality,
which is proportional to the mode splitting, is due to
the collision-dependent part of the coupling term. It can
be shown~ to arise, primarily, as a consequence of the
collision drag force, which as a coherent collision-
dependent force, is not necessarily dissipative in its
total effect. It is, therefore, capable, of decreasing the
attention of one eigenmode, while it increases that of the
other.

Sufficiently strong damping can also reduce the mode
splitting. The e8ect of the coupling is diminished because
the complex wave vector of the damped helicon cannot
match the real wave vector of the dissipationless sound
wave. At the crossover, (33) may be put into the form

We may approximate the mode splitting by Re(Q;),
using the crossover frequency given by (40) in (37).
The result can be written in the form

1 Re(QP)—(1—

1/ipse,

*r)$4q '+Re(Q,')
2

—1/2

Dg =Q~/c, (42)
—(2q '+Re(QP))/ip~, *r)—1(pi,*r)' (46)
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We previously made the assumption 1/ar. 7(&Re(Q,)/q
and were thus able to neglect the subtractive last term
in the square root in (46). It is clear, however, that as
1/&u, *r approaches 2 Re(Q;)/q, in magnitude, the real
part of the square root must decrease rapidly, causing
a similarly rapid drop in the mode splitting. On the
other hand, the imaginary part of the square root
increases, resulting in an enhancement of the attenu-
ation of one eigenmode and a diminution in that of the
other. When 1/&o, *r exceeds 2 Re(Q,)/q, the real part
of the argument goes negative and the square root
becomes predominantly imaginary. By this time, the
mode splitting is greatly diminished, although the dis-

parity between the attenuations is only now at the point
of beginning its biggest increase. Finally, for 1/~, r
))2 Re(Q;)/q„(46) reduces to the set of approximate
solutions q'=q, '(1+i/co, *r), q'=q, ', which may be
identified, respectively, with the wave vectors of the
heavily damped pure helicon and the undamped acoustic
wave at the crossover, i.e., the helicon-acoustic inter-
action is effectively nullified by the strong dissipation
of the helicon. We have made numerical calculations,
which indicate similar behavior when the crossover
occurs at wave-vector values for which the conductivity
is nonlocal.

Q)' 0„I—
) I

&+=)= (&+ ), (47a)

B. Collisionless Limit with Moderately High Field:
~,*~—+~, (qv/~, *)&&1

Under these conditions (identical to Sec. IV 3),
both the helicon and acoustic waves are lossless and the
conductivity is moderately nonlocal. Using (30) for
G+, (32b)—(32d) become

piete theory, Q, ' would, therefore, also depend on the
parameter y that we are ignoring here.

The main consequence of the nonlocal conductivity
in this regime is a shift in the crossover to higher fre-
quencies and wave vectors than would otherwise ob-
tain. Equating (47a) to (47b) yields a quadratic relation
in q, the roots of which are

5' p'

8z ncc.'(kk~) 2

4 4mec hkp
1+ 1—— . (48)

&p2

The root of interest is the one closest to the crossover
wave vector in the limit k p= 0, and is given by the minus
sign in (48). It can be approximated by

47rne/c, 1 4m-nc, kki)'-
q*= I

— 1+-—
Bo (c 5 Bo'

(49)

The other root of (48), which is much larger, is in general
without physical meaning; except under the most
propitious circumstances it corresponds to a value of q
for which the approximation (30) for G+ is not valid.
The existence of a second crossover is, however, quite
possible' and is treated in Sec. VI.

The approximate mode splitting is readily determined
from the relation Dq=Q, . Upon setting ~o,=c,q, in
(47c) and taking the square root, one obtains

hq= (eBoq,/3Icc, )'"L1+—,'0 (1—2p) (Ack pq, /eBO) '1. (50)

Equation (50) indicates that the nonlocality of the con-
ductivity reduces the mode splitting. The actual amount
of this reduction is dependent on m~, the diminution
being greatest for electrons of small effective mass. The
numerical solutions in Sec. VI display a similar effective-
mass dependence for an even more nonlocal conduc-
tivity. The effect, however, still remains quite small.

co 1 pp (d(d~ (d
2 ~

2 5~2 P 2 ~2
(47b)

p(0N~ 1—2p eBo f 1 —2p)
1+— =—

cu~ 1+-
Pc,' 51'o' Mcc, ' 4 5I'o' ) (47c)

Equation (47b) displays a sound-velocity variation
proportional to the magnetic field and, in conformity
with the treatment in Sec. III, inversely proportional
to the square of the effective mass. In the present con-
text, this variation may be ignored and has, therefore,
been dropped in the second form of writing. There is also
a nonlocal conductivity contribution to (47c), which
results in a nonelementary dependence of QP, and hence,
the mode splitting, on the effective mass. This represents
a strain-dependent effect that can only arise when the
Bloch electrons at the Fermi surface are capable of
having their trajectories altered by the strain inho-
mogeneities associated with the wave. In a more com-

VI. NUMERICAL COMPUTATIONS

This section presents the results of computations we
have made for the helicon-acoustic interaction in po-
tassium. An IBM 7040 computer was used. to obtain
numerical solutions of the full secular equation (13),
wherein the conductivity function was represented ex-
actly by (6). The wave vectors and attenuation coeffi-
cients were determined for frequencies and magnetic
fields chosen such that crossover occurred under con-
ditions of nonlocal conductivity.

Figure 3 is a plot of the independent dispersion curves
for the fast acoustic wave and uncoupled helicon waves,
in the lossless limit, for Bp=59.9, 58.9, and 57.9 kG;
the damped branches of the helicon-dispersion rela-
tions are not shown. Extreme sensitivity of the cross-
over to small variations in field strength is evident, a 4%%uv

decrease in 8p being sufficient to go from a crossover at
I'=1.3 to an absence of crossover with the lossless
branch of the helicon. (There can still be a crossover
with the damped branch. ) The 58.9-kG helicon. dis-
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square root and introducing the assumption ~Qs()) ~Q„)
reduces that relation to

I02 x IO

4, (cm )

Hence,
p=Q"$1—Q /2Qs'). (51) IOO

=ImLQ. (1—Q"/2Q") j (52)

The essential physics is retained in the collisionless
limit and free-electron inodel. Therefore, we let p=1
and r —+~, for which (32d) becomes

98—
—50x IO

QP= zp(v—/c, 'rG+ (53)

Inserting (53), (32b), and (32a) into (52), and using the
inequality Irn(Q„)«Re(Q„), yields

c)s
Im

My 's'

1 p—Re
7-G+ 2c, ~G+

(54)

Comparison of this equation with (17) reveals that the
factor in the second pair of brackets is the expression
for the magnetoacoustic attenuation in the collisionless
case when there is quasibalance of currents. Accordingly,
we rewrite (54) as
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where o,p designates the current-balance magnetoacoustic
attenuation. Outside the absorption edge, np=0. Just
inside the edge, G+ within the bracket in (55) may be
approximated by',:its'edge value (51).This results in

4(c)s&o&u,
n.= 1+-I —

[

— n, ,
3&c.) -„'

and upon employing co= pc, =co,c,/v,

(56)

4 c'or, '
n~= 1+-

3 vcs07y—

~~eclge
no —— 1+— ns.

Ac,kp4
(57)

Thus, interaction with the H mode brings about a
relative increase of approximately ~B,&s'/hc, kz' in the
attenuation near the edge. On the other hand, one may
show from (19) that the zero-field limit of rG+ is 3'/4qv;
its imaginary part is very small. Therefore, after an
initial overshoot producing a hump or peak, e~ eventu-
ally comes back into coincidence with the np at zero
Geld. This discrepancy between the n& and o,'p curves
may also be viewed simply as a consequence of current
balance breakdown due to the magnetic Geld, rather
than as a result of helicon-acoustic interaction. In the
absence of the Geld such breakdown can only occur at
very high frequencies, well in excess of 10' sec ', for
which the zero-field limit of Im(rG+) is no longer
negligible.

Although (57) was derived with the restrictions
r ~" and ~Qs~)) ~Q„I, for the value of the edge field
in Fig. 4, it works out numerically to a~=2.&5 ap in

FIG. 5. Detailed behavior of eigenmode wave vectors and nor-
malized attenuation in thecrossover region &u=1.55X10srad/sec,
v. =4X10 " sec. The solid curves are for P=1.16, the dotted
curves for p=2. The dashed curves denote the wave vectors of the
uncoupled helicon and acoustic modes.

fair agreement with the ratio of the attenuations just
inside the absorption edge in that 6gure. According to
(57), the magnitude of the effect should be proportional
to the square of the edge field, and hence the square of
the edge frequency. It is expected to be much smaller
in metals other than potassium because of the factor
c,k~4 in the denominator; therefore, large distortions
of the acoustic absorption edge should be rather rare.
Nevertheless, experimental verification of this break-
down of current balance at moderate frequencies would
be desirable; the 6eld strengths and sample purities
required for its investigation in potassium are not
unreasonable.

The detailed behavior of the eigenmodes in the
strong interaction region, which occupies the extreme
right-hand portion of Fig. 4, is displayed in Fig. 5. In
this figure the frequency and relaxation time are un-
changed, but the 6eld is swept only over the limited
range 55.7 to 65 kG. The dotted curves represent the
results of calculations made for a hypothetical e8ective-
mass ratio P=2, and are included to show the sensitivity
of the attenuation and mode splitting to the effective
mass. The relative mode splitting is 9.7% for P= 1.16
and 8.5% for P=2. This change appears quite small in
view of the great variation in |:Elective mass. However,
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it is slightly larger than is predicted by (50), a formula,
meant to be applicable when the conductivity is only
weakly nonlocal. The mode splitting diAerence would be
accentuated by the absence of dissipation. With
v=4&(10 ", the values of co,*7- at the crossover field
are 49 for P= 1.16 and 85 for P= 2. The higher attenu-
ation of the p=1.16 eigenmodes due to the smaller
cyclotron frequency is a significant feature of Fig. 5.
According to the analysis in Sec. V, this should result
in a diminution of the mode splitting, a tendency in
opposition to the nonlocal eRect of variations in p.

Crossover in the edge region is considered in Fig. 6,
which displays the computed eigenmode dispersion
curves for interaction between the acoustic wave and
58.9-kG helicon. This is the double-crossover situation
depicted in Fig. 3.The uncoupled modes are shown again
in Fig. 6 by the dashed curves, this time with the upper

FIG. 6. Eigenmode dispersion curves for crossover in the
absorption-edge region in potassium in the collisionless limit.
80=58.9 kG, P = 1.16. The dashed curves represent the uncoupled
modes.

branch of the helicon included. The plot is for p= 1.16
and an infinite relaxation time, chosen to sharpen the
details of the interaction. We have swept the frequency
from co= 1.8&(10' to 2.1)&10'. Figure 6, therefore,
covers only the more interesting region in the vicinity
of the upper crossover and the absorption edge. Because
of the lower crossover the P mode appears to the left,
the H mode to the right. Starting from co=1.8&(10',
there is a broad interaction region in which the mode
splitting is about 10% and the eigenrnode dispersion
curves are substantially straight and parallel. This
region, in which the group velocities remain nearly
equal, extends down to the vicinity of the lower cross-
over. Slightly above co=1.88&(10', there is a sudden
break in the H-mode curve, and it begins to run parallel
to the upper branch of the helicon, showing no evidence
of interaction with the backward wave branch. This is
the absorption edge for the H mode and corresponds to
I'=1.01. It thus lies inside the absorption edge of the
pure helicon at I'=1.02 and outside the magneto-
acoustic edge at I'= 1. Going to higher frequencies, the
H-mode wave vector eventually becomes asymptotic to
that of the uncoupled acoustic wave. As it does so, its
attenuation (not displayed) begins to drop since the
attenuation of the latter, even inside the edge, is quite
small compared with that of the helicon. The P mode
roughly follows the shape of the pure helicon, becoming
asymptotic to the upper branch. Here, too, attenuation
begins at I'=1.01, but then rises more steeply than that
of the H mode. The frequency range between the two
break points is one of some interest, since within it only
one of the eigenmodes is dissipative. Although the break
points and absorption edges will be blurred in the pres-
ence of collisions, for large cu, *r the general features of
the interaction should remain intact.


