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Theory of Melting Based on Lattice Instability
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A lattice instability which may be related to melting is proposed as follows: The energy of thermal
vibration cannot exceed a critical value, because of anharmonicity, and the lattice may be unstable above
the temperature corresponding to this critical energy. The eGect of anharmonicity arises from the effective
increase in interatomic distances due to the lattice vibrations. This increase is called vibrational elonga-
tion. The critical temperature of instability is written in terms of atomic volume, elastic constants, and
the Gruneisen parameter under the assumption of a linear dispersion relation, and is shown to be in fairly
good agreement with the observed melting point. The Lindemann formula and the empirical law that the
product of thermal expansivity and. melting point is approximately constant are examined on the basis
of the present theory. The thermal expansion and the elastic properties predicted by the theory up to the
melting point are qualitatively consistent with the observed values.

1. INTRODUCTION

LTHOUGH melting is a very common phenom-
'
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enon in nature, its physical mechanism is poorly
understood. Lindemann' gave a formula assuming that
the amplitude of thermal vibration approaches lattice
dimensions at melting. Since Lindemann's treatment
lacks sufhcient physical basis, many attempts have
been made to find a more reasonable formulation of the
limit of stability of lattices. ' ' Unfortunately, most
attempts have been unsuccessful. On the other hand,
Lennard-Jones and Devonshires developed a theory
which interprets melting as an order-disorder transition,
and suggested that this treatment, based on statistical
mechanics, is consistent with the Lindemann law. More
recently, Cartz' and Gilvarry" reformulated the
Lindemann criterion utilizing the Debye" and Wailer"
theory of the temperature dependence of the mean-
square amplitude of vibration, and showed that the
amplitude attains a value of less tha, n 10'Po of inter-
atomic distances at melting. A detailed examination
also showed that the Lindemann "constant" is not
strictly constant from one lattice type to another. '
These situations suggest that, in spite of its partial
success, there are many problems with the Lindemann
law, and the physical relation between lattice instability
and melting has not yet been clari6ed.

The Lindemann formula, which contains a parameter
to be determined empirically, cannot predict an absolute
value of the melting point, but it gives a fusion curve at

' F. A. Lindemann, Z. Physik 11, 609 (1910).
s W. Braunbeck, Z. Physik 38, 549 (1926).' N. V. Raschevsky, Z. Physik 40, 214 (1927).
4 K. F. Herzfeld and M. Goeppert-Mayer, Phys. Rev. 46, 995

(1934).
5 M. Born, J. Chem. Phys. ? 591 (1939).
s R. Fiirth, Proc. Roy. Soc. (London) A183, 87 (1944).
J. H. C. Thompson, Phil. Mag. 44, 131 (1953).
J. E. Lennard-Jones and A. F. Devonshire, Proc. Roy. Soc.

(London) A170, 464 (1939).
'L. Cartz, Proc. Phys. Soc. (London) B68, 951 (1955); B68,

957 (1955).
'e J. J. Gilvarry, Phys. Rev. 102, 308 (1956); 102, 325 (1956};

103, 1700 (1956); 104, 908 (1956)."P.Debye, Ann. Physik 43, 49 (1914).
's I. Wailer, Z. Physik 51, 213 (1928).

high pressure if this parameter is assumed to be constant
with pressure and if a suitable equation of state is used
for the solid. For instance, the derivation of the Simon
equation, " an empirical relation describing the fusion
curve, was investigated in this manner. ""Since the
investigation of Bridgman" many experiments have
been made to determine the fusion curve at high pres-
sure, and it has been indicated that the Lindemann law
did not adequately estimate the pressure dependence of
melting temperature. " " This inadequacy was con-
firmed by the experiment during which much higher
pressures were obtained with shock-wave compression. "
Quite recently, some attempts have been made to
establish an empirical law of fusion curves, ""or to
analyze them on phenomenological ground. " A basic
consideration of melting may be required to examine
these investigations in the light of theory.

The present paper describes a theoretical approach
which shows the relation between the instability of a,

solid and melting. A new idea is proposed to describe
the instability of a lattice. The anharmonicity of the
lattice plays an important role in the concept of vibra-
tional elongation introduced in this theory. Quanturn-
mechanical effects will not be taken into account, since
it may not be essential for this phenomenon. We shall
sacrifice some unessential accuracies to make the

"F.Simon and G. Glatzel, Z. Anorg. Allgem. Chem. 178, 309
(1929)." J. Salter, Phil. Mag. 45, 369 (1954)."P.W. Bridgman, The Physics of High Pressure (G. Bell and
Sons, London, 1952)."J.S. Dugdale and F. E. Simon, Proc. Roy. Soc. (London)
A218, 291 (1953}."S. E. Babb, Jr., J. Chem. Phys. 38, 2743 (1963).

18 L. H. Cohen, W. Klement, Jr. , and G. C. Kennedy, Phys.
Rev. 145, 519 (1966).' S. N. Vaidya and E. S. R. Gopal, J. Phys. Chem. Solids 28,
1074 (1956)."S.B. Kormer, W. V. Sinitsyn, G. A. Kirillov, and V. D.
Urlin, Zh. Eksperim. i Teor. Fiz. 21, 1033 (1965) LEnglish transl. :
Soviet Phys. —JETP 21, 689 (1965)j.

s' E. A. Kraut and G. C. Kennedy, Phys. Rev. 151, 668 (1966).» &. Kawai and Y. Inokuchi, Earth Planet. Sci. Letters 3, 490
(1968);J. Appl. Phys. Japan 7, 989 (1968)."E.Rapoport, J. Chem. Phys. 46, 2891 (1967);48, 1433 (1968).
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mathematical structure of the theory as simple and as wheremis themass of the atom. At thermal equilibrium
clear as possible. at a temperature T, we have a statistical expression

2. VIBRATIONAL ELONGATION

We shall show that the interatomic distances are
effectively increased as the result of lattice vibrations.
To help intuitive understanding, we begin by con-
sidering a lattice wave with one definite frequency (i.e.,
a single normal vibra, tion). A longitudinal wave will

cause interatomic distances to be longer than equili-
brium distances at one instant and shorter at another,
and the time average of the interatomic distances is
equal to the equilibrium length in the direction of wave
propagation. For transverse waves, however, inter-
atomic distances may be equal to or longer, but never
shorter than the equilibrium distance along the propaga-
tion direction at any time, and thus the time average
will be longer than the equilibrium distance. An actual
crystal at an elevated temperature contains a large
number of normal vibrations, each of which will be
feeling, on the average, the interatomic forces corre-
sponding to the interatomic separation greater than
equilibrium one, as a result of the other normal vibra-
tions. We shall refer to this effective elongation of the
lattice dimension as vibrational elongation, and we
shall treat it analogously to thermal expansion. It is
important to distinguish vibrational elongation from
thermal expansion; the latter is the change of the
equilibrium dimension itself.

For simplicity, let us consider a lattice composed of
one kind of atom. The displacement u„of the atom at a
lattice point a may be written as a function of time t:

ll~=g + «cos(f' an ~fst+0'&8)v«y
&s

where f is the wave vector and A, cu, p, and v are the
amplitude, the angular frequency, the phase factor,
and the unit vector along the direction of vibration,
respectively, all of which correspond to a normal
vibration (f,s). We denote the mode of vibra, tion by s;
vre shall express one longitudinal mode by s= 1, and two
transverse modes by s=2 and s=3. Most of the nota-
tions used here corresponds to those used by Peierls. '4

If the crystal in question contains E atoms, the number
of noimal vibrations, i.e., the number of the sets (f,s) is
3Ã. The total energy of the crystal is

E= U(u)+P ei„
fs

where U(a) is the potential energy when all the atonis
are at rest at their equilibrium positions corresponding
to the lattice dimension a. The energy e g, of each normal
vibration is written in the well-known form,

ef, =-mEcvf 'A f
'

R. E. Peierls, QNamtlm Theory of Solids (Oxford University
Press, New York 1955), Chaps. I and II.

',——fi(u-«+ Ace f,(e""«'~r 1—) ',
where A is the Planck constant divided by 2x and k is
the Boltzmann constant. Since the melting point is
usually much higher than the Debye temperature, we
can use, for a 6rst approximation, a high-temperature
form of (4a),

eg, =kT,

which is known as the Dulong-Petit law.
Now we shall derive a mathematical expression Q for

the vibrational elongation. Let Q be defined as a time
average of the fractional increase of the interatomic
distance, i.e.,

"fr„—r„f —Ia„—a„l
Q= lim — dt,

g, ~~ t 1 0 8~1 8~

where r„=a„+u„.Q depends on the relative position of
the two points n and n'. We can expand lr„—r„l with
respect to u=a„—u„up to the quadratic terms, as
follows:

lr„.—r„l = lal(1+a u/a'
+-'Ln'/a'-(a u)'/I al'j), (6)

where

Substituting (6) and (1) into (5), we find that the
linear term a u/a' in (6) does not contribute to (5).
When we estimate the contribution of the quadratic
terms, we encounter the following expression in the
summation with respect to f, s, f', s':

If the phase factor p« is distributed completely at
random (this assumption may be satisfied during
thermal equilibrium), ~the terms in the form of (Sb)
cancel out one another in the summation with respect
to f', s', unless (f', s') is identical with (f, s). Thus some
simple calculation gives

Q=& ~ i 'Ial sin'(2f a)I 1 lal '(a. vi,)']. (9)

PhvsicaHy, Q is important for small values of
I
a I, since

the interactions between atoms are dominant for the
pairs situated relatively close to each other. In this case,
we can replace sin~f a by —,'f a for most wave vectors

~a

lim — sinl i~f(a„+a„)—~ &,[+p„$
1 0

)&sinL.",f'(a„+a„.) —
&g i...(+y,,, jd(. (Sa)

We can show that (Sa) vanishes except when ~ f' ' —Q) «,
and in that case yields

-', cosl -,'(f —f')(a.+a. )+(pf $f' )j.
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f and obtain

Q Q g t 2(f. e)221 (vt .e)2$ (10)

7r
Q=—Pc —' —e

~
L1—(vt, e)'g.

2mV t~ f
(12)

According to usual methods, the summation in (12)
over the whole range of f can be replaced by an integral
over the continuous space of f. In this integration we

should notice that vti is parallel to f and vts and vts are
perpendicular to f, and that the total number of wave
vectors f is E. Finally, we have

kT~1 4
I

—+-
15m&cis c,'

(13)

Here the relation c2= c3 is used.

3. ANHARMONICITY AND LATTICE
INSTABILITY

Thermal expansion results from the anharmonic
effect in which the force constants of the lattice vary
with the volume. In other words, the frequency cog, is
a function of the lattice dimension tb (to specify a
without ambiguity, let ebs be the volume per atom) and
decreases with increasing value of a. It is natural to
suppose that the vibrational elongation should have a
similar anharmonic effect on cvf, . Under the assumption
in (11), the dependence of tt on cot, is cha, nged to a
dependence on c,."Remembering the definition (5) of
"P. Debye, Ann. Physik 39, 789 (1912)."J. M. Zimann, E/ectroas and Pholols (Clarendon Press,

Oxford, England, 1960), Chap. I.
'7 We shall ignore the dependence of f on u, to prevent the

following expressions from being complicated by this unessential
dependence. Alternatively, we may suppose that all the depen-
dence of 6) fa is included in the exponential term in (14).

where Q depends only upon the direction e= a/~ a~ of a.
In the present paper we assume that the distribution

of f is continuous and isotropic, and that the dispersion
relation is given in a simple linear form

tots= caf)
where f=

~

f
~
. The quantity c, corresponds to the

velocity of elastic waves for the mode s. The above
assumption, which is similar to the treatment used by
Debye" in the discussion of heat capacity of solids, is
not a good approximation for actual crystals. "It may
be useful and interesting, however, to develop our
theory on the basis of this assumption, because of its
mathematical simplicity and the great success of the
Debye theorv. This assumption may be plausible
because it will be used to evaluate the suinmation (10)
over the whole frequency spectrum, as in the case
treated by Debye. Using (3) and (11) to eliminate A&,

in (10), and substituting (4b) into the resulting equa-
tion, we have

Q, we assume intuitively that c, depends on Q in the
same manner as it depends on the lattice dimension. If
the Taylor's series for inc, up to the linear term is used,
the dependence of c, is expressed, according to the
above assumption as

ol

inc, = inc, o bt—(a ao—)/ao+Qj,

c,= c,o exp{—bP(u —tto)/ao+Q]), (15)

where c,p and ap are the values at T= 0. For simplicity,
we further assume that the coeKcient b in (15) is the
same for different modes s. Gruneisen made a similar
assumption. "It is only for mathematical convenience
that we employ the Taylor series for inc, instead of that
for c, itself. The difference can be shown to be
unimportant.

We shall consider how the lattice becomes unstable
as a result of anharmonicity. Since finite amplitudes
produce a vibrational elongation Q after (9), cot is
reduced by the anharmonicity through (11) and (15)
with increasing amplitudes Af, . This correlation be-
tween Af, and cof, suggests that the energy ~f„which
is proportional to the squares of both At, and tot, )see
(3)j, may have an upper limit. We can start from (13)
to examine this suggestion. Substituting (15) into (13),
we have

First, for easy understanding, we consider the lattice
instability by neglecting the term (tt —tto)/tto, i.e,

kT I 4
Qe

—2bQ — +
1518 Cyp C2p

(17)

which is expected to be related to the melting point.
Practically, (18) is not a good approximation to the

critical temperature of instability, since the effect of
thermal expansion is not really negligible. We shall
formulate the theory in which this effect is also taken
into consideration. The Helmholtz free energy of the

"E.Gruneisen, Hamdbuch der Physik Uulius Springer, Berlin,
1926},Vol. 10, pp. 1—59.

The function of Q in the left-hand side of (17) increases
from zero with increasing Q, but decreases after it
arrives at the maximum value 1/2eb at Q= 1/2b. Hence,
the temperatures for which a value of Q satisfies (17) are
limited to values below a critical temperature T . At
temperatures above T, no state of lattice vibration
exists and hence the lattice must be unstable. T' is
obtained from the maximum point Q = 1/2b, as

15m
+

2ekb eros coo'/
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solid can be written as For convenience in treating (27), we introduce the
new variables

F= U(a)+P —',hoii. +kT P ln(1 e—""&'"r), (19) r = (2kb'/3apsE) T

q= 2bQ.

fs
and

(29)from which the so-called Mie-Gruneisen equation of
state' can be obtained:

dU(a) 1 t' c)inning,

+—Zl-
dU V &~k c) InU q expr —r/(1 —q) —q7= sr, (30)

We can say that z and g are a reduced temperature and
a reduced vibrational elongation, respectively. Then

(20) (27) yields

where I' is the pressure, and V is the volume. Because
of (11) and (15), the quantity —c) inning, /c) lnV turns
out to be independent of (f,s), as in the treatment of
Gruneisen in which this quantity is denoted by y.
Griineisen's treatment is related to ours by the
equation'~

a f BQ)
&=-:b —

I
1+~p

apk aal
(21)

Here the partial derivative i3Q/isa should be taken for
the dependence of Q on u through the relation (16) under
the condition that T is Axed. "Thus,

i3Q

Ba ap(1 —2bQ)
(22)

Utilizing (22) and taking a/ap to be nearly unity, we
have

y= —',b(1 —2bQ) ' (23)

Here we shall discuss the case of zero pressure. In
estimating the first term of (20), we may take U'(a), to
a first approximation, to be

where z is a nondimensional constant defined as

gp'& & 4
s= +

5gg6 C]p2 C2
2

(31)

r= (1—q)'/q (33)

The relation between g and v was calculated numerically
with the aid of the m.coM 202 computer in our
Institute, and the results are given in Fig. 1 for some
values of s. It should be noted that the curves r versus

q have maxima analogous to the curve discussed in (17).
The thermal expansion and the velocity of sound
calculated as a function of temperature from (26) and
(15) are also given in a reduced form in Fig. 2 (z= 0.4)
and Fig. 3 (z=0.8).

In order to evaluate the critical temperature T, we
have to couple Eq. (30) and the condition that r is
maximum i.e., d7/dq=0. From (30) we have

dr (1—q)' —qi-

(32)
dq (1—q) (s(1—

q) expL~/(1 —q)+q7+q)
'

and the latter condition therefore yields

U'(a) = 91VapE(a —ap), (24)
Thus, we have the critical reduced temperature 7- as

where E is the bulk modulus. Substituting (23) and (24)
into (20), with I'=0, we have

Qp

Using (4b), we have

b

P ei„.
97VapsE 1 2bQ «— 0.5

0,4

a —ap b kT

ap 3ap'E 1—2bQ

Coupling (16) and (26), we obtain

kT
Q exp 2b — —+Q

3apsE 1 —2bQ

(26)
0.3

0.2

O. I

(
kT 1 4

+— (27)
158$ cyp c2p

"This means that the expressions of y which were derived by
Slater (Ref. 32) and by Dugdale and MacDonald LPhys. Rev. 89,
832 (1933)j should be slightly modified to include the eifect of
vibrational elongation.

0.2 0.4
q

0.8

Fxo. 1. Relations between q and r given by (30)
for various parameters s.
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a function of s, i.e.,

7 =Mi(s).

Mi(s) is defined with the aid of the function

f4) = Ev'/(1 —v)'j expL —(1—v)'/v —8
3K 1—0. 3K 1—20-

C10 =
~ C20

p 1+0 2p 1+0'Ms(s) = E1—f '(s)3'/f '(s), (36)

elongation to thermal expansion. Strictly speaking, (40)
does not hold at zero temperature, since (4b) is not
satisfied there, but the above description of the physical
meaning of s may be still approximately right. Sound
velocities can be written in terms of Poisson's ratio 0- as

(35)

T = (3ao'IC/2kb') Mi(z) (37)

where f '(s) denotes the inverse function of f(t7).
Numerical values of Mi(z) are given in Table I. From
(28), T is obtained as

giving another expression for s', i.e.,

1 (1+o-)(9—10o)

15b (1—a)(1—2o.)
(42)

which is the desired equation.

4. LINDEMANN LAW AND OTHER RELATIONS

Here we shall study the relations connecting the
quantities which have appeared in this theory. Noting
ao' is the volume per atom, we can rewrite (37) and
(31) as

At a moderate temperature which is sufficiently
higher than the Debye temperature but not close to the

melting point, (25) may be nearly equivalent to

(a —ao)/ao = (b/3ao'&) &T;

hence we ha, ve a (volumetric) thermal expansion
coefficient n as

T = (3ME/2Rpb') Mi(s)

E 1 4
s — +

5Pb c10' c20'

(38)

(39)

n = Itb/ao'E.

Combining (43) with (37), we have

~T-= 5(1/b) Ms(s).

(43)

where R is the universal gas constant, p is the density,
and M the atomic weight. Let us consider the quantity
s. Coupling Eqs. (32) and (26) in the case of t7=0, we
have the following equations which hold at T=O:
Noting that

BQ (BQ/ BT)

&BE(a—ao)/ao7 I' (BL(a ao)/ao)(B—T)p
(45)T.= C,m.2&3~~2,

It is empirically known that nT is approximately
constant for certain groups of materials. ""This rule
can be understood with use of (44). The right-hand side
of (44) does not vary over a wide range and tends to be
nearly the same for certain types of material (see
Tables II and III, whose interpretation will be prepared
in Sec. 5).

Finally, we look back at the Lindernann Law, ' which
is written

we obtain

z=
BQ . Q

=lim
BE(a—ao)/aoj i r-o (a —ao)/ao TAar, E II. Calculated and observed melting

temperature of cubic metals.
Equation (40) shows that s gives the ratio of vibrationa, l

where v is the molar volume, co~ is the Einstein charac-
teristic frequency, and Cl. is a constant to be determined

(40)

TABLE I. Numerical values of Mi(s) and g

T 'K T 'K
J Mb s 2b ) (calc) (obs)

0
0.1
0.2
0,3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.5
2.0

Mi(e)

0.7628
0.5427
0.4348
0.3676
0.3208
0.2858
0.2584
0.2363
0.2181.
0.2027
0.1895
0.1781
0.1512
0.1216

0
0.3538
0.3994
0.4288
0.4508
0.4684
0.4832
0.4958
0.5070
0.5170
0.5258
0.5340
0.5414
0.5606
0.5856

Li
Na
K
Cu
Ag
Au
Al
Pb
Mo
Ta

1.17 0.120 0.960 0.089 475 453
1.25 0.046 0.620 0.112 393 371
1.34 0.402 0.830 0.086 464 337
1.96 1.38 0.464 0.086 1730 1356
2.47 1.04 0.437 0.071 1220 1234
3.05 1.73 0.619 0.046 1070 1336
2.17 0.764 0.384 0.087 1220 933
2.73 0.447 0.614 0.052 618 600
1.57 2.68 0.396 0.118 7570 2893
1.68 1.96 0.489 0.097 4940 3300

& From Refs. 32-34.
b Elastic constants Ctt, C12, and C44 are after Refs. 38 and 39; K was

computed with use of Eq. (51).
"C. Zwikker, Physical Properties of Solid Materials (Pergamon

Press, Inc. , London, 1954), p. 157.
"A. R. Ubbelohde, 3feltieg and Crystal Structure (Clarendon

Press, Oxford, England, 1965), p. 51.
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LiF
LiC1
NaCl
NaBr
KF
KCI
KBr
KI
RbBr
RbI
MgO
T1B1
CaI

TAal, z III. Calculated and observed melting
temperature of cubic compounds.

& Mbb z 2b ' ' (calc) {obs)

1.34 0.76 0.384 0.141 1560 1121
1.52 0.318 0.326 0.136 1173 886
1.63 0.246 0.296 0.134 1097 1073
1.56 0.199 0.314 0.136 1095 1028
1.45 0.318 0.388 0.129 1329 1153
1.60 0.184 0.361 0.122 1053 1043
1.68 0.154 0.353 0.118 927 1003
1.63 0.118 0.342 0.124 946 1046
1.37 0.138 0.491 0.118 1180 955
1.41 0.107 0.486 0.116 678 915
1.53 1.57 0.228 0.165 3820 3073
2.29 9.223 0.307 0.094 696 733
1.68 0.825 0.334 0.122 1961 1633

solid angle. We employ, however, an easier way to
estimate the average, since the direct computation with
the use of (49) is too elaborate for the present purposes.
For the cubic crystals, to which we will restrict the
present consideration, we used a convenient average,
the average for the velocities along [100j, (110), and
L111jdirections, the weighting factor being the number
of equivalent directions. Averaging the velocity for
each mode in this way, we have the following expression
needed to calculate z (and therefore T ):

a From Refs. 32-37."Elastic constants C11, C1~, and C44 are after Refs. 35-40; K was computed
with use of Eq. (51).

empirically. According to a more recent Tr.odification' "
of this formula, co+ in (45) is replaced by the Debye
frequency coD given by

(46)

where E~ is Avogadro's number. From the viewpoint
of the present theory, the basic equation (38), combined
with (41) and (46), leads to the equation

r =C,'u. 2&3~D~, (4l)

which is similar to (45). Here Cr. ' corresponds to the
Lindemann constant Cl. and is given by

—)1+o 2/2

Cl, ' —— (18~23'~) '"
~

2Z

2+2o)'~2 2~'

+2
~

b 'Mi(z). (48)
1—2o)

5. APPLICATIONS TO ACTUAL CRYSTALS

Now we shall examine the agreement of the theory
with observations. We have assumed in the present
treatment that sound velocities c, are isotropic, while

they are more or less anisotropic for actual crystals;
hence in applying the theory we need a certain average
for elastic properties. Since c. appears in the form of
1/c, 2 Lsee (13)), a suitable average c, may be given by

c,' 4x
)

2
(49)

where the integration should be extended over the whole

Although CL,
' is not strictly a constant, it should be

noted that (48) contains only the parameters o., b (or y),
and b 1 3II2(s), which do not vary much.

3p 1 4,

+
65 Cll Cll+C12+2C44 Cll+2C12+4C44

8 8 I6
+ +— +— —,(50)

C44 Cll C12 Cll C12+C44

where C~~, C~~, and C44 are the elastic stiffness constants.
Ignoring the difference between adiabatic and isother-
mal bulk modulus, we determined E. with use of the
relation

&=-', (Cll+C12). (51)

There are some possibilities to evaluate the parameter
describing the anharmonicity. "Here we determined b

from the Gruneisen parameter p by using the relation

b= 3y, (52)

which (23) yields at low temperature. For y we used the
value obtained from the Gruneisen relation" '7

y= nZ'/pC„, (53)

where C„ is the specific heat per unit mass.
In applying the present formula to the crystals com-

posed of more than two kinds of atoms, we simply
assumed that all the relations in this treatment hold
except that the mass m is replaced by the average

mj
s i=I

of the composing atoms. This assumption may be valid
for the relation (3) for the energy, but the expression
(9) for vibrational elongation can not be extended so
simply. We may expect, however, that Eq. (9) with the
above replacement of ns is also valid in the limit for

"J.S. Slater, Introduction to Chemical Physics (McGraw-Hill
Book Co., New York, 1939).

"M. H. Rice, R. G. McQueen, and J. M. Walsh, in Solid State
Physics (Academic Press Inc. , New York, 1958), Vol. 6. p. 60.

'4 K. A. Gschneidner, Jr. , Ref. 33, Vol. 16, p. 412.
"N. Soga, K. Schreiber, and 0. L. Anderson, J. Geophys. Res.

71, 5315 (1966)."G. E. Morse and A. W. Lawson, J. Phys. Chem. Solids 28,
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long wavelengths of the acoustical modes, in which
every kind of atom has the same amplitude.

The values of T calculated from (38) with (39) and
(50)—(53) are listed with the melting temperatures ob-
served in Table II (metals)" " and in Table III
(compounds). " 'P In this calculation we used the data
obtained at room temperature without any correction.
The agreement between theory and observation is fairly
good and may be satisfactory in vievv of some of the
approximations involved in (11), (14), etc.
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6. TEMPERATURE DEPENDENCE OF ELASTIC
CONSTANTS 0.2

As has already been suggested in Sec. 3, the present
theory predicts thermal expansion and elastic property
at high temperature. There is not much reliable data on
thermal expansion close to the melting point, but it
was reported that the thermal expansion coefFicieot of
some materials increases quite rapidly close to the
melting point. 4' 4' This anomalous behavior was partly
explained by the generation of defects in the crystal at
high temperature. "44 Since the detailed discussion of
this problem deviates too far from the present purposes,
suKce it to say that the rapid increase of thermal
expansion can also be interpreted using our theory (see
Figs. 2 and 3).

%e have a basic interest in the problem of whether
the sound velocities of shearing modes disappear at
melting continuously or abruptly. Born believed that
melting is a mechanical instability of the lattice in
which a certain ela, stic constant, such as C44 s (Cll Cts),
or —s,(Cii+Cis), vanishes. ' But it was proved experi-
mentally that Born's idea is not the case.4' The present
theory, in which the instability of the lattice is specified
in different manner, does not require that any elastic
constant vanish close to the melting point. Now, we
designate the elastic constant corresponding to the
sound velocity c, by C„ i.e., c,= (C,/p)'". Neglecting
the change of p with temperature, we have from (15),

0
0 0.2 0.4 0.6

T/ Tm

0.8 I.O

though we cannot make a quantitative comparison
because of the assumption in the theory that every
velocity has the same dependence (15) expressed by a
unique parameter b.

Next we shall take up the fact which suggests the
presence of vibrational elongation directly. Remember-
ing the cause of vibrational elongation Q, we may
expect that Q is much more strongly dependent on
temperature than on pressure. This leads to the con-
clusion that the decrease of the elastic constants with
increasing temperature should be greater than the
increase with pressure by the contribution due to

04 0.6 0.8 I.O
I.O

I rG. 2. Calculated curves of the vibrational elongation Q, the
thermal expansion (a—ap)/ao& and the sound velocity c, as a
function of the temperature T for x=0.4. All the quantities are
given in the reduced form up to the melting point T .

C,= C,p exp f —2bL(a ap)/ttp+Q]}, (54)
0.6

0.9

where C,o is the value at O'K. Figure 4 shows the
theoretical curve thus calculated for NaC1 (s=0.296)
with the observation" '~ in the case of C,=C44 and
C,=s(Cii —C»). We find that the theory gives the
correct temperature dependence qualitatively, even
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FIG. 3. Calculated curves of the vibrational elongation Q, the
thermal expansion (a—ap)/ap, and the sound velocity c, as a
function of the temperature T for a=0.8. All the quantities are
given in the reduced form up to the melting point T~.
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I.O

0.8

tained from experiments. " ' " It is remarkable that
the eA'ect of vibrational elongation gives an almost
correct magnitude for the intrinsic temperature
dependence.
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FIG. 4. Temperature dependence of elastic constants of XaC1.
The theoretical curve is obtained for x=0.296 with use of (54).
Experimental curves (the dashed lines) are according to the data
from Refs. 45—47 for high temperature, where the data from Ref.
40 for 4.2'K are used for the values at O'K.

vibrational elongation /see (54)7, i.e.,

(—:;), ('. ),
which is consistent with observations. More quantita-
tively, we obtain an approximate expression for the
intrinsic temperature dependence of elastic constants
with the aid of (54),

8 ln V I 8 1n V ~

TABLE IV. Intrinsic temperature dependence of elastic constants.

(10 4 deg i)

1 8 InCq4) 1 8 1n(Cn —Cq4) )
cx BT P y cx l9T j y 3llz

Here the variation of Q with pressure is completely
neglected, and (c) 1nQ/c) lnV)z is replaced by —',s ac-
cording to (40). ln Table IV, we examine (55) using the
value of the left-hand side Lwhich is reduced to (1/n)
(c) 1nC,/r)T)y from the thermodynamical relation7 ob-

'7. CONCLUDING REMARKS

We have seen that the anharmonicity makes the
lattice unstable above a critical energy, and have shown
the close correlation between the temperature corre-
sponding to the critical energy and the observed melting
point. From the viewpoint of statistical mechanics,
however, it is not sufhcient to introduce temperature
as treated in the present theory, because the energy per
normal mode is not strictly kT because of another effect
of anharmonicity. Taking this effect into account, we
can construct a self-consistent theory and evaluate the
relation between energy and temperature. '"' This treat-
ment, which contains rather complicated calculations,
also shows that there is a maximum temperature for a
solid, which is somewhat lower than the value of T
predicted in the present treatment. The estimation in
this paper, however, is more simple and sufhcient to
demonstrate that the anharmonicity of the lattice is
connected with melting.

One may be sure that the real melting temperature
is determined by the comparison between the free
energies of solid and liquid, and that the consideration
of the stability of the solid gives only an upper limit to
the melting point. " This concept, however, cannot
explain the above-mentioned connection between the
critical temperature of the solid and the melting point.
This correlation would be ensured by the empirical fact
that superheating of solids, i.e., the heating without
fusion above the Inelting point, is scarcely known, while
supercooling of liquid is not at all rare in nature. '4 To
make the situation clearer, more elaborate investiga-
tions will be necessary on the basis of statistical
mechanics. There is a possiblity that the vibrational
elongation is related to the degree of disorder by which
melting is governed.
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Cu
Ag
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LiF
NaCl
KCl
TlBr
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0.58
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