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The theory of nonlocal helicon waves, valid for metal samples considered as bulk material, is extended
in order to include the effect of the finite thickness of such samples. The main problem is to solve an integro-
diGerential equation for the electric field of the waves. This is done by an iteration procedure which yields
the solution for the 6eld as an in6nite series, the first term of which is the field of the nonlocal bulk theory.
With these solutions the response of the sample to an external ac magnetic field is calculated. The main
results are that in a 6rst approximation the resonance frequencies are nearly exactly the same as given
by the nonlocal bulk theory, whereas the Q values of the resonances are reduced; also the phase of the
response is changed. The reduction of the Q values is interpreted as an ac size eGect in the resistivity. An
experimental veri6cation of this ac size effect is proposed in connection with the dc size effect.

I. INTRODUCTION

HE interesting phenomena connected with the
propagation of electromagnetic waves in pure

metals placed in a strong dc magnetic field have been
the subject of many investigations in the last few
years. The phenomena are observed in very pure
samples of an uncompensated metal at low tempera-
ture, so that the metal has a Hall angle suKciently
near to —,'~. For instance, it is well established that low-
frequency electromagnetic (EM) waves, called helicon
waves because of their polarization properties, ' can
propagate with very low phase velocity and relatively
little attenuation in such metals. The existence of the
waves also shows up in helicon resonance experiments,
in which the metal sample acts as a resonance cavity
for helicon waves.

In a simple resonance experiment, a thin metal
plate is placed simultaneously in a strong dc magnetic
field Ho along a s axis perpendicular to the plate and a
weak homogeneous ac magnetic field (hp, e' ',0,0) per-
pendicular to Hp. The response of the sample to the
exciting ac field, for instance, measured by the pickup
in a coil with its axis in the xy plane, shows resonances
at various frequencies which depend on the thickness of
the plate. An alternative way to carry out the experi-
ment is to study the oscillations in the decay of the
eddy currents after a constant field h, is suddenly
switched off.

The mathematical description of the resonance ex-

periment on an infinitely large plate of thickness 2d

is simplified by the fact that all ac fields and currents
are perpendicular to the s axis and depend only on z.
According to Maxwell's equations, we then have, if we
neglect the dielectric displacement current and put the
magnetic permeability equal' to 1,

ct'E(s) 47rico

j (s),
832 C~

together with the boundary conditions

e l BE„(s)q
=(H*(s)) =+a =&p*,

i~( as

e cIE,(s))
=(H.()).=+ =o

zco cIs / s—ye

(2)

and a left circularly polarized field

H (s)=H (s) iH„(s)=hp—cosk s/cosk d, (4b)

with k+ given by the dispersion relation

(k+)'c'
(aRtrH p+i p),

where co is real and k+ complex.
The resonance character of the solution stems from

cost|'+d being nearly zero for

co [(2rt+—1)sr/2d] RttH pc /4 rs
Note that the left circularly polarized component does
not show resonances; its field has a cutoff character
rather than a standing-wave character. All this has been
treated in great detail by Chambers and Jones. ' The
question to be discussed in this paper is what happens
if the local relation between j and E no longer holds.
The question is particularly relevant since the mean

The further steps are extremely simple if a local rela-
tionship between j and E is assumed to hold. We then
have for isotropic materials

E(s)=pj(s)+Rtt(j(s) XHo),

in which EIIHO is assumed to be larger than p. In this
paper XII is taken to be positive, i.e., we assume elec-
tron conduction. The field H(s) that satisfies (1)—(3)
is composed of a right circularly polarized field

H+(s) =H (s)+iH„(s) = kp, cosk+s/cosk+d (4a)

r Proceedings of the SyrnPosiunn on Plasnsa Egects in Solids, s R. G. Chambers and 3. K. Jones, Proc. Roy. Soc. (London)
I'aris, 1&4 (Academic Press Inc. , New York, 1965). A270, 417 (1962).
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free path l of the charge carriers in the pure metal con-
cerned might easily be greater than the helicon wave-
length 4d/(2m+1) at the nth resonance, while the local
approximation is only justified if I is much smaller than
the wavelength, i.e., kl(i. Experimentally, clear reso-
nances are observed if kl) 1, including the case I/d) 1.'

Without explicitly solving the problem, Sheard4 has
theoretically discussed this point. Sheard suggests that
the only difference between the local and the nonlocal
theory is that in the latter theory the dispersion rela-
tion (5) must be replaced by the nonlocal dispersion
relation derived for wave propagation in an infinitely
large medium. ' For a simple Sommerfeld free-electron
model, the nonlocal dispersion relation reads, if kl/ d'or

&1, co,v)1, and co,))co,

(k+)'c' ~~.r+i ( (k+)'Pq

4s (ro 4 5oogr

where to, =eHo/mc is the cyclotron frequency, r the
relaxation time, and rro=Xe'r/m, , E being the electron
concentration. The effect of the nonlocal correc-
tion factor 1—(k+)'P/5&o, sr' has been experimentally
demonstrated. 3

Sheard's considerations do not take into account the
specific influence of the boundaries on the electron
velocity distribution. If there is diffuse surface scatter-
ing, there will be a thin layer with a thickness of the
order I//co, r near the boundaries in which the average
current will have a sizable component parallel to the
electric field rather than Aowing perpendicular to it as
in the bulk. This will give rise to an additional damping
and also to a modification of the KM field near the
boundaries, so that, for instance (4) will no longer be
correct. We shall deal with these effects in this paper.
We wish to observed that the additional power dissipa-

tion near the surface is of the same type as that oc-
curring in the dc size effect of a metal placed in a strong
dc magnetic field. We shall have the opportunity to
return to this point in the discussion.

It is well known that formal nonlocal ac transport
theory in the presence of boundaries leads to an in-

tegrodifferential equation for the (electric) field. If
there is only one boundary, the Laplace-transform
technique allows one to obtain an explicit solution (cf.
the theory of the anomalous skin effect'"). If there are
two boundaries, the situation is considerably more
complex. '~" Therefore, in this paper we shall resort

' M. T. Taylor, J. R. Merril, and R. Bowers, Phys. Letters 5,
159 (1963).' F. W. Sheard, Phys. Rev. 129, 2563 (1963).

' J. J. Quinn and S. Rodriguez Phys. Rev. 133A, 1489 (f964).
' S. W. Hui, Phys. Letters 24, 265 (1967).
7 M. T. Taylor, Phys. Rev. 137A, 1145 (1965).
o J. L. Stanford and S. A. Stern, Phys. Rev. 144, 534 (1966).
'G. E. H. Reuter and E. H. Sondheimer, Proc. Roy. Soc.

(London) A195, 336 (1948)."E. H. Sondheimer, Advan. Phys. 1, 1 (1952).
"P. Cotti, Physik Kondensierten Materie 3, 40 (1964).
"G.A. Baraff, J.. Math. Phys. 9, 372 (1968); Phys. Rev. 167,

625 (1968).

to an expansion of the solution in powers of a small
parameter, for which we shall take coo.oP/c'&o. 'r'. In the
local limit this parameter corresponds to k't z/to, 'r'. In
Sec. III we shall obtain the series expansion by solving
the integrodifferential equation formulated in Sec. II,
by means of an iteration procedure discussed in the
Appendix. The interpretation of the results obtained in
Sec. IV is given in Sec. V.

II. TRANSPORT THEORY

We shall consider a thin metallic sample of thickness
2d in a perpendicular magnetic field Hp along the s
axis. The surfaces of the sample are at s=&d. The
electrons in the metal are described by a distribution
function f which will be written in the form

f=fo+ft (7)

Here fo is the undisturbed Fermi distribution, which
will be assumed to be spherical; fr is the deviation from
equilibrium due to an external disturbance. In the
presence of an ac electric field perpendicular to the s
axis, varying in time as

where e is the energy and —e the charge of the elec-
trons. To solve Eq. (9), we write fr in the form

8 p

fr = (&xgx+&ygv)
(36

(10)

where g, and g„do not depend explicitly on v, and e„.
Substitution of Eq. (10) into Eq. (9) leads to two
coupled equations for g, and g„; if we introduce the
complex quantities g+ defined by

g gg+Zgy

and circularly polarized components

E+=E,aiE„,
these equations for g and g„can be written as in-
dependent equations for g+:

/gal
y+g++rz, =erE+,

Bs

y+ =1+i(ur Tie),r .
(13)

and of the dc magnetic field Hp, the linearized Boltz-
mann equation takes the form

r)fr eIIor( &fr r)fr
(1+itor)fr+re, —

~

s„—v~
r)S BSC k t)'V~ r) vv

8
=erE v
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~ ()
H . h d fth y t yofthepmbiem,Here we have made use o

(21)
+(d, , ), =0 g+(—d,v„v).,)p=g (~)&z)&/v, &o=
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for i uses, ,
'

b
' '

ns for diffuse scatter- where p+~ is iven yIntroducing the boundary conditions for i use s

=E'(d)/d (~E'( )/~ ).='ing at the surfaces 2'=Ad,

We filld

g (s, vz)v)vs&p

i.e.)

H+(s) =H+(—s), E+(s) = E~ ——s .

ds' E~(s') expI —p+(s —s')/r v,],

g+(s, v„v).,)p

ds' E+(s') expL —y+(s —s')/vv, ].

(15a)

(15b)

III. GENERAL METHOD

1f the integrodifferentiaust find a solution o
22 .

ffi t k owth ol tioIn view of Eq.
multi lication factor. i

Appen ix a . solved by iteration:Appendix that Eq. (19) can be so ve

The current density is

(mq'
)(s) = —2pI —

I

h
dv vf(s,v).

E(s) = P E„(s),
n=o

Ep(s) =sinks,

(23a)

(23b)

and8 with v, = v cos8olar coordinates v, p, an'ng po
= vg we have for a degenera e e)

ko't' 37 +"
E.(s) = ——

~2 4t
ds'E. g(s') ds(——

i

1

3Ee' +'
j'(s) =

tn
du(1 —u') g+(s,

veau,

vp)

exp( —7 I
s—s'I sl—')

1+kpl2/pps2

and find after some trivial ma 'pani ulations

30o
i'(s) =

4L

ds' E~(s')
t1 1

dsI ———
I (s s

Xexp( —y~Is —s'Isl ')

ds' E"(s')E'+ (s—s') .

itute the above equation for the currentKe now substitu e
t' given by Eq. (1);d Maxwell equations give

d'ff '
1the resu t is e1

'
th following integro i e

for the electric field:

+d82E+(s) 4v.i&up p 3y

8s' c'y~ 41
ds' E+(s')K+ (s—s'),

d in Sec. III. Ke want, however,
e eneral solution or eg

more than we nee . n afunction of s is m
the average magnetic

le in uced b an externa ac
is interested in t e a

p
. For an ac magnetic e

f f h 1 h
b expressed in the

'
d to the sur aces o

tic induction can e ex
following form (the magnetic permea i

'

= —4vricoo. o c'y. Thus, ko is the helicon wave-
th frequency ~ according tondin to t e re

h A di IE. (A)
r while k is determine y

p on iven in t e ppen
' nb Eq. A . or

~ ~

t,h t o olhave omitted the reference ~ to e
ink k1 y and

» 1- fl»/. I,cedure convergesr es for sufficiently sma va ue
ber g of the order ofi.e. for values sm aller than a num er g')

1. In the same sense wee may say that
po o y"

P. The expressions orM(goc p 0 c

E ' s are easily calculatederivative E1 s are

2

1+k l/ .)1

XI sinh(yssl ')(Ep(d)+/Ep'(d)/ys)

Xexp( —ysdl
—') —Ep(s)], 24

j. 2

1+k 'l'/y's'/7 1

)& cosh(yssl ')(kpEp(d)+kplEp'(d)/ys)

)&exp( —ysdl ') —kplEp'(s)/ys]. 25

1 +"
8~(co) =— sds II+(s,co) =@+((o)h,(pp),

ainl interested in theAs already remarked, we are main y

E 23 —(25) th t th l
nd E' s) for s=d.

It can be shown from Eqs. 23—
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form of E(d) and E'(d) is given by

E(d) =Eo(d)I'+DEo'(d)/~EQ,

E'(d) = Ep'(d)R+kpEp(d) (kpl/y)S,
where

P =1+0(kpPP/y'),

Q=0(kpPP/y'),

I' =1+0(k pPP/y')

(26)

(27)

(28)

(29)

(30)

kP= —4iri~oo. o/c'p. Since in practice pi&&co„we may
neglect the co dependence of p. For the right circularly
polarized mode we then have y=1 i'pp—.r, and p+(pi)
shows resonant character near the frequencies

pi = (n7r/2d)'c'pi, r/o p

provided pr,r)1. Similarly, p (~o) shows resonances
near co= —co . We must remember, however, that
Eq. (38) is valid only for sufTiciently low frequencies:

~&cpIpI'l«lp

We are now able to calculate the response to an ex-
ternal excitation of a thin metallic sample, placed in a
strong dc magnetic field; the configuration is that given
in the previous sections. According to Eqs. (20) and
(21), the average magnetic induction in the sample
induced by an ac magnetic field can be expressed in
terms of a response function p, (ro) given by.(-)=E(d)/d&«'(d) (32)

3 3 1 1
S=—+ d-s ———

16 4 s' s'

&&e px( 2ysdl —')+0(kp'P/y') . (31)

IV. RESONANCES OF THIN METALLIC SAMPLE

S=3/16+0 (P/2'd" y')+0(k-p'P/y') .
Thus, in this approximation we have

(40)

We now want to evaluate the position and the width of
the resonances occurring in this low-frequency region.
For that purpose we retain in the denominators the
first relevant terms by which kd —g divers from kpd.
In the frequency range considered we use

k'= kpP (1 kp'P/—5y')

and re= k plS/y. Since near the resonances, l/2dy
kl/nary, —we may assume l/2dy& 1 and hence approxi-

mate 5 by —,', . Indeed, from Eq. (31) and l/2' & 1 one
easily concludes that

After substitution of Eqs. (26) and (27) into Eq. (32),
we can write

9)2kp2P 3l
(kd —y)'=kp'd' 1— +' ' '

Sdy 256d2y2
~ (41)

A tan(kd —y)
~( )= +8,

kpd

where 2, 8, and Q are given by

A =1+0(k pPP/y'),

8= (l/dy) 1,1+0(k p'Ply') g,

kpl 5)
y = tan-' ——

I
.

y 8)
With the aid of

00 2s
tans=

s' —(nvr/2)'

(33)

(34)

(35)

(36)

(37)

We now insert Eq. (41) into Eq. (38) for p(pi) and con-
sider the resulting expression as a function of a complex
variable co. The function has an infinite number of
poles at co =co, e= 1, 3, 5, . . ., ~ . We shall separate out
the contributions of those poles, v=1, 3, . . . , HEI,

within a. unit circle of radius c'IyI'/opP, since only.
these poles can, generally speaking, determine any
resonances found in the relevant range of frequecies
~o. The remaining part we shall collect in a term T(co)
that has a smooth background character in the relevant
frequency range. The position of the poles, e= 1, 3, . . . ,
M, can be most easily found by observing that in
the local limit kpP= (n7r/2d)' at such a pole. With
the aid of Eq. (41), and making use of the definition of
kp'= — 4niruo. p /yc, we find that

Equation (33) can be written as

2A kd —y
+& (38)

k,d -=i.p, ', (kd —y)' —(n~/2)'

In the local limit kpl/p —& 0 this expression reduces to
the well-known expression'

4~zu

cd 2 Sd2y2 Sdy

9P
+ + )+(—")=o, (42)

00 2
u(~)i-=

=i,p, " kpPd' —(m./2)'

The right-hand side of Eq. (38) is a function of the
(real) variable co, since A, 8, P, and k depend on kp, and

so ths, t Eq. (38) can be written as

2ri (kd —j) 2 )' pp„
~(~) =

n=l, 8, ~ ~ ~ kpd n~f ~—~„

X I 1+0(k P/py') i+T (p&) . (43)
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iV

+T'(~), (44)
m7r

where we have explicitly written out as a reminder the
~ sign referring to the right and left circularly polarized
modes. Quite generally, we have

L/'(~)3*=/ (—~) ~ (45)

Ke shall now be interested in the component of the
magnetic induction in a direction that makes and angle
6 with the direction of excitation. We have

By =B,cosi/+B„sini/
= -2'[/2+ exp( ii'/)+ p— exp(ie,

—)]k.=/iyk. . (46)

W'riting
(4"i)

(48)

1—31/16'+= r exp(+iq),
~„=a(u exp(aiX),

we find, using Eq. (44), that

/iq(cc) =r cos(&p+6)

2 )2 —1+2iQcc„/(u
X P —

~

— +r sin(q+8)
222r) 1+iQ(a&//d„—(u„/cu)

// 2 ' cotX
+T,(~),

knir 1+iQ(g/co„g„/g)—(49)

where
Q= 1/2 sinX=-,'(1+cot2X)i/2. (50)

It is easily shown that in the approximation used, r,
y, ~„, and Q are given by

2p p2 1/2

r= 1— +
1+ '' 1+ '') (51)

/' Pucr
p=tan —

'~

).1+... c) (52)

'S7l C

(]+~ 2 2) i/2

2d 4~0-p

1 222rl )2 2P P2

X 1+-
5 2dcdcr) 1+/dc r 1+cvc r

Q=(1+-.")"/2(1+2P),

(53)

(54)

Here A, k, ko, and P are the values of A, k, ko, and g
at the complex eigenfrequencies co„. Note that while
cd„ is correctly given by Eq. (42) to the order in which
this equation is written out, the terms in (43) are cor-
rect apart from contributions of the order (kl/y)2. In
this approximation it is correct to put A =1, kpd= ~em,
and kd —g = (2r/2r) X (1—3l/16'). We thus have

31
c'( )=2()—

16'+)

where we have introduced the parameter P:

P =-', l/2d. (55)

By taking the limit P —+ 0, one obtains the formula of
the nonlocal bulk theory, whereas the results of the
local theory are obtained if one takes also the limit
kl/~, r = r/xl/2. dco, r -+ 0.

Gantmakher and Kaner" have shown that surface
excitations of this kind can be observed directly if one
chooses the frequency or magnetic field such that
~kl/y~ &1; the helicon wave is then damped out in a
skin layer of thickness 5(2)F/~, (d, l and only the
surface excitations propagate over distances of the
order /.

In principle, the size-effect corrections show up in the
amplitude, phase, resonance frequencies, and Q values
of the resonances; in practice, they are only important
for the phase and Q values.

The corrections in the amplitude are small, of the
order of P/~. 2r2, P2/~, 2r2, where P/co, r( ~kl/y~ (1 and
or,7)1, and not uniquely determined because of the
nonresonant part of the response function T//(cv).

The same argument of smallness applies to the size-
effect corrections in &u„, where k2i2/5ar, 2r2&P2/u&, 2r2,

P/&u, 2r2 This is in ac.cordance with the experimental
results that the resonance frequencies are very well
described by using the nonlocal dispersion relation and
for kl/~, r up to 0.8 also with the numerical results we
have obtained; see the Appendix.

The phase shift p, however, which in our approxima-
tion is equal to P/cu, r if P «d, 2r2, should be a measurable

"V. F. Gantmakher and E. A. Kaner, Zh. Eksperim. i Teor.
Fiz. 48, 1572, 1965 t English transl. : Soviet Phys. —JETP 21,
1053 (1965)j.

V. DISCUSSION

The results of this paper differ from those of the local
theory in two aspects.

(a) There are corrections due to the nonlocal bulk
effect. These corrections depend on k2P/y2 and are
directly and only a consequence of the nonlocal rela-
tionship between k andes Lsee Eq. (A9)$. In our approxi-
mation they show up only in the expression for the
resonance frequencies and are the same as already given

by Sheard.
(b) There are corrections which depend on Pccl/d

and which therefore may be called size-effect correc-
tions. They are caused by the modification of the phase
and amplitude of the field and currents at the boundaries
of the sample. These modifications can be seen, for
instance, in the expression for the electric field Ei(s).
Besides a part varying as ED=sinks, Eo(s) contains
additional terms, which at distances i &2/r/&d, from the
surface fall off as (2/r/)co, )2 exp( —f'/i) and oscillate
with wave vector ~,/2)r.
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quantity; it can be determined by measuring the angle
8 at which the (transverse) response is exactly in phase
with the exciting field, p=90' —8. It should be noted
that this phase shift is a new phenomenon, which is
entirely due to the size effect. The greatest effect, how-

ever, is the reduction of the Q's of the resonances by
the factor (1+2P) '. This should be easily measurable
if cu,r& 1 and provided co,7- is known from other experi-
mental data. If, on the other hand, one wishes to deter-
mine (d,r from the Q values of nonlocal helicon reso-
nances, size-effect corrections have to be taken into
account. The size-effect correction in Q is of such a
nature that it is as if the bull~ resistivity were increased

by a factor 1+2P. This may be compared with the size
effect in the dc resistivity. In that case the size eRect
makes the sample behave as if its resistivity were in-
creased by a factor 1+)8, as is well known from Sond-
heimer's work" and also follows immediately from
Eq. (18) with E independent of s. To understand this
difference we have to resort to the picture already
sketched in the Introduction. An electron scattered
diffusely at the surface starts drifting in phase with the
electric field rather than flowing perpendicular to it,
increasing the resistivity and giving rise to additional
absorption in a surface layer of thickness t)~/(d. . This
applies to both the dc and ac situations, where for the
same value of the electric field at s=d the additional
absorption is the same. However, apart from the dis-
turbances at the surfaces, ja, (E&,) is uniform over the
thickness of the sample, whereas j „(E„)= ja, (E&,)
Xsinks/sinkd. Since now in resonance (j „E„),
=-,'j&.E«, the over-all bulk absorption in the ac situa-
tion is half that in the dc situation. The relative im-

portance of the additional absorption in the surface
layers is therefore twice as large, giving a size effect
twice as large.

We suggest that the existence of the ac size eRect can

be shown by measuring the Q of the fundamental

resonance of a single metal plate and that of the
fundamental resonance of a Rat box consisting of two

of these plates, described in Ref. 14.
According to our theory the Q of the single plate

should in the limit l/2d)1, l/2d(e, r(1 be given by
4ke,r X2d/3l, whereas Q the of the flat box, which for the
fundamental is determined by the dc size effect, is in

this limit 8(d,rX2d/ l, being twic-e as large. One could

of course also compare the Q of the fundamental reso-

nance of the flat box with the Q of the first harmonic,
since the latter is determined by the ac size effect. Thus
it seems that the only advantage of the use of helicon
waves for the determination of the size effect is that it
allows a contactless measurement of the ac and dc size

effects.

APPENDIX

The integrodifferential equation to be solved is

c)2E (s) $py +4
= —kp'—

4/
ds' E (s')E(s —s'),

—d(s(+d (A1)

with ko' ———47ri(d(r()/c'y and E(s) given by

1 1
E(s) = ds ———exp( —y~s~sl ').

s s
(A2)

Equation (A1) can be written a,s

k'Ez

+d f 3py

ddt k' kC(z—s —)+k'k(—s 'e))F(e—). (Ak)

The above equation can be solved by iteration:

E(s) = 2 E'(s),
n=p, 1, ~ ~ ~

82
k' Eps =0,

(A4)

(32

+k')E. (a) =
Bs

ds' E„,(s')

f 3y
X~ —k,'—K(z —z')+k'k(z —E')), e=), 2, . . .,

4t

We have

E()(s)= sinks,

(A{)

(A7)

k 0212 3y +"
E„(s)= — — ds' E„ i (s')

& 4t

provided we choose

exp( —ys~ s—s'~ l ')
X— (AS)

1+k'P/y's'

3 1 1
k =kpX- (A9)

s sk 1+k~P/y's

which is the nonlocal dispersion relation. For ~ksp/y2~

& 1 this relation can be approximated by

while E (s) can be defined in terms of the function
E. ,(s) by

~4 C. A. A. J. Greebe, W. F. Druyvesteyn, and W, J. A. Gpps-
sens, Phys. Letters 24A, /2/ {1967).

k()2P
k'=ko'I 1-

3&
(A10)
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a er is stil

kp'l' 3p
I&-(&) I ~, —I&--i(&') I--

4l

ds'
s' —1 exp( —y!z—s'Ist ')
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the inte ration over s betweeen1and ~ by
G thbetween 0 an ~, wi ran integration betw

It Alo. ng thereal variable t defined by s=1+y ~y . o
new path of integration we have
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that in this limit k'=kp'. To provefrom which it is seen t at in i
' ' ' ' rove

the iteration proce ure wethe convergence of t e i e we
consider Eq. (A8). From that equation i o o

approxlma ion ct' carried through in this p p

see u to which value of y e
'bl 1 h 1nd ives reliable resu s,

chine in the limit co,r ~
of the dimensionless parameters

v . The limit cv,r —&~
'

nce h sically it means thatlIla thematical convenience; physica y i
in due to the surfaces. or prac ictical

d h f d 1sons we have on y calculate e ureaso
+ haveresonance, i.e., E=~/ . h

b solving numenca y ebeen obtaine y'
ns for the real an imagincoupled equations o

btained fromE+(s). These coup e qled e uations are o a'

this problem ~p/&v, appears a

ues for +. In the erst type of approxi-
F(d) d E'(d)mation p, wa+ was calculated from F. an

by the nonlocal bulk theory, i.e.,
!1+k~t2/&~s~

I
&1—Ik~t~/&2! /(1+t2), (A15)

sink ~d
so that

kp'P

! X 3&-(&) I
& I&--i(&)I--

X1/(1 —Iko't'/v'I/(1+t')). (A16)

n and A9) it is obvious that theFrom this expression a
ure converges for su cien yiteration procedure

rou h estimatek 'Pty'I. For instance, a roug

t th t th first orderanteed. Explicit formulas suggest t a e

p,+=
k+d cosk+d

(A17)

sink+a
(A18)

k+d cosk+d+ko+d(3ko+t/16'+) sink+I

+ is exactl calculated from Kq. A9 . Therefore,

accounted for.
a roximation the values ofIn the second type of approximation e

wer+ were calculated from

K=0,7

I' G. 1.Real and imaginary partsIG.
of the circular response unc.unctions

in the limit co,~ —+ ~, cal-zn
culated numencally as a function

d / for different values
of the parameter E=k v~ w„.

. , 0.7. The curves in-
dicated by O~ are calculated from

(A1) those indicated by

(A19), respectively; the ver tica
lines indicated by O4 give the
positron of the resonances accord-
ing to the local theory.

Q I I

2.5 D 9

x.o.s

0 ~ I

2 0 2.5

K=0.6

2 D 2.5

K=0.7

+O~O~-C~
I I I

Z5D Z f ~.5
Pr PtQ2Qa

o i

2 D 2.5 3'

-2-2—

2 D

—- -P~O~O~O~-
I I

3



95O W J A. GOOSSENS AND D. POLDER

0 150 2

I

15 0

25

K—'-08

0
0 150 .0

25 g

Y=O 9

PpQttzz---
150 5

15 Q

.5

FIG. 2. Real and imaginary
part of the circular response
functions p+ in the limit
co,r ~, calculated numeri-
cally as a function of D=des, /vz
for dif'ferent values of the pa-
rameter E=k+v~/u„E=0. 8,
0.9, 1.0. The curves indicated
by Oi are calculated from Eq.
(Ai), those indicated by O~

and Qs from Eqs. (A18) and
(A19), respectively; the verti-
cal lines indicated by O4 give
the position of the resonances
according to the local theory.

which corresponds to the lowest-order approximation
of Kqs. (26) and (27). For completeness we have also
calculated the position of the resonances in the local
theory. In Figs. 1 and 2 the calculated values of the
real and imaginary parts of p~ are given as a function of
D for different values of E. The imaginary part of p
is not drawn because it nearly coincides with the
abscissa; note that the imaginary part of p+ for the
local and the nonlocal bulk theory is zero everywhere
except in resonance, where it is infinite.

Concerning these results, we wish to make the
following remarks.

(1) The position of t.he resonances in the two approxi-
mations is nearly the same and for values of E up to
0.8 in good agreement with the exact position. For
IC)0.8, however, the use of the nonlocal theory seems to
give incorrect results; this can be said with certainly
only for the fundamental resonance. There is, however,
no reason to believe that things are worse for the higher
resonances. On the contrary, if in a given sample a
higher harmonic is studied at such a high E value, a
higher value of ~,r will be required. This means that
the size-effect correction on the position of the reso-
nance, which, at least in a first approximation, is pro-

portional to (f/doi, r)', can be expected to be smaller
than for the first resonance.

The difference in the position of the maximum
p, ;+—p; and of the zero p„+—p„shows that there is a
phase shift in the response. This shift, which does not
not occur in the nonlocal bulk theory, does agree quite
well up to E= 0.8.

(2) Whereas in the limit oi,r-+~ the nonlocal bulk
theory gives infinitely sharp resonances, the reso-
nances according the second approximation have a finite
width. Compared to the width of the exactly calculated
resonances, we can only say that they are of the right
order of magnitude, the agreement getting worse
the higher the value of E. These features correspond
to the fact that in the limit )co,r ~~ the nonlocal
bulk theory gives Q values that are infinite, whereas
the second approximation gives Q values that are finite,
due to the damping at the surfaces. Since this damping
is in a first approximation proportional to vp/dho„ it
will for the same reason as already mentioned in (1)
be smaller for a higher harmonic than for the first
resonance at the same E value. Ke may therefore
expect that the agreement between the approximate and
exact results for the higher harmonics will be better.


