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The theory of nonlocal helicon waves, valid for metal samples considered as bulk material, is extended
in"order to include the effect of the finite thickness of such samples. The main problem is to solve an integro-
differential equation for the electric field of the waves. This is done by an iteration procedure which yields
the solution for the field as an infinite series, the first term of which is the field of the nonlocal bulk theory.
With these solutions the response of the sample to an external ac magnetic field is calculated. The main
results are that in a first approximation the resonance frequencies are nearly exactly the same as given
by the nonlocal bulk theory, whereas the Q values of the resonances are reduced; also the phase of the
response is changed. The reduction of the Q values is interpreted as an ac size effect in the resistivity. An
experimental verification of this ac size effect is proposed in connection with the dc size effect.

I. INTRODUCTION

HE interesting phenomena connected with the
propagation of electromagnetic waves in pure
metals placed in a strong dc magnetic field have been
the subject of many investigations in the last few
years. The phenomena are observed in very pure
samples of an uncompensated metal at low tempera-
ture, so that the metal has a Hall angle sufficiently
near to 3. For instance, it is well established that low-
frequency electromagnetic (EM) waves, called helicon
waves because of their polarization properties,! can
propagate with very low phase velocity and relatively
little attenuation in such metals. The existence of the
waves also shows up in helicon resonance experiments,
in which the metal sample acts as a resonance cavity
for helicon waves.

In a simple resonance experiment, a thin metal
plate is placed simultaneously in a strong dc magnetic
field H, along a z axis perpendicular to the plate and a
weak homogeneous ac magnetic field (%o, €%0,0) per-
pendicular to Hy. The response of the sample to the
exciting ac field, for instance, measured by the pickup
in a coil with its axis in the xy plane, shows resonances
at various frequencies which depend on the thickness of
the plate. An alternative way to carry out the experi-
ment is to study the oscillations in the decay of the
eddy currents after a constant field %4, is suddenly
switched off.

The mathematical description of the resonance ex-
periment on an infinitely large plate of thickness 24
is simplified by the fact that all ac fields and currents
are perpendicular to the z axis and depend only on z.
According to Maxwell’s equations, we then have, if we
neglect the dielectric displacement current and put the
magnetic permeability equal to 1,

#E(z) 4riw,
=—J(2
922 ¢

) ¢y

1 Proceedings of the Symposium on Plasma Effects in Solids,
Paris, 1964 (Academic Press Inc., New York, 1965).
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together with the boundary conditions
e /0E,(3)
_( ) =(H(2)) :=za=hos,
1w 9z 2=+d
2)
e /0F.(2)
—,—< > =(Hy(2))e=2a=0.
1w dz 2=+d

The further steps are extremely simple if a local rela-
tionship between j and E is assumed to hold. We then
have for isotropic materials

E(2)=pj(2)+Ru(i(z) X Ho), )

in which RyH, is assumed to be larger than p. In this
paper Ry is taken to be positive, i.e., we assume elec-
tron conduction. The field H(z) that satisfies (1)-(3)
is composed of a right circularly polarized field

H*(2)=H ,(2)+1iH,(2) = hoy coskTz/cosktd  (4a)
and a left circularly polarized field
H~(2)=H,(3)—1H,(2) = ho, cosk=z/cosk~d, (4b)
with &% given by the dispersion relation
(k)22
w= . (£RpyHo+ip), ©)

where w is real and 2% complex.
The resonance character of the solution stems from
cosk™d being nearly zero for

w%[(Zn-{— 1)7T/2d:I2RHH062/47r .

Note that the left circularly polarized component does
not show resonances; its field has a cutoff character
rather than a standing-wave character. All this has been
treated in great detail by Chambers and Jones.? The
question to be discussed in this paper is what happens
if the local relation between j and E no longer holds.
The question is particularly relevant since the mean

2 R. G. Chambers and B. K. Jones, Proc. Roy. Soc. (London)
A270, 417 (1962).
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free path  of the charge carriers in the pure metal con-
cerned might easily be greater than the helicon wave-
length 4d/(2n-+1) at the nth resonance, while the local
approximation is only justified if / is much smaller than
the wavelength, i.e., k<1. Experimentally, clear reso-
nances are observed if £#/>1, including the case //d>1.3

Without explicitly solving the problem, Sheard* has
theoretically discussed this point. Sheard suggests that
the only difference between the local and the nonlocal
theory is that in the latter theory the dispersion rela-
tion (5) must be replaced by the nonlocal dispersion
relation derived for wave propagation in an infinitely
large medium.? For a simple Sommerfeld free-electron
model, the nonlocal dispersion relation reads, if kl/w.r
<1, wer>1, and w Sw,

(ke koatif (ki)2l2>

1 (6)
4 ) \ Swer?

w

where w.=eH,/mc is the cyclotron frequency, 7 the
relaxation time, and oo=Ne?r/m, N being the electron
concentration. The effect of the nonlocal correc-
tion factor 1— (k%)2%/5w27? has been experimentally
demonstrated.®3

Sheard’s considerations do not take into account the
specific influence of the boundaries on the electron
velocity distribution. If there is diffuse surface scatter-
ing, there will be a thin layer with a thickness of the
order I/w,r near the boundaries in which the average
current will have a sizable component parallel to the
electric field rather than flowing perpendicular to it as
in the bulk. This will give rise to an additional damping
and also to a modification of the EM field near the
boundaries, so that, for instance (4) will no longer be
correct. We shall deal with these effects in this paper.
We wish to observed that the additional power dissipa-
tion near the surface is of the same type as that oc-
curring in the dc size effect of a metal placed in a strong
dc magnetic field. We shall have the opportunity to
return to this point in the discussion.

It is well known that formal nonlocal ac transport
theory in the presence of boundaries leads to an in-
tegrodifferential equation for the (electric) field. If
there is only one boundary, the Laplace-transform
technique allows one to obtain an explicit solution (cf.
the theory of the anomalous skin effect®?). If there are
two boundaries, the situation is considerably more
complex.~2 Therefore, in this paper we shall resort

3 M. T. Taylor, J. R. Merril, and R. Bowers, Phys. Letters 6,
159 (1963).

4F. W. Sheard, Phys. Rev. 129, 2563 (1963).

5J. J. Quinn and S. Rodriguez, Phys. Rev. 133A, 1489 (1964).

6S. W. Hui, Phys. Letters 24A, 265 (1967).

7M. T. Taylor, Phys. Rev. 137A, 1145 (1965).

8 J. L. Stanford and S. A. Stern, Phys. Rev. 144, 534 (1966).

9G. E. H. Reuter and E. H. Sondheimer, Proc. Roy. Soc.
(London) A195, 336 (1948).

0 E. H. Sondheimer, Advan. Phys. 1, 1 (1952).

1P, Cotti, Physik Kondensierten Materie 3, 40 (1964).

2 G, A. Baraff, J. Math. Phys. 9, 372 (1968); Phys. Rev. 167,
625 (1968).
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to an expansion of the solution in powers of a small
parameter, for which we shall take woel?/cw 3. In the
local limit this parameter corresponds to k%%/w 272 In
Sec. IIT we shall obtain the series expansion by solving
the integrodifferential equation formulated in Sec. II,
by means of an iteration procedure discussed in the
Appendix. The interpretation of the results obtained in
Sec. IV is given in Sec. V.

II. TRANSPORT THEORY

We shall consider a thin metallic sample of thickness
2d in a perpendicular magnetic field H, along the z
axis. The surfaces of the sample are at z=d-d. The
electrons in the metal are described by a distribution
function f which will be written in the form

f=foth. )

Here fo is the undisturbed Fermi distribution, which
will be assumed to be spherical ; fy is the deviation from
equilibrium due to an external disturbance. In the
presence of an ac electric field perpendicular to the z
axis, varying in time as

E(z,)=E(z)e, 8)

and of the dc magnetic field Hy, the linearized Boltz-
mann equation takes the form

. 8f1 eHoT af1 afl
A+iwr) fitro—— (1@——1};—-)

dz  mc 4, vy

=e'rE-v?ﬁ , (9)

de

where e is the energy and —e the charge of the elec-
trons. To solve Eq. (9), we write f; in the form

dfo
fl = (vxgx+vygy)a_ 3 (10)

where g, and g, do not depend explicitly on v, and v,.
Substitution of Eq. (10) into Eq. (9) leads to two
coupled equations for g. and g,; if we introduce the
complex quantities g+ defined by

gE= gatigy (11)
and circularly polarized components
Ef=FE,41iFE,, (12)

these equations for g, and g, can be written as in-
dependent equations for g*:

dgk 9™
yEgE+ro—=erE*,
0z
(13)

yE=14iwrFiwr.
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Introducing the boundary conditions for diffuse scatter-
ing at the surfaces z=4d,

gi(dyvh‘v)”z<0=07 gﬂ:(_dy‘vzyv)”z>0=07 (14)

we find

gi(zyvz’v)vz<0
e d

=L / 07 B4 (&) expl—v*(—#)/70.],  (15a)
vz z

gi (Z;Y}Z;‘v)vz>0
z

=i dz' E*(2") exp[ —v*(z—3%")/7v.].

Vs J—d

(15b)
The current density is

i(e)= ——Ze(f;)a / dvvf(av).

Introducing polar coordinates v, ¢, and & with v,=v cos?
=, we have for a degenerate electron gas

(16)

3Ne?

+1
@)= /du<1—u2>gi<z,m,w> 7

m

and find after some trivial manipulations

30‘0 +d * 1 1
7%(2) =—~/ dz' Ei(z’)/ ds(~————>
41 —d 1 S 83

Xexp(—=|s—2'| i)
30 [+
=7}l_ dz' EX(2")K*(z—2').

—d

(18)

We now substitute the above equation for the current
in the combined Maxwell equations given by Eq. (1);
the result is the following integrodifferential equation
for the electric field:

PE*X(z) Amiwoo3yE He
= —_— dz' E=(s")K*(z—2"),
022 Ayt 4l J_g

(19)

which will be solved in Sec. III. We want, however,
to remark that the general solution for the field £+ as a
function of z is more than we need. In a resonance ex-
periment one is interested in the average magnetic
induction in the sample induced by an external ac
magnetic field %. For an ac magnetic field of the form
(h2(@),0,0) applied to the surfaces of the sample the
average magnetic induction can be expressed in the
following form (the magnetic permeability is assumed
to be equal to 1):

+d

Bw)=— /_ s B ) =), Q0)
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where u*(w) is given by

pE(w)=E*(d)/d- (0E*(3)/02)z-a.

Here we have made use of the symmetry of the problem,
ie.,

(21)

HE(z)=H*(—3), E*(z)=—E*(—3z). (22)

III. GENERAL METHOD

We must find a solution of the integrodifferential
equation (19), satisfying the symmetry relation (22).
In view of Eq. (21), it suffices to know the solution
apart from a multiplication factor. It is shown in the
Appendix that Eq. (19) can be solved by iteration:

E@)=Y E.(), (23a)
Eo(z) =sinkz, (23b)

ko?l? 3y e * 1 1
En (Z) = -—‘*—2 7 dZ, En_l (Z,)/ d5<_3‘—‘_>
1

v: 4l ) 4 s R
exp(—vy[z—2|sI7)
1 R22 /252

, (23¢)

where k¢?= —4miws/c?y. Thus, k is the helicon wave-
number corresponding to the frequency w according to
local theory, while & is determined by the nonlocal dis-
persion relation given in the Appendix [Eq. (A9) and
in approximation by Eq. (A10)]. For convenience we
have omitted the reference == to the two polarizations
in %, k1, v, and E.

It is shown in the Appendix that the iteration pro-
cedure converges for sufficiently small values of |kl/v],
i.e., for values smaller than a number 7 of the order of
but smaller than 1. In the same sense we may say that
the procedure can only be used for |kd/v|<no or
w<no®|v|*/al’. The expressions for Ei(z) and its
derivative Ey/(z) are easily calculated:

3k > 1 1 1 2
E1 (Z) T e / ds<———><—“_>
27 st 58/ \14kol2/2s

X [sinh (yszlY) (Eo(d)+IEo' (d)/vs)

Xexp(—ysdl™)—Eo(z)], (24)
3ko 1 1 1 2
Ey(z)=— / ds(———)(————~—)
2y J1 s3 s8/\1+-kol2/y2s?
X [cosh (yszl™) (koEo(d)+ERobEy (d)/vs)
Xexp(—ysdl™) —kodEy (2)/vs]. (23)

As already remarked, we are mainly interested in the
values of E(2) and E’(2) for z=d.
It can be shown from Eqs. (23)-(25) that the general
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form of E(d) and E'(d) is given by

E(d)= Eo(d)P+[1EJ (d)/v]Q, (26)
E'(d)=Ey (d)R+koEo(d) (kol/v)S, (27)
where
P=14+0(kd/v?), (28)
0=0(ke*/~*), (29)
R=14+0(ks2/?), (30)
3 3~ /1 1
S=—dF- ds<———>
16 4 /4 3 s
Xexp (—2ysdl )40 (ko2/v%). (31)

IV. RESONANCES OF THIN METALLIC SAMPLE

We are now able to calculate the response to an ex-
ternal excitation of a thin metallic sample, placed in a
strong dc magnetic field ; the configuration is that given
in the previous sections. According to Egs. (20) and
(21), the average magnetic induction in the sample
induced by an ac magnetic field can be expressed in
terms of a response functlon u(w) given by

p(w)=E(d)/dXE(d). (32)

After substitution of Egs. (26) and (27) into Eq. (32),
we can write

A tan(kd—¢)
plw)=—— B, (33)
kod
where 4, B, and ¢ are given by
A=140k&/~?), (34)
B=(/dv)[140(kel?/¥*)], (35)
kol S
= tan’1<—— ——) . (36)
vy R
With the aid of
w 23 ( )
tanz= Z _ 37
7=1,3,5,-- —(1'1,7r/2)2
Equation (33) can be written as
2U (kd—g) = 1
plw)=——— FB. (38)

bod et (hd—g)i— ()2

In the local limit ko/y — O this expression reduces to
the well-known expression?

o 2
®)loc= _ 3
”( )x n=§3,"' k02d2—(%7l'/2)2 ( 9)

The right-hand side of Eq. (38) is a function of the
(real) variable w, since 4, B, ¢, and & depend on kg, and
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k= —4miweo/c*y. Since in practice w<w,, we may
neglect the w dependence of v. For the right circularly
polarized mode we then have y=1—iw,s, and p*(w)
shows resonant character near the frequencies

wp= (nm/2d)*wsr /00

provided wer>1. Similarly, u=(w) shows resonances
near w=—w, We must remember, however, that
Eq. (38) is valid only for sufficiently low frequencies:

o<y [} ol

We now want to evaluate the position and the width of
the resonances occurring in this low-frequency region.
For that purpose we retain in the denominators the
first relevant terms by which kd—¢ differs from kod.
In the frequency range considered we use

Rr=ke- (1—keP/572)

and ¢=FkolS/y. Since near the resonances, I/2dvy
=kl/nry, we may assume //2dy<1 and hence approxi-
mate S by %. Indeed, from Eq. (31) and I/2dy<1 one
easily concludes that

S=3/16+0(P/22d*v*) 40 (k22/+?). (40)
Thus, in this approximation we have
kot? 31 or
(kd—¢)2=ko2d2[1 —_—— +-- ] . (41
vt 8dy 256d%y?

We now insert Eq. (41) into Eq. (38) for u(w) and con-
sider the resulting expression as a function of a complex
variable &. The function has an infinite number of
poles at &=a&,,n=1,3,5, ..., ©. We shall separate out
the contributions of those poles, n=1, 3, ..., M,
within a unit circle of radius c2|vy| 3/:7012 since only
these poles can, generally speaking, determine any
resonances found in the relevant range of frequecies
w. The remaining part we shall collect in a term 7 (w)
that has a smooth background character in the relevant
frequency range. The position of the poles, n=1, 3, .
M, can be most easily found by observing that in
the local limit k¢= (nr/2d)? at such a pole. With
the aid of Eq. (41), and making use of the definition of
ké= —4mriws,/c?y, we find that

471'1'(?)7100/1 nw 12 3l
¢y \ 2 58 8dy
9/ nr\>2
+ +-. )+<_> =0, (42)
256d%y? 2d
so that Eq. (38) can be written as
v 24 (kd—¢)
wo)= 3 o )
n=1,3,- - kod \mr Ww—&y,
X0t/ ) I+ T (). (43)
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Here 4, E, ko, and ¢ are the values of 4, k, ko, and ¢
at the complex eigenfrequencies &,. Note that while
&, is correctly given by Eq. (42) to the order in which
this equation is written out, the terms in (43) are cor-
rect apart from contributions of the order (%/v)%. In
this approximation it is correct to put 4 =1, ko= 3nm,
and kd—¢= (3nmw) X (1—31/16dv). We thus have

#i(w)=2<1— - >
16dy*
M 2 2 d‘)"ﬂ:
X 5 (—) FTEW), (44)
n=1,3,--+ \#T w_d‘)n:l:

where we have explicitly written out as a reminder the
=+ sign referring to the right and left circularly polarized
modes. Quite generally, we have

[ut (@) J*=p(—w). (45)

We shall now be interested in the component of the
magnetic induction in a direction that makes and angle
¢ with the direction of excitation. We have

By=B, cos9+B, sind

=1[ut exp(— i)+ u~ exp (i) Jho=pshs. (46)

Writing
1—3l/16dv*=r exp(Fiop), (47)
= w, exp(=£iX), (48)

we find, using Eq. (44), that
ug(w)=r cos(p+9)

£ () S sintot)
=13 N/ 1410 (w/wn—wn/w)
M AN cotX N
XHZ-,... <;,;> 110 (/o —eon /@) To(w), (49)
where
Q=1/2 sinX=73 (14cot™X)*/2. (50)

It is easily shown that in the approximation used, 7,
@, wa, and Q are given by

2‘3 62 1/2
r=(1— : , (51)
< 14w 1+w¢272>
chT
<p=tan“1 —}, (52)
1tw2r?—p

nw\2 ¢
COn=<—> (I14w2e2)t2
2d/ 4rmoy
26 6

1/ nml \?
SEEEa -
S\2dwer/  1twirt 14wl

Q= (1+wlr)/2(1426),

T, (53)

(54)
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where we have introduced the parameter §:
B=2%1/2d. (55)

By taking the limit 83— 0, one obtains the formula of
the nonlocal bulk theory, whereas the results of the
local theory are obtained if one takes also the limit
El/wer=nrl/2dw.r — 0.

V. DISCUSSION

The results of this paper differ from those of the local
theory in two aspects.

(a) There are corrections due to the nonlocal bulk
effect. These corrections depend on k2%/4% and are
directly and only a consequence of the nonlocal rela-
tionship between & and w [see Eq. (A9)]. In our approxi-
mation they show up only in the expression for the
resonance frequencies and are the same as already given
by Sheard.

(b) There are corrections which depend on g«i/d
and which therefore may be called size-effect correc-
tions. They are caused by the modification of the phase
and amplitude of the field and currents at the boundaries
of the sample. These modifications can be seen, for
instance, in the expression for the electric field Ey(z).
Besides a part varying as Eo=sinks, Eo(z) contains
additional terms, which at distances ¢{>vp/w, from the
surface fall off as (vp/{w.)? exp(—¢/I) and oscillate
with wave vector w/vp.

Gantmakher and Kaner’® have shown that surface
excitations of this kind can be observed directly if one
chooses the frequency or magnetic field such that
|kl/v|>1; the helicon wave is then damped out in a
skin layer of thickness §<vp/w.<d,! and only the
surface excitations propagate over distances of the
order .

In principle, the size-effect corrections show up in the
amplitude, phase, resonance frequencies, and Q values
of the resonances; in practice, they are only important
for the phase and Q values.

The corrections in the amplitude are small, of the
order of B/w2r?, B%/w2r?, where 8/w.r< |kl/v| <1 and
w,7>1, and not uniquely determined because of the
nonresonant part of the response function 7's(w).

The same argument of smallness applies to the size-
effect corrections in w,, where k%2/5w2r?> (% w272,
B/wr?. This is in accordance with the experimental
results that the resonance frequencies are very well
described by using the nonlocal dispersion relation and
for kl/w,r up to 0.8 also with the numerical results we
have obtained ; see the Appendix.

The phase shift ¢, however, which in our approxima-
tion is equal to B/w.r if B <w 72, should be a measurable

8V, F. Gantmakher and E. A. Kaner, Zh. Eksperim. i Teor.
Fiz. 48, 1572, 1965 [English transl.: Soviet Phys.—JETP 21,
1053 (1965)].
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quantity ; it can be determined by measuring the angle
¢ at which the (transverse) response is exactly in phase
with the exciting field, ¢=90°—¢. It should be noted
that this phase shift is a new phenomenon, which is
entirely due to the size effect. The greatest effect, how-
ever, is the reduction of the Q’s of the resonances by
the factor (1+428)~1. This should be easily measurable
if wer>1 and provided w.r is known from other experi-
mental data. If, on the other hand, one wishes to deter-
mine w,r from the Q values of nonlocal helicon reso-
nances, size-effect corrections have to be taken into
account. The size-effect correction in Q is of such a
nature that it is as if the bulk resistivity were increased
by a factor 1428. This may be compared with the size
effect in the dc resistivity. In that case the size effect
makes the sample behave as if its resistivity were in-
creased by a factor 143, as is well known from Sond-
heimer’s work and also follows immediately from
Eq. (18) with E independent of z. To understand this
difference we have to resort to the picture already
sketched in the Introduction. An electron scattered
diffusely at the surface starts drifting in phase with the
electric field rather than flowing perpendicular to it,
increasing the resistivity and giving rise to additional
absorption in a surface layer of thickness vp/w.. This
applies to both the dc and ac situations, where for the
same value of the electric field at z=d the additional
absorption is the same. However, apart from the dis-
turbances at the surfaces, jac(Fae) is uniform over the
thickness of the sample, whereas fac(Zac)= jac(Edo)
Xsinkz/sinkd. Since now in resonance <{JacFac)av
=17 jacFae, the over-all bulk absorption in the ac situa-
tion is half that in the dc situation. The relative im-
portance of the additional absorption in the surface
layers is therefore twice as large, giving a size effect
twice as large.

We suggest that the existence of the ac size effect can
be shown by measuring the Q of the fundamental
resonance of a single metal plate and that of the
fundamental resonance of a flat box consisting of two
of these plates, described in Ref. 14.

According to our theory the Q of the single plate
should in the limit I/2d>1, I/2dw,r<1 be given by
4w, X 2d/31, whereas Q the of the flat box, which for the
fundamental is determined by the dc size effect, is in
this limit 8w.7X2d/2l, being twice as large. One could
of course also compare the Q of the fundamental reso-
nance of the flat box with the Q of the first harmonic,
since the latter is determined by the ac size effect. Thus
it seems that the only advantage of the use of helicon
waves for the determination of the size effect is that it
allows a contactless measurement of the ac and dc size
effects.

4 C. A. A. J. Greebe, W. F. Druyvesteyn, and W. J. A. Goos-
sens, Phys. Letters 24A, 727 (1967).
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APPENDIX

The integrodifferential equation to be solved is

O*E (2) 3y e
=—ko— dz' E(z)K (z—2'),
922 47 ) _4
—d<z<+d (A1)
with k= —4wiwse/c>y and K(z) given by
_ © /1 1
K(z) =/ ds<~—~> exp(—v|z[sl). (A2)
1 s s
Equation (A1) can be written as
62
<—+k2>E ()
922
+d 3y
=/ dz’(—-/eoL—K (z—2")+k2% (z—z’))E (z). (A3)
—a 41
The above equation can be solved by iteration:
n=0,1,---
62
<—+/e2>E0(z) =0, (AS)
072
62 +d
(——}—Ie?)En () =/ dz' En_1(2")
072 —d
3y
X(—k027K(z—z’)-}—kzé(z—z’)) , n=1,2 ..., 0.
4
(A6)
We have
Ey(z)=sinksz, (A7)

while E,(z) can be defined in terms of the function
E. 1(3) by

k2 3y T © 1 1
B = [ i () / dz<———>
1

v: 4l J)_q s sP

XeXp(—vslz—Z’ll“‘)

1R /425 , (48)

provided we choose

3 1 1 1
R=k?X— / ds<-——*>*—— ,
21 s s/ 14-RU? /22

which is the nonlocal dispersion relation. For |k22/y2|
<1 this relation can be approximated by

k2
ALY
Sv?

(A9)

(A10)



187 SIZE EFFECTS IN RESONANCES

from which it is seen that in this limit k222k¢. To prove
the convergence of the iteration procedure we have to
consider Eq. (A8). From that equation it follows that

kotl?

,YZ

+d
X / dz’
—d
We replace the integration over s between 1 and « by
an integration between 0 and o, with respect to a new

real variable ¢ defined by s=14v71|y|t Along the
new path of integration we have

|En(3)| <

3y
_‘I |En—1 (Z,) I max
41

©  s2—1exp(—vy|z—2|sl™)
/ds | . (A1D)
1

55 1+k212/’}’252

[(+1)s71 L2, (A12)
[s4 > (1+£)?, (A13)
+d
|7 dz’ exp(—vy|z—2'|si)<2/t, (Al14)
—d
1482/ >1— | B2/v]/(148),  (A15)
so that
ko2 1
lEn(Z) I S IEn—l (Z’) l maxx 3“— / dt
v lJo 142
X1/(A— kv /(1+8)). (A16)

From this expression and (A9) it is obvious that the
iteration procedure converges for sufficiently small
values of |k?/v%|. For instance, a rough estimate
shows that for |kl/y|<0.5 the convergence is guar-
anteed. Explicit formulas suggest that the first-order

F16. 1. Real and imaginary parts
of the circular response functions
pt in the limit w,r — o, cal-
culated numerically as a function
of D=dw./vr for different values
of the parameter K=~kop/we;
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approximation carried through in this paper is still
reliable for this value.

In order to see up to which value of |kl/v| the theory
makes sense and gives reliable results, we have cal-
culated on the machine in the limit w.r — o the exact
value of the real and imaginary parts of u* for different
values of the dimensionless parameters K=Fktvp/w,
and D=dw./vp. The limit w,s— was chosen for
mathematical convenience; physically it means that
there is only damping due to the surfaces. For practical
reasons we have only calculated the fundamental
resonance, i.e., K=r/2D. The exact values of u* have
been obtained by solving numerically the two sets of
coupled equations for the real and imaginary parts of
E*(z). These coupled equations are obtained from
Eq. (A1) with (//¥%)s,rse==ivr/w.; note that in
this problem vr/w, appears as the characteristic length
instead of /=vpr. We have also calculated two types of
approximate values for u%. In the first type of approxi-
mation u* was calculated from E(d) and E'(d) given
by the nonlocal bulk theory, i.e.,

sink+d
ut= (A17)

k*d cosk*d’

where k* is exactly calculated from Eq. (A9). Therefore,
the effect of the nonlocal dispersion relation is fully
accounted for.

In the second type of approximation the values of
wt were calculated from

sink*d

k*d cosk*d—koEd (3ko*l/16vE) sink*d ’

+

(A18)

K=056

K=0.5, 0.6, 0.7. The curves in-
dicated by ® are calculated from
equation (A1), those indicated by
® and ® from Egs. (A18) and
(A19), respectively; the vertical
lines indicated by @ give the
position of the resonances accord-
ing to the local theory.
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F1e. 2. Real and imaginary
part of the circular response
functions p* in the limit
wer —, calculated numeri-

cally as a function of D=dw./vr
for different values of the pa-
rameter K=~k vp/w.; K=0.8,
0.9, 1.0. The curves indicated
by @ are calculated from Eq.
(A1), those indicated by ®
and ® from Egs. (A18) and
(A19), respectively; the verti-
cal lines indicated by ® give
the position of the resonances
according to the local theory.

which corresponds to the lowest-order approximation
of Egs. (26) and (27). For completeness we have also
calculated the position of the resonances in the local
theory. In Figs. 1 and 2 the calculated values of the
real and imaginary parts of u* are given as a function of
D for different values of K. The imaginary part of u~
is not drawn because it nearly coincides with the
abscissa ; note that the imaginary part of ut for the
local and the nonlocal bulk theory is zero everywhere
except in resonance, where it is infinite.

Concerning these results, we wish to make the
following remarks.

(1) The position of the resonances in the two approxi-
mations is nearly the same and for values of K up to
0.8 in good agreement with the exact position. For
K)0.8, however, the use of the nonlocal theory seems to
give incorrect results; this can be said with certainly
only for the fundamental resonance. There is, however,
no reason to believe that things are worse for the higher
resonances. On the contrary, if in a given sample a
higher harmonic is studied at such a high K value, a
higher value of w.r will be required. This means that
the size-effect correction on the position of the reso-
nance, which, at least in a first approximation, is pro-

portional to (I/dw.r)? can be expected to be smaller
than for the first resonance.

The difference in the position of the maximum
wit—u;~ and of the zero u,m—u,~ shows that there is a
phase shift in the response. This shift, which does not
not occur in the nonlocal bulk theory, does agree quite
well up to K=0.8.

(2) Whereas in the limit w7 — % the nonlocal bulk
theory gives infinitely sharp resonances, the reso-
nances according the second approximation have a finite
width. Compared to the width of the exactly calculated
resonances, we can only say that they are of the right
order of magnitude, the agreement getting worse
the higher the value of K. These features correspond
to the fact that in the limit Jwer — o0 the nonlocal
bulk theory gives Q values that are infinite, whereas
the second approximation gives Q values that are finite,
due to the damping at the surfaces. Since this damping
is in a first approximation proportional to vr/dw., it
will for the same reason as already mentioned in (1)
be smaller for a higher harmonic than for the first
resonance at the same K value. We may therefore
expect that the agreement between the approximate and
exact results for the higher harmonics will be better.



