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APPENDIX

Consider the equation

(e""e"'").= 1+(lE(ik y.)(ik y,)7').+ " (A~)

The terms with an odd number of factors of y go to zero

because they contain products of an odd number of
creation and/or destruction operators.

Since (ik. y„)o is small compared to unity, (A1) can
be written as

(eik ~ y„eik y&) —e Iy—e I—V' e'(i kyeik y„+ik.y„iW ye)

=e yre Ir'+e ~e w'&&Is(ik y„ik y, +ik y„ik y„)„,

where W refers to the vth atom and W' refers to the
pth atom.

Equation (3.8) and the properties of creation and
destruction operators give

—,'(ik y„ik y„+ik yik y„)=g (tt/2IMIVto„)

&({Lk e„k7pk e„s 7(n„+1)e*'«R"' "e'&+c.c.). (A2)
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In an earlier paper a method was described whereby the partial-wave phase shifts that characterize the
interaction between the conduction electrons and the lattice in a metal may be derived from experimental
Fermi-surface data. In the present paper we apply the method of phase-shift analysis to study the shape
of the Fermi surface of copper, which is known to be strongly perturbed by the d-like energy bands that lie
almost 2 eV below the Fermi level. By adjusting the values of the s, p, 6, and f phase shifts, and the Fermi-
energy parameter, we construct a model Fermi surface on which the areas of the (100) belly and the (111)
neck and belly orbits, the dog's bone, the four-cornered rosette, and the lemon orbit, are in good agreement
with the results of precision measurements of the corresponding de Haas —van Alphen frequencies. The belly
anisotropy of the model surface is also in good agreement with the experimental data, and the volume en-
closed by the surface does not di&er significantly from 1 electron/atom. The radii of the Fermi surface of
copper in the (100) and (110) symmetry zones are determined to an accuracy of +0.1%, and the results are
in good agreement with the radii recently deduced by Halse by an independent technique. It is shown that
the numerical values of the phase shifts are consistent with the position of copper in the Periodic Table. The
local potential of Chodorow for Cu+ produces phase shifts that are in substantial agreement with the results
of the present work. A simple nonlocal correction to the Chodorow potential is proposed, such that the Fermi
surface derived from the modified potential is entirely consistent with the experimental data. The energies
associated with certain optical transitions in metallic copper are computed from the modified potential, and
are found to agree with the results of recent piezo-optical experiments to better than 0.2 eV. It is concluded
that the method of phase-shift analysis is capable of representing accurately the form of the d-like electronic
energy bands in metals, and that the modified Chodorow potential may well prove to be the best starting
point for a full calculation of the band structure of copper in the vicinity of the Fermi level.

I. INTRODUCTION

AS a result of several experimental investigations, ' '
the geometry of the Fermi surface of copper is

now known in substantial detail. Copper crystallizes in

~A. B. Pippard, Phil. Trans. Roy. Soc. (London) A250, 325
(1957).

Yu. P. Gaidukov, Zh. Eksperim. i Teor. E iz. 37, 1281 (1959)
/English transl. : Soviet Phys. —JETP 10, 913 (1960)].

~ D. Shoenberg, Phil. Trans. Roy. Soc. (London) A255, 85
(1962).

4 H. V. Bohm and V. J. Easterling, Phys. Rev. 128, 1021 (1962).
'A. S. Joseph, A. C. Thorsen, E. Gertner, and L. K. Valby,

Phys. Rev. 148, 569 (1966).

a fcc structure, and single crystals of copper may
readily be grown with the high degree of chemical and
structural perfection necessary for Fermi-surface studies
by resonance techniques. According to the free-electron
model, one would expect the Fermi surface of copper
to be spherical and to lie entirely within the first
Brillouin zone, which for the fcc Bravais lattice is a

6 I. M. Templeton, Proc. Roy. Soc. (London) A292, 413 (1966).
7 J.-P. Jan and I. M. Templeton, Phys. Rev. 161, 556 (1967).

W. J. O' Sullivan and J. E. Schirber, Phys. Rev. 170, 667
(1968); ibid. , Addendum (to be published}.

M. R. Halse, thesis, University of Cambridge, 1968 (unpub-
lished}; and Phil. Trans. Roy. Soc. (London) A265, 507 (1969).
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FIG. 1. Fermi surface of copper. (a) Schematic illustration of
the Fermi surface of copper mapped in the reduced zone scheme.
(b) Six-cornered rosette mapped in the extended zone scheme;
broken lines indicate segments of the orbit that lie on the lower
surfaces of the distorted spheres. (c) Four-cornered rosette in the
extended zone scheme. (d) Dog' s-bone orbit in the extended
zone scheme. (e) Lemon orbit.

truncated octahedron. The anomalous skin effect
studies of Pippard, ' and the early de Haas —van Alphen
effect studies of Shoenberg, ' demonstrated that in fact
the Fermi surface of copper is substantially distorted
from the free-electron sphere. The surface bulges out
along the (111) directions and contacts the Brillouin-
zone boundary over a small region about the center of
each hexagonal face, as is illustrated schematically in
Fig. 1(a).

Of the experimental techniques of Fermiology, studies
of the de Haas —van Alphen effect have contributed most
to our present knowledge of the shape of the Fermi
surface of copper. A de Haas —van Alphen frequency F
may be defined by expressing the phase P of the de
Haas —van Alphen oscillations of magnetization in the
fol rn

where 8 is the magnetic Aux density. Each experi-
mentally observed frequency corresponds to an extremal
orbit on the Fermi surface in a plane normal to the
magnetic 6eld, the frequency Ii being related to the
area A of the orbit by the equation F= (AA/2z-e). The
Fermi surface of copper is multiply connected when

mapped in the extended-zone scheme, and this results
in several noncentral extremal orbits on the Fermi
surface, each of which contributes to the de Haas —van
Alphen effect. The geometries of some of these extremal
orbits normal to symmetry directions are illustrated in
Figs. 1(b)-1(e).

From the experimental de Haas —van Alphen data
one can determine directly the extremal cross-sectional
areas of the Fermi surface, but in order to calculate
the radius vectors of the Fermi surface it is necessary
to construct some model surface whose extremal cross-
sectional areas can be Qtted to the experimental data.

Shoenberg's studies of the de Haas —van Alphen effect
in copper led Roaf'" to propose an analytic expression
to represent the shape of the Fermi surface. He derived
this expression by expanding the electronic energy in
wave-vector space as a three-dimensional Fourier sum,
the coe%cients of which were adjusted to bring the
cross-sectional areas of a surface of constant energy in
wave-vector space into coincidence with the experi-
mental Fermi-surface data. An alternative approach
to the inversion of de Haas —van Alphen data has been
discussed by Zornberg and Mueller, "who employed a
model surface of which the cross-sectional areas were
expanded as a sum of cubic harmonics with adjustable
coefficients, and from which the radii could be deduced

by a simple calculation.
In the course of recent studies of pressure effects on

the Fermi surfaces of noble metals, Jan and Templeton'
and O' Sullivan and Schirbers have made precision
measurements of the absolute de Haas —van Alphen
frequencies corresponding to several symmetry orbits
on the Fermi surface of copper. Their results are set
out in Table I. Detailed investigations of the anisot-
ropies of the de Haas —van Alphen frequencies in

copper have been carried out by Joseph, Thorsen,
Gertner, and Valby, ' and by Halse. ' Halse interpreted
the results of this work by recalculating the coefficients
of Roaf's formula, and found it desirable to include
a further term in the Fourier sum in order to obtain
improved agreement with the experimental data. The
estimated accuracy of the radii of the Fermi surface of
copper deduced from Halse's final model surface is
about &O. I%%.

Theoretical studies of the electronic structure of
copper have contributed greatly to the development
of methods of band-structure calculation. The Qrst-

principles band-structure calculations of Segall" by the
method of Korringa and Kohn and Rostocker" (KKR),
and of Burdick, '4 by the augmented-plane-wave (APW)
method of Slater, " predicted Fermi surfaces in satis-
factory agreement with the experimental data then
available, and incidentally demonstrated the equiva-
lence of KKR and APW calculations based on the
same potential. More recently, Snow and Waber" have
carried out self-consistent energy-band calculations for
copper, in an attempt to determine how best to repre-
sent the exchange potential that acts on the conduction
electrons. Faulkner, Davis, and Joy'r have computed

"D. J. Roaf, Phil. Trans. Roy. Soc. (London) A255, 135 (1962)."E. I.Zornberg and F. M. Mueller, Phys. Rev. 151, 557 (1966)."B.Segall, Phys. Rev. 125, 109 (1962).
'3 J. Korringa, Physica 13, 392 (1947); W. Kohn and N.

Rostoker, Phys. Rev. 94, 1111 (1954); F. S. Ham and B. Segall,
ibid. 124, 1786 (1961)."G. A. Burdick, Phys. Rev. 129, 138 (1963)."J.C. Slater, Phys. Rev, 51, 846 (1937); 92, 603 (1953)."E.C. Snow and J. T. Waber, Phys. Rev. 157, 570 (1967);
E. C. Snow, ibid. 171, 785 (1968)."J.S. Faulkner, H. L. Davis, and H. W. Joy, Phys. Rev. 161,
656 (1967); H. L. Davis, J. S. Faulkner, and H, W. Joy, ibid.
167, 601 (1968).
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constant-energy surfaces for copper, starting from
various potentials, and have found results in good
qualitative agreement with the experimental Fermi-
surface data.

The distortions of the Fermi surfaces of real metals
from a free-electron sphere are caused by an interaction
between the conduction electrons and the lattice.
Recently, attempts have been made to analyze the
experimental Fermi-surface data in order to obtain
information about the electron-ion interaction in metals.
The pseudopotential method, in both its local" and its
nonlocal" forms, has been applied to analyze the
Fermi-surface distortions of several nearly-free-electron
metals. However, these methods are inappropriate for
a discussion of Fermi surfaces that involve or are
strongly perturbed by d-like energy bands, since for
d states the approximations of pseudopotential theory
are known to fail. '0 In order to study the Fermi surfaces
of metals of the d-transition series, including the noble
metals, some alternative technique is required. Hodges,
Ehrenreich, and Lang, " and Mueller, "have proposed
interpolation schemes in which the conduction bands
are treated in the nearly-free-electron approximation,
while the d states are represented by tight-binding
functions. The hybridization integrals and overlap
integrals are treated as adjustable parameters, and
are determined by fitting the model Hamiltonian to the
results of first-principles band-structure calculations.
The interpolation schemes are economical in computer
time and are capable of giving an excellent over-all fit
to the results of energy-band calculations. However,
since they involve a large number of adjustable param-
eters, they are not easily applied to the interpretation
of experimental Fermi-surface data. The interpolation
schemes have been discussed in detail by Heine" and
by Phillips. '4

A method has recently been described whereby the
partial-wave phase shifts that characterize the inter-
action between the conduction electrons and the ionic
cores in a metallic lattice may be derived from experi-
mental Fermi-surface data. In an earlier paper" the
method of phase-shift analysis was described and was
applied to a discussion of the shapes of the Fermi
surfaces of metals of the alkali series. The alkali metals
have nearly-free-electron energy bands and nearly
spherical Fermi surfaces. For these metals, phase-shift
analysis is an alternative to pseudopotential analysis,

'8 N. W. Ashcroft, Phil. Mag. 8, 2055 (1963); M. J. G. Lee,
Proc. Roy. Soc. (London) A295, 440 (1966)."J.C. Kimball, R. W. Stark, and I'". M. Mueller, Phys. Rev.
162, 600 (1967); M. J. G. Lee and L. M. Falicov, Proc. Roy.
Soc. (London) A304, 319 (1968).

"W. A. Harrison, Pseldopotentials in the Theory of Metals
(W. A. Benjamin, inc. , New York, 1966), p. 7.

"L.Hodges, H. Ehrenreich, and N. D. Lang, Phys. Rev. 152,
505 (1966).

22 I. M. Mueller, Phys. Rev. 148, 636 (1966).
"V. Heine, Phys. Rev. 153, 673 (1967).' J. C. Phillips, Advan. Phys. 17, 79 (1968).
"M.J. G. Lee, Phys. Rev. 178, 953 (1969).

TAsxE I.Precision experimental measurements of the de Haas-van
Alphen frequencies of some symmetry orbits in copper.

Orbit

Belly
Belly

Neck

Dog's bone
4-rosette
6-rosette
Lemon

Notation

B100

Bill

Nll1

Dllo
R100
Rill
L110

Experimental
frequency

(108 G)

(5.998+0.006)~
(5.814+0.006)'
(5.809+0.006)b

(0.2177&0.0002) '
(0.2174&0.0002)
(2.514~0.003)'
(2.462+0.003)'

(2 194~0 006)0

a Reference 8.
b Reference 7.
e K. A. McEwen and J. Vanderkooy (private communication).

with the advantage of rapid convergence of the 6tting
procedure and direct physical interpretation of the pa-
rameters, but with the disadvantage of requiring more
elaborate programming and more costly computing.

In the present paper we explore further the validity
of the method of phase-shift analysis by applying it to
experimental data relating to the Fermi surface of
copper. The shape of the Fermi surface of copper is
known to be strongly perturbed by the d bands that
lie about 2 eV below the Fermi level and hybridize
with the conduction band. By a detailed study of the
extent to which the experimental Fermi surface of
copper may be described by phase-shift analysis, we
hope to determine whether the method is capable of
representing accurately the form of d-like energy bands
in solids, and hence to judge whether the method might
reasonably be applied to an analysis of the Fermi
surfaces of metals of the d-transition series.

The paper is divided into five sections. In Sec. II,
the method of calculation is outlined; in Sec. III, the
results of the calculation are presented, and finally in
Secs. IV and V the results and conclusions of the
present work are discussed.

II. METHOD OF CALCULATION

The present analysis of the experimentally observed
distortions of the Fermi. surface of copper follows
closely the technique previously described. " For this
reason we describe only in outline the method of cal-
culation; for a more detailed discussion the reader is
referred to the earlier paper.

Under certain approximations the Dyson equation,
whose solutions represent the quasiparticle excitations
of a system of nonrelativistic interacting electrons in
thermal equilibrium with an ionic lattice, reduces to a
single-particle-like Schrodinger equation in which ex-
change and correlation effects are folded into a non-
local (energy and angular-momentum dependent) effec-
tive potential. This equation is of the form

L
—(k'/2m)V2+V, t~(r, l,E)]p„~(r.) =E„(k)p„,q(r), (1)
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TABLE II. (a) Phase shifts for copper from experimental data,
setting f and higher phase shifts equal to zero. (b) Illustrating
the eRect on the best values of the s, p and d phase shifts of
assuming a small positive f phase shift. Energies are expressed
in Ry, and phase shifts in rad.

7/0

tions of the secular equation

det$((k+g)' —E)b, +I' (k,E)7=0,
where for a primitive crystal lattice

I', s. (k,E)

(2)

0.52
0.54
0.56
0.58
0.60

0.56
0.56

0.1343
0.0961
0.0588
0.0224—0.0131

0.0588
0.0451

(a)
0.1514
0.1372
0.1224
0.1071
0,0912

(b)
0.1224
0.1180

—0.1051—0.1136—0.1224—0.1314—0.1407

—0.1224—0.1202
0 0

0,0010 0

= (4~8,s/II) ( —[(k+g') (keg) —E7

XJ (lg —g l~.)/lg —g I

+P (2l+1)P~(cost ss') Ji(lk+glR, )
L=O

y~, (lk+g'lE, )l fit&'(Z„E)/fit&(R„E)7). (3)

and the approximations involved in its derivation are
such that one would expect it to describe accurately
the shape of the Fermi surface of a metal, and the form
of the energy bands close to the Fermi energy.

The one-particle-like Schrodinger equation (1) is
solved for the shapes of surfaces of constant energy in
wave-vector space, and the scattering phase shifts as-
sociated with the effective potential are adjusted to
bring appropriate features of the computed Fermi
surface into agreement with the experimental data.
The effective one-electron potential is assumed to be
of muffin-tin form; that is, radially symmetric within
nonintersecting spheres centered on each lattice site,
and constant elsewhere.

The inclusion of relativistic effects would introduce
three new terms into the nonrelativistic Schrodinger
equation. "Of these, the relativistic mass-velocity cor-
rection and the Darwin term may be folded into a
nonlocal effective potential, but the spin-orbit inter-
action cannot be treated in this way. While it is not
dificult to include spin-orbit effects in a phase-shift
analysis of experimental Fermi-surface data, their in-
huence on the shape of the Fermi surface of copper is
believed to be negligible. Our reasons for neglecting the
spin-orbit interaction in the present work are discussed
in more detail below.

Either the KKR method or the APW method might
be applied to solve the nonrelativistic Schrodinger
equation (1) for a potential of muon-tin form; in the
present calculations the APW method was employed.
It is convenient to set the constant potential between
the muffin-tin spheres equal to zero, so defining the
APW scale of energy. A standard variational calcula-
tion for a muffin-tin potential' leads to the following
dispersion relation for conduction electrons in a crystal-
line lattice. The electronic energy bands E„(k) are solu-

"T. L. Loucks, Phys. Rev. 139, 231 (1965); D. Koelling,
Quarterly Progress Report No. 68, Solid State and Molecular
Theory Group, Massachusetts Institute of Technology, 1968
(unpublished).

"For an introduction to many of the practical aspects of the
APW method, and for a guide to the literature, see T. Loucks,
The Augmented P/ave 8'ave Method (W. A. Benjamin, Inc. , New
York) 1967).

In this equation, g and g' are reciprocal-lattice vectors
of the Bravais lattice, R, is the radius of the spherical
component of the muffin-tin potential, 0 is the atomic
volume, 0«. is the angle between the vectors (k+g) and
(k+g') ss and

l
IR~'(&„E)/5I~(E„E)7 is the logarithmic

derivative of the solution of the radial Schrodinger
equation for angular momentum /, such that

1 8 r'BR (r,E))
1' Bf l9f

-l (l+1)
+ —+U, ff(r, l,E) N. ~(r,E) =E(R~(r,E), (4)

r'

TABI,K III. Extremal cross-sectional areas (in free-electron
units) of the Fermi surface of copper. Comparison of areas of
extremal orbits in symmetry directions computed from the phase-
shift model with the areas derived from experimental measure-
ments of absolute de Haas —van Alphen frequencies.

Belly
Belly

Neck

Dog's bone
4-rosette
6-rosette
Lemon

B100
Bill

Computed

0.9807 +0.0002
0.9503 &0.0001

N118 0.03557~0.00001

D110
R100
Rill
L110

0.4106 &0.0003
0.4021 &0.0001
1.7997 &0.0003
0.3590 +0.0004

Experimental

0 9810 +0 0010b
0 9510 ~0 0010b
0 9498 ~0 0010c
0.03561%0.00004b
0 03556~0 00004c
0.4112 ~0.0004b
0 4027 ~0 0005b

0.359 +0.001~

a Fitting parameters,
b ReferenCe 8.
e Reference 7.
d K. A. McEwen and J. Vanderkooy (private communication).

ss Note that in Ref. 25, es ~ was erroneously stated to be the
angle between the reciprocal- attice vectors g and g'.

evaluated at the muffin-tin radius. The effective po-
tential V,~t(r, l,E) enters into the secular determinant
(2) only to the extent that it determines the loga-
rithmic derivatives of the radial wave functions.

In a first-principles APW band-structure calculation,
the logarithmic derivatives of the radial wave functions
that correspond to some assumed effective potential
are first computed by numerical integration of the
radial Schrodinger equation (4). The logarithmic de-
rivatives are then substituted into (3) and the energy
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Taszz IV. (a) Illustrating the sensitivity of the computed central-belly anisotropy parameters D&, D2, and Dq to the values of q&

and Er. The anisotropy parameters are defined in the text. (b) The closest agreement with the experimental data was obtained with
the set of phase shifts (4) of (a). The corresponding anisotropy parameters are shown.

(1)
(2)
(3)
(4)

Lp (Ry)

0.56
0.56
0.60
0.55

0.0588
0.0451—0.0131
0.0581

0.1224
0.1180
0.0912
0.1235

()—0.1224—0.1202—0.1407—0.1150

(b)

0
0.0010

0
0.0014

DI

—0.00606—0.00633—0.00622—0.00647

—0.00319—0.00341—0.00335—0.00349

+0.0208
+0.0205
+0.0203
+0.0203

D1

D3

Computed
(—0.00647+0.00010)

(—0.00349+0.00006)

(+0.0203 ~0.0005 )

Experimental
(—O.OO669 )a

(—0.00645+0.00010)b

(—0.00332 )'
(—0.00342+0.00010)
(—0.0212 )'
( 0 0196 +0 0006 )b

Reference 5. b Reference 9.

bands are computed from the roots of the secular
determinant (2). The method of phase-shift analysis
is closely related to such a calculation. Here the loga-
rithmic derivatives are regarded as adjustable parame-
ters in terms of which the shapes of surfaces of constant
energy in wave-vector space may be computed. The
values of the logarithmic derivatives are determined

by bringing the constant energy surface computed
from Eqs. (2), (3), and (4) into coincidence with the
experimentally observed Fermi surface.

Since the muon-tin potential is of finite range, the
logarithmic derivatives of the radial wave function
may be related to the partial-wave scattering phase
shifts rl&(E) of the effective potential, by the equation

(R&'(R„E) j&'(kr) —tan&&(E)y&'(kr)
(~)

Gt&(R„E) j ~(kr) —tan&~(E)y&(kr), =s,

where k'=E. Since only the tangents of the phase
shifts enter into (5), the shape of the surface of constant
energy E in wave-vector space is fully determined by
the corresponding set of "reduced" phase shifts rf~(E)
from which all integer multiples of w have been sub-

tracted. In practice, it is convenient to consider the
phase shifts, rather than the logarithmic derivatives,
as the adjustable parameters. In what follows we shall

often refer to the phase shifts for /= 0, 1, 2, 3, as the

s, p, d, and f phase shifts, respectively.
Digital computer programs have been developed to

calculate the radii and the cross-sectional areas of
surfaces of constant energy in wave-vector space, for
a given energy E and a given set of reduced phase
shifts ri&(E). The numerical techniques employed in

these calculations have been described elsewhere. " In
the present calculations the phase shifts g~(E) for t=0,
1, 2, and 3 were treated as adjustable parameters, the
phase shifts for 1=4—8 were set equal to zero, and the
summation over l in Eq. (3) was truncated beyond
l=8. The calculations were carried out with a 30)&30
secular determinant, since this was found to give

satisfactory convergence. The approximations and con-
vergence of the present calculations are discussed in
more detail below.

III. RESULTS

In order to compute the shape of the Fermi surface
from Eqs. (2)—(4), we must set the energy parameter E
in the secular determinant (2) equal to the Fermi energy
on the APW scale (E&). But initially we have no
knowledge of the correct value of EI;, and for this
reason the phase-shift calculations were carried out for
a series of values of EI:, the range of energies being
guided by the results of first-principles APW calcula-
tions. At each energy the s, p, and d phase shifts were
adjusted to bring the computed cross-sectional areas of
the (100) central-belly orbit, and the (111)central-belly
and neck orbits, into agreement with the experimental
data (Table I). For a given value of the Fermi-energy
parameter, the phase shifts are determined uniquely by
this procedure. The sets of phase shifts deduced in this
way are presented in Table II. It will be seen that the
computed phase shifts depend sensitively on the
assumed value of E~.

The areas of the dog's bone, four-cornered rosette,
six-cornered rosette, and lemon orbits were computed
for each set of phase shifts. We found that, on the
scale of the experimental accuracy, the absolute areas
of these orbits do not depend significantly on the
assumed value of Ep. In Table III, the computed
areas are compared with the areas derived from pre-
cision measurements of the de Haas —van Alphen fre-
quencies associated with the various symmetry orbits. '9

Wherever comparison with experimental data is pos-
sible, the agreement is satisfactory.

"The lattice constant assumed in reducing the data to free
electron units was that quoted by Halse (Ref, 9), namely,
ap ——(3.6030&0.0003) A. at 1'K. The corresponding value of the
extremal cross-sectional area of the free-electron sphere is
Ap=S.8363 ~
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TABLE V. Radii ('in free-electron units) of the Fermi surface

of copper in symmetry zones.

.02—
O

.0[
O

0~
I

—.00 I

—.002

-.003

C 0 Central Belly

(l 00) Zone Angle from
(100)

00
50

10'
15'
20
25'
30'
35'
40'
45'

Present
work

(100) zone

1.0586
1.0490
1.0273
1.0042
0.9848
0.9704
0.9607
0.9549
0.9520
0.9511

CU 7

1.059
1.049
1.027
1.004
0.985
0.970
0.960
0.954
0.952
0.951

I I I I I I I I [ I'[ I I I I II I00' I I I I

0 [0' 20 30'

Angle from Ql00) (Degrees)

of the central extremal cross-sectional area
er normal to directions in the (100)~ ~ o "P

h ld fzone. The continuous curve represents t, e experime
h distortions com-

E bars associated with the
. The oints represent t e area

d f experiment and computa-
cribed in the text. rror ars

t' 1 ale abo ve d belo the
ent the combine error o ex

l cross-sectional rea of the
he chan e of the vert&ca sca

horizontal axis. Ao is the extrema cross-s
free-electron sphere (Ref. 29).

Table II

found that the magnitudes of the s, p, anIt was oun a
~ 0

value assi nedp ase s i s eh h'ft depend sensitively on the v 'g

mmetrto q3, owever,; h the computed areas of the sy y
~ ~ ~

forbits are not su cien yffi tl sensitive to the magnitu e o
0

g3 to allow one to e ermined t mine the best value of this

l measurements of the ab-Thus current experimental m
withsolute de Haas —vanH — Alphen frequencies associated wit

~ ~

er are not suKcientlythe symmetry orbits in copper
~ 4

ll to determine with any precisionaccurate to allow one o
nd thethe best va ues o e1 f the Fermi energy parameter and e

h e shift. However, the computed vaues o ef p ase s 1

belly-anisotropy parameters D&, 2, an
dered by

D,= area, (16' from (100) in (110) zone —B~pp),

Dp= area, (12 from (100) in (100) zone Bqpp), —
D,= area, (27' from (100) in (100) zone —B~pp),

fi tly sensitive to the values ofturn out to be signi can y
ut in. This is illustrated by the results set ou in

. 3 ad'usting Eg an g3 o3

ed values of Dg, D2, an 3 in o c o
in —

q with the experimental data,in a least-squares sense& wi e
one might e uce ed d th best set of phase shifts, and a so
the best value of Ep.

f the hase shift assumed in this calculation
to that obtained by numerical integration(q, =0.0010 rad) is close to that o taine

of the radial Schrodinger equation vn e
(Ref. 82).

00
50

10'
15'
20'
25'
30'
35'
40'
45'
50
55'
60'
65'
70'
75'
80'
85'
90

(110zone)

1.0586
1.0490
1.0276
1.0058
0.9900
0.9827
0.9854
1.0000
1.0311
1.1175
neck
neck
neck

1.0935
1.0214
0.9872
0.9664
0.9549
0.9511

1.059
1.049
1.027
1.006
0.990
0.983
0.986
1.000
1.031
1.117
neck
neck
neck
1.094
1.022
0.987
0.966
0.955
0.951

a Reference 9.
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Our na se o6 l t f phase shifts is set out in Table IV.
This set of phase shifts leads to values of the e y-
anisotropy paramet parameters that are in satisfactory agree-
ment with the experimental data, but no attempt was
made to reine the phase shifts by a least-squares
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TABLE VI. (a) Convergence of the phase shifts as the size of
the secular determinant is increased. The size of the determinant
is n)&n. (b) Convergence of the phase shifts for increasing values
of the parameter l, . (c) Sensitivity of the computed phase shifts
to variations in the assumed radius R, of the mu%n-tin sphere.
The phase shifts are expressed in rad. RI is the inscribed
sphere radius (RI——2,4072 a.u.). R, is the Wigner-Seitz radius
(R„,=2.6602 a.u.).

&ooi)

20
30~
40
50
60

6
8a
10
12

R, (a.u. )
2.18
2.29
2.41(R,)
2.53
2.66(R .)

'QO

0.0589
0.0581
0.0575
0.0573
0.0574

7/ p

0.0581
0.0581
0.0581
0.0581

$0

0.0632
0.0598
0.0581
0.0581
0.0577

(a)
0.1233
0.1235
0.1234
0.1234
0.1234

(b)
QI

0.1238
0.1235
0.1235
0.1235

(c)
$1

0.1239
0.1236
0.1235
0.1235
0.1237

—0.1126—0.1150—0.1154—0.1156—0.1157

'r12

—0.1159—0.1150—0.1150—0.1150

ll2

—0.1134—0.1144—0.1150—0.1158—0.1156

0.0014
0.0014
0.0014
0.0014
0.0014

93

0.0014
0.0014
0.0014
0.0014

n3

0.0014
0.0014
0.0014
0.0014
0.0014

(a)

lo)

' Denotes the parameters adopted for the calculations set out in previous
tables.
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FrG. 4. Anisotropy of the extremal cross-sectional area of the
neck, of the Fermi surface of copper normal to directions in the
(110) zone. The continuous curve represents the experimental
data of Halse (Ref. 9). The points represent the areas of the
computed surface. Although no explicit estimate of the experi-
mental accuracy is available, there appears to be no significant
discrepancy between the computed surface and the experimental
data.

calculation. A more elaborate calculation might reduce
somewhat the error associated with g~ and I'fp, but
such a calculation is probably not worthwhile in view
of the relatively large discrepancies between the ex-
perimental belly-anisotropy parameters given by Joseph,
Thorsen, Gertner and Valby, ' and those given by
Ha~se. ' In Figs. 2—4 the angular variations of the
central-belly frequency in the (100) and (110) sym-
metry zones, and of the neck frequency in the (110)
zone, are compared with the experimental results of

(b)

FIG. 5. (a) The standard notation for symmetry lines and
symmetry points in the first Srillouin zone of the fcc Qravajs
lattice. (b) The extremal cross sections of the Fermi surface of
copper normal to the (100) and (110) symmetry directions, as
computed in the course of the present work.

Halse. The agreement here is satisfactory. The volume
enclosed by the computed Fermi surface was deter-
mined by graphical integration, and was found to be
(1.000+0.003) electrons/atom.

The good agreement between the cross-sectional
areas of the computed surface, and the experimental
data, suggests that the computed surface may well
represent a satisfactory model from which the radii of
the Fermi surface of copper might be calculated. In
Fig. 5(a), the conventional notation for symmetry
points in the first Brillouin zone of copper is indicated.
In Fig. 5(b), the central cross sections of the model
surface in the (100) and (110) symmetry zones are
presented, and in Table V the radii in these two zones
are compared with the radii computed by Halse using
the inversion scheme of Roaf."The agreement between
the results of the two calculations encourages some
confidence in the final radii, since the two methods of
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TABLE VII. Comparison of published estimates of the radii
of the Fermi surface of copper (A ').

First-principles calculations

Segall'
Segallb
Snow and Waber'
Snow and Waberd
Faulkner et al.'
Faulkner et gl. f

Faulkner et gl.&

Snow"
Snow'

1.43
1.39
1.36
1.44
1.427
1.431
1.448
1.36
1.39

1.29 0.20
1.26 0.28
1.28 0.22
1.14 0.38
1.298 0.242
1.297 0.246
1.281 0.292
1.30 none
1.29 0.31

Interpretations of experimental data

Roaf&
loaf" 1.46
Bohm and Easterling' 1.41
Zornberg and Mueller'" 1.43
Halse" 1.439
Present work 1.438

1.28
1.28
1.30
1.33
1.292
1.292

0.27
0.27
0.265
0.26
0.2562
0.2562o

' Chodorow potential (Ref. 12).
~ l-dependent potential (Ref. 12).' Self-consistent APW calculation including the exchange potential in

Slater's free-electron approximation. Relativistic core wave functions

d Self-consistent APW calculation after reducing the exchange potential
to q of the Slater potential. Relativistic core wave functions (Ref. 16).

e KKR calculation based on the Chodorow potential and with /max =2
(Ref. 17).

f KKR calculation based on the Chodorow potential and with lma& ——4
(Ref. 17).

& KKR calculation based on a potential derived from atomic Hartree-
Fock wave functions for copper as computed by Watson (Ref. 17).

h Self-consistent APW calculation including the exchange potential in
Slater's free-electron approximation. Nonrelativistic core wave functions
(Ref. 16).

i Self-consistent APW calculation after reducing the exchange potential
to ~s of the Slater potential. Nonrelativistic core wave functions (Ref. 16).

& Radii derived from Roaf's Cu IV fit to the experimental data of Shoen-
berg (Ref. 10).

& Radii derived from Roaf's Cu VI fit to the experimental data of Shoen-
berg (Ref. 10).

1 Reference 4.
m Reference 11.
n Radii derived from Halse's Cu 7 surface (Ref. 9).
o Mean neck radius: the extreme radial anisotropy of the neck of the

computed surface is close to 1 part in 104, the radius along LW being
greater than along LK and LU.

calculation are entirely different, and the two sets of
fitting parameters are partially independent. Of these
two methods, Roaf's inversion scheme is simpler to
program and more economical in computer time. Phase-
shift analysis involves fewer''adjustable parameters,
however, and the adjustable parameters (the phase
shifts) have a more direct physical significance.

Accuracy of the Calculations

Several approximations are involved in our calcula-
tion of the scattering phase shifts from the experimental
Fermi-surface data. The mesh associated with the
interpolation procedure by which the Fermi radius in
a given direction is determined, and that associated
with the technique of numerical integration by which
the cross-sectional areas of the computed surfaces are
calculated, were adjusted so that errors in the com-
puted areas are substantially smaller than errors in
the experimental data. Nevertheless, errors associated
with numerical integration limit the accuracy of the
computed areas presented in Table III and in Table IV.

For the majority of calculations a 30&30 secular
determinant was employed, all APW's being included in
the basis set for which

~
k+g

~
(6.0(ir/a), where k is a

wave vector on the free-electron Fermi sphere at the
center of the (1/48) th sector of the Brillouin zone within
which the calculations were carried out. The inQuence
of the size of the secular determinant on the computed
phase shifts is indicated in Table VI(a). Since the com-
puted phase shifts are not significantly altered by
doubling the size of the secular determinant, it was
concluded that a 30)&30 determinant is sufficiently
large to ensure satisfactory convergence of the calcula-
tions. The sum over l in (3) was truncated beyond l=8.
The results set out in Table VI(b) show that the final
phase shifts are not significantly inQuenced by increas-
ing the number of terms included in this summation.

The most critical approximation of the present cal-
culations, in the sense that it is the most difficult to
test and to improve upon, is the assumption that the
experimental Fermi surface may be derived from a
potential of muffin-tin form. In an attempt to estimate
the errors involved in truncating the potential at the
inscribed-sphere radius, we have computed the best
set of phase shifts for a series of muffin-tin radii. From
the results of these calculations as set out in Table
VI(c) it. will be seen that, over the range of radii we
have investigated, the computed phase shifts are
largely independent of the radius of the muffin-tin
sphere. Any substantial dependence of the computed
phase shifts on the muffin-tin radius would suggest
that the experimental Fermi surface cannot be derived
from a potential of muffin-tin form. Thus the muffin-tin
approximation appears to be satisfactory for a phase-
shift analysis of the Fermi surface of copper. The
present results also confirn. our earlier observation"
that increasing the muffin-tin radius beyond the radius
of the inscribed sphere does not introduce discontinu-
ous changes in the computed phase shifts.

The errors associated with the computed phase shifts
that describe the conduction electron-ion interaction
in copper are dominated by experimental error in the
6tting parameters, namely the (100) belly area, the
(111) neck and belly areas, and the belly-anisotropy
parameters D~, D2, and D3. The errors in the phase
shifts, as set out in (6) below, were computed under
the assumption that the Fermi energy parameter is
given by E&——0.550 Ry. In fact, there is some uncer-
tainty in our estimate of the best value of this pa-
rameter, and the computed phase shifts are rather
sensitive to the value of Ei, . If the phase shifts gi(E~)
and the Fermi energy parameter E+ are regarded as
independently adjustable parameters, then this un-
certainty in the value of Eg leads to a further large
contribution to the estimated error in the phase shifts.
However, independent adjustment of the qi(E~) and
E~ is not permissible, since there exists a unique
relationship between the Friedel sum of the phase shifts,
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which is dined by

S(Ei.) = (2/vr) P (2t+1)g((EF)
L=O

gp= (+0.0574&0.0042) rad

gi ——(+0.1234&0.0014) rad,

g p
——(—0.1157&0.0009) rad,

gp ——(+0.0014&0.0003) rad.

(6)

If the en.ergy dependence of the f phase shift is ne-

glected, the best set of phase shifts corresponding to
any other value of E& may be estimated from the
dependence of the phase shifts on the assumed value
of the Fermi energy parameter, as given in Table II.

So far in our analysis of the shape of the Fermi
surface of copper, we have omitted any discussion of
the sects of spin-orbit interaction. The spin-orbit
interaction mixes spinor components and introduces
into the secular determinant (2) a further term that
cannot be expressed analytically as a correction to the
phase shifts. In general, the effect of spin-orbit inter-
action is to split any accidental degeneracies and orbital
degeneracies that may be present in the nonrelativistic
band structure. But there are no accidental degeneracies
near the Fermi level in the band structure of copper,
and the only orbital degeneracies that are likely to
inhuence the Fermi surface are those associated with
the 1.3 and X5 states in the d-band complex that lies
about 0.15 Ry below the Fermi level "'4

If we may take the spin-orbit splitting of the 3d
states in the free copper atom (0.005 Ry)" as an order
of magnitude estimate of the spin-orbit splitting of
orbitally degenerate states in the metal, then a simple
perturbation calculation shows that spin-orbit splitting
is unlikely to'shift the energy bands at the Fermi level

by more than 2&10 4 Ry. The corresponding change
in the Fermi wave vector is about an order of mag-
nitude smaller than the error implied by experimental
error in the de Haas —van Alphen frequency measure-
rnents. For this reason we believe that neglecting
spin-orbit interaction is a valid approximation in the
present work.

"C. E.Moore, Atomic Energy Levels (U. S. Government Printing
Once, National Bureau of Standards, Washington, D. C. 1949).

and the value of the Fermi-energy parameter. " For
this reason we prefer to express the present results as a
relationship between the phase shifts and the assumed
value of the Fermi energy parameter, and to regard as
an independent result of the calculations our best
estimate of the Fermi energy parameter:

E,= (0.550~0.005) Ry.

Setting E&——0.550 Ry we find, after approximate cor-
rection for incomplete convergence of the secular
determinant, the following estimates of the reduced
phase shifts:

TAsxz VIII. Comparison of various estimates of the Fermi
energy of copper measured on the APQ scale.

Potential

Chodorow'b
l-dependent Segall'
Snow and Waber'

owd e

Snow'f
Present work

Ez(Ry)

0.555
0.717
0.556
0.503
0.548

(0.550+0.005)

a Reference 12.
b Reference 14.
e Full Slater exchange; core charge-density derived from self-consistent

relativistic Dirac-Slater wave functions (Ref. 16).
d Full Slater exchange; core charge density derived from nonrelativistic

Hartree-Fock-Slater wave functions.
e E. C. Snow (private communication).
& Exchange potential reduced to -', of Slater's potential; core charge

density derived from nonrelativistic Hartree-Fock-Slater wave functions.

IV. DISCUSSION

The final set of phase shifts (6) leads to a computed
Fermi surface having the following characteristics. The
areas of the (100) belly, the (111) neck and belly
orbits, the dog's bone, the four-cornered rosette, and
the lemon orbit, are in good agreement with the
results of current precision measurements (Table III).
The central-belly and neck anisotropies are in good
agreement with the experimental results of Halse
(Figs. 2—4). The radii of the model surface in the
(100) and (110) symmetry zones are in excellent agree-
rnent with the radii computed by Halse, using the
inversion technique of Roaf (Table V), and the volume
enclosed by the surface does not differ signi6. cantly
from the expected volume of 1 electron/atom.

In Table VII we summarize the results of recent
calculations of the radii of the Fermi surface of copper
along symmetry directions, some of which are based on
first-principles calculations and others on the interpre-
tation of experimental data. Of the first-principles cal-
culations, the KKR calculation by Faulkner, Davis,
and Joy," in which the Chodorow potential" was as-
sumed, leads to a Fermi surface whose radii are in the
closest agreement with the present results. The various
interpretations of the experimental data lead to results
for the principal radii of the Fermi surface of copper
that are consistent with one another within the ac-
curacy of the various determinations. The close agree-
ment between the radii deduced by Halse and the radii
found in the course of the present work encourages
some confidence in the results of the phase-shift
analysis.

In a first-principles band-structure calculation by the
APW method, the Fermi energy parameter E& is deter-
mined by integrating the computed density of states
to find that energy below which the total number of
electronic states is equal to the number of conduction
electrons in the metal. We compare in Table VIII our
best estimate of the Fermi energy parameter with

"M. I. Chodorow, Ph.D. thesIs, M. I. T., 1939 (unpublished);
the potential used in the present work was obtained by inter-
polating the data quoted by Burdick (Ref. 14).
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TABLE IX. (a) Comparison of reduced phase shifts at energy
A=0.550 Ry. The phase shifts are expressed in radians. (b)
Angular-momentum-dependent correction to the Chodorow po-
tential required to bring the phase shifts at energy 8+=0.550 Ry
into agreement with the phase shifts computed from the experi-
mental Fermi-surface data. The correction is a constant 8 V within
the muon-tin sphere, and zero elsewhere. (c) Comparison be-
tween theory and experiment for the energies of certain optical
transitions in copper. Energies are expressed in eV.

Chodorow' Snow and Waberb Present work

+0.0404
+0.1011—0.1202
+0.0009

(a)
—0.1758
+0.0276—0.1112
+0.0005

(+0.0574+0.0042)
(+0.1234&0.0014)
(—0.1157&0.0009)
(+0.0014&0.0003)

0
1
2
3

)4

8V(l) Ry

(—0.0120~0.0030)
(—0.0353+0.0024)
(—0.0102+0.0029)
(—0.1560&0.0940)

0

Source
Experiment'

Chodorow~
l-dependent'
Watson'
Snow and %aber
Modified Chodorow

(present work)

(c)

(A~ —I.p»")
(2.1~0.1)

2.10
2.3
1.6
3.2
2.11

(x '—x;)
(4.0~0.1)

3.95
47
3.1
5.5
3.77

(I.I"""—J J)
(4.15+0.10)

3.96
5.15
3.9

~ ~ ~

3.99

a Reference 31.
b Reference 16.
e Reference 33.

d Reference 12, 1.4.
e Reference 12.
& Reference 17.

estimates derived from first-principles calculations. The
numerical value of Ep found in first-principles calcula-
tions appears to depend sensitively on the approxima-
tions that are involved in setting up the one-electron
potential in the metal. In particular, the value of E~
derived from the self-consisted band-structure calcula-
tions of Snow" depends on the coefficient that is associ-
ated with the Slater exchange potential. Comparison
between the values of E& obtained in calculations by
Snow, and Snow and %aber, "in each of which the full
Slater exchange potential was assumed, shows that the
computed value of E~ is sensitive also to those varia-
tions of the distribution of charge density in the ionic
core that result from different assumptions about the
form of the core wave functions in the solid. Thus no
unambiguous interpretation of our best estimate of the
Fermi energy parameter seems possible; we note, how-
ever, that first-principles energy-band calculations lead
to values of EI: that are not inconsistent with the
present results.

Certain features of the computed values of the
partial-wave scattering phase shifts associated with
the conduction electron-ion interaction in copper may
be understood qualitatively in a simple way. Since
there are no f-like core states in copper, the absolute
value of the f phase shift is equal to the reduced phase

shift. The small positive value (6) corresponds to the
fact that the effective one-electron potential in copper
is attractive, but much too weak to support an f
resonance. The small, negative, d phase shift {6)corre-
sponds to an absolute d phase shift that is somewhat
less than x. This result is a consequence of the position
of copper at the end of the 3d transition series in the
periodic table. In potassium, near the beginning of the
series, the d phase shift is significantly positive but
close to zero," and as an increasing number of d-like
states are drawn below the Fermi level, the d phase
shift is expected to increase towards ~. The absolute
values of the s and p phase shifts are determined by
adding 3x and 2x, respectively, to the reduced phase
shifts. The numerical results (6) bear no simple quali-
tative interpretation.

A quantitative interpretation of the scattering phase
shifts requires some discussion of the form of the
effective one-electron potential in copper. Ke have
emphasized that the experimental phase shifts include
many-body and relativistic corrections that can be
represented only by a nonlocal effective potential, so
it is presumably impossible to invert the computed
phase shifts in any unique manner to determine the
form of the eGective potential. However, it is interesting
to compare the phase shifts derived from the experi-
mental data with the phase shifts computed from
various one-electron potentials that have been pro-
posed for metallic copper. In Table IX(a) the experi-
mental phase shifts are compared with the phase shifts
at the same energy derived from the local potential
of Chodorow, " and from the self-consistent local po-
tential of Snow and Waber. " It will be seen that of
these two potentials, the Chodorow potential leads to
a set of phase shifts in rather better agreement with
the phase shifts derived from the experimental data.

If our results for the phase shifts at the Fermi
energy are to be taken as the starting point for a
calculation of the energy bands in the neighborhood of
the Fermi energy in copper, it is convenient to construct
a model potential from which the energy dependence of
the phase shifts may be derived. It is not difficult to
derive a nonlocal model potential that is entirely con-
sistent with the experimental Fermi-surface data. This
may be done in a simple way by adding an angular-
momentum-dependent potential that is constant within
the muffin-tin sphere and zero elsewhere, as a correc-
tion to any local potential that is known to give a
good first approximation to the experimental Fermi
surface. In Table IX(b) we give the nonlocal correc-
tions appropriate to the local potential of Chodorow.
Since these corrections are numerically very small, we
do not expect the energy bands computed from the
modified Chodorow potential to differ greatly from
those computed from the local Chodorow potential. tA'e

have not carried out a complete band-structure calcula-
tion based on the nonlocal potential, but as a simple
check we have computed the energy gaps that corre-
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spond to those optical transition whose energies have
been determined experimentally by Gerhardt. " From
the results set out in Table IX(c), it can be seen that the
energy gaps derived from the modified Chodorow poten-
tial agree fairly well with the gaps observed experi-
mentally. '4 There is a small but statistically significant
discrepancy between the computed energies correspond-
ing to the higher-frequency transitions, and the experi-
mental data. Presumably this discrepancy could be
removed by modifying the local Chodorow potential,
which is the starting point for the present calculations,
or by allowing an energy-dependent nonlocal correction.
Of the various potentials listed in Table IX(c), only the
local Chodorow potential rivals our nonlocal potential
in predicting optical energy gaps in satisfactory agree-
ment with those observed experimentally. Since the
nonlocal Chodorow potential has been constructed to
generate a Fermi surface whose dimensions are fully
consistent with the experimental data, we believe that
it may well prove to be the best available potential for
accurate calculations of the band structure of copper
close to the Fermi energy.

V. CONCLUSIONS

In this paper, the experimentally observed distortions
of the Fermi surface of copper have b een analyzed by
the phase-shift method. A set of phase shifts for the
conduction electron-ion interaction was found, such
that the shape of the computed Fermi surface is
entirely consistent with the experimental data. The
radii computed from the model Fermi surface were
found to agree well with the Fermi-surface radii deduced
by Halse by an independent technique. This agreement
encourages con6dence in the results of both calcula-
tions, and since the shape of the Fermi surface of
copper is strongly influenced by the d-like energy bands
that lie just below the Fermi level, it suggests that the

"U. Gerhardt, Phys. Rev. 172, 651 (1968).
'4 The optical transition energies set out in the last row of

Table IX (c) were computed from the modified Chodorow poten-
tial, assuming the room-temperature lattice constant quoted by
Halse (Ref. 9), namely ao = (3.6147&0.0003) x.

phase-shift method may well prove to be of value in
analyzing experimental Fermi-surface data for metals
of the d-transition series.

From the experimentally observed anisotropy of the
de Haas —van Alphen frequency corresponding to the
central-belly orbit in copper, it proved possible to
estimate the Fermi energy on the APW scale

L~'~ (0.5——50+0.005) Ry.

This value is consistent with the results of several
first-principles band-structure calculations.

The experimental Fermi-surface data were found to
imply phase shifts in close agreement with those derived
from the local one-electron potential of Chodorow. A
small nonlocal correction to the Chodorow potential
was proposed, such that the Fermi surf ace derived
from the modified potential is entirely consistent with
the experimental data. Certain energy gaps derived
from this potential were found to agree to better than
0.2 eV with the gaps measured experimentally by
Gerhardt. "It seems that the nonlocal potential derived
in this way may well prove to be the best available
one- e1.ectron potential for a full calculation of the
electronic energy bands of copper in the vicinity of
the Fermi level.
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