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ments about comparison between experiment and
theory cannot be made.
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Experimentally the Knight shift in Cd is characterized by (1) an increase in the nuclear resonance fre-
quency of more than 70% in the temperature range from 0 to 594'K (melting point), (2) an increase of
33% in the isotropic Knight shift at the melting point, and (3) an increase in the anisotropic Knight shift
from a small negative value at T=O'K to a fairly large positive value at high temperatures. We find that
this temperature dependence is theoretically accounted for by including the sects of lattice vibrations
into the electronic structure which we have investigated by means of an empirical pseudopotential. The
e6'ect of the lattice vibrations is to decrease the strength of the pseudopotential. This makes the energy
bands more free-electron-like, and the s character of the wave functions of the Fermi surface increases.
It also destroys the cancellation of the contributions of the various p parts of the wave function to the
anisotropic Knight shift, thus increasing the anisotropy as well. Many-body corrections were included by
means of a temperature-independent enhancement factor and were determined empirically for T=O'K.
The trend of the variation of the Knight shif t with temperature, both isotropic and anisotropic, is explained.

I. INTRODUCTION

'N regard to its NMR properties, cadmium is not an
- ordinary metal. The variation of the resonance fre-

quency with temperature T is more than eight times
larger than that of any other metal. ' 4 Most metals
exhibit a small fractional change in the isotropic Knight
shift E;„ofgenerally less than 10% over the tempera-
ture range from 4 K to the melting point. In Cd,
however, E;„undergoes a fractional increase of about
70%%u& in the temperature range from 4 to 594 K (melting
point). Furthermore, upon melting, E;„s ffuers an
abrupt increase of 33%.Most metals show little change
in E;„at the melting point.

Cadmium is an hexagonal metal. Being noncubic, it
exhibits an anisotropic Knight shift E,„.' The tem-
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perature dependence of E, in Cd is also anomalous. ' '
It starts from a small negative nonzero value at T=0 K,
and after going through zero at a temperature between
0 and 60 K it increases to a fairly large value at the
melting temperature.

The two results mentioned above seem to lead to a
paradox. Since E;„depends on the s part of the wave
function, the 6rst result seems to indicate that the wave
function becomes more s-like as the temperature in-
creases. The contribution to E,„depends mainly on the
non-s character of the wave functions, mostly its p part.
The fact that E,„ increases with temperature would
seem to indicate that the p character of the wave
function also increases with temperature.

These temperature-dependent properties must some-
how result from (1) the anisotropic expansion of the
lattice with temperature and (2) the thermal lattice
vibrations. Since the application of pressure to Cd does
not reverse the large increase in either E;., or K, ,' the
change in lattice parameters couM not be a signi6. cant
source of the anomalous temperature dependence.

The electronic properties of Cd at very low tempera-
tures seems to be well accounted for. Stark and Falicov9
(SF) have used de Haas —vs.n Alphen (dHvA) data to
fit an empirical nonlocal pseudopotential (PP). The
Fermi surface resulting from this PP agrees to within a

8 T. Kushida and L. Rimai, Phys. Rev. 143, 157 (1966).
9 R. W. Stark and L. M. Falicov, Phys. Rev, Letters 19, 795
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few percent with all reported extremal cross-sectional
areas as measured by the dnvA effect and even gives
the correct compensation of electrons and holes in the
bands to an accuracy of 3 &(10 4 electrons per atom. The
noteworthy feature is that a nonlocal PP was necessary
to fit the dHvA data and that the resultant Fermi sur-
face is appreciably different from what one expects for a
hexagonal-close-packed (hcp) nearly-free-electron metal.

This PP has already proved successful on two other
different fronts: (1) The predicted Fermi surface agrees
excellently with detailed radio-frequency size-effect
measurements, "and (2) the phonon mass enhancement
and density of states at the Fermi energy agree well
with those extracted from superconductivity experi-
ments. "In fact, this PP should accurately predict any
low-temperature electronic properties (such as transport
phenomena and the Knight shift) which depend on the
electronic states at the Fermi surface.

In this paper, we incorporate temperature effects,
such as lattice vibrations and thermal expansion, into
the PP of SF and then calculate E;„,E,„,and the spin
susceptibility X„as a function of temperature. We find
good agreement with experiment.

Section II contains the formulation of the theory.
The thermal effects are incorporated into the one-
electron Hamiltonian in Sec. III with the resulting
temperature-dependent Fermi surface presented in Sec.
IU. Section U is devoted to a calculation of the spin
susceptibility and Knight shift. Section UI contains the
conclusions and discussion.

II. KNIGHT-SHIFT FORMULATION

The Knight shift is a result of the interaction of the
spin s and orbital angular momentum I of the conduc-
tion electrons with the spin I of the nucleus. The
Hamiltonian' for the interaction of a given nuclear spin
(jth) with the conduction electrons is

where

K„=K;„+2X~qr, K~=K;„X„qr, —

382—r2

gF k kd I
r' p

where X~ is the Pauli spin susceptibility and (~ fz(0)
~ )F

is a measure of the electronic density of conduction
electrons at the nuclear site averaged over the Fermi
surface.

However, polarization of the core electrons can also
contribute to E;„.The spin polarization of the con-
duction electrons causes the spin-up and spin-down
core electrons to experience a different exchange force.
As a result, the spatial part of the two wave functions
of the core states for the two spins are different, and
there is a slight imbalance of core-electron spin density
at the nucleus. This core polarization contributes to
E;„through the contact term. No proof exists as to the
sign of the core-polarization contribution to E;„."

The second term in the Hamiltonian, the spin dipolar
interaction, produces a shift of the nuclear resonance
which depends on the orientation of the external field
with respect to the crystal axis." This anisotropy is
zero for cubic crystals. For noncubic crystals the calcu-
lation of E,„ involves calculating the diagonal matrix
elements of the Legrendre polynomial E&(coso.), where
0. is the angle between the external magnetic field Ho
and the radius vector r from the nuclear position to
the electron.

To a good approximation, the electron wave function
around a given lattice site can be thought of as a linear
combination of parts with s symmetry, p symmetry,
and d symmetry only. The nonvanishing matrix
elements of E~(cosa) are thus only p-p and s-d matrix
elements. The p symmetry usually makes the dominant
contribution.

For an hcp crystal like Cd, the anisotropic contribu-
tion to the Knight shift" can be written in terms of a
shift parallel to the hexagonal axis and a shift per-
pendicular to it,

where r~,
——r, —R; and r~ is the position of the 1th

electron, R, is the jth nucleus's position, and p& and
are the gyromagnetic ratios of the electron and

nucleus, respectively.
The Hamiltonian II,„;is weak compared to that for

the electrons and is treated by perturbation theory in
terms of the states of the electrons and nuclear spins.

Generally the isotropic Knight shift'~ is considered
to be a result of only the hyperfine contact interaction
and is given by

K'.-=»/&=(g~/3)X. (lo.(0) I')', (2 2)

"R.C. Jones, R. G. Goodrich, and L. M. Falicov, Phys. Rev.
174, 672 (1968),

~' P. B.Allen, M. L. Cohen, L. M. I'"alicov, and R. V. Kasowski,
Phys. Rev. Letters 21, 1794 (1968).

and ( )r indicates, once again, an average over the
Fermi surface.

The quantity q p serves to indicate the anisotropy
(within a unit cell) of the electronic charge of states at
the Fermi energy. The usual expression for the aniso-
tropic Knight shift is

EM1 E[[ EJ 3+Pgg (2.3)

The last term in II,„, is the orbital hyperfine term
and contributes to E;„via an orbital paramagnetism.
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(London) 73, 811 (1959); G. D. Gaspari, W.-M. Shyu, and T. P.
Das, Phys. Rev. 134, A852 (1964); W.-M. Shyu, T. P. Das, and
G. D. Gaspari, ibid. 152, 270 (1966); P. Jena, S, D. Mahanti, and
T. P. Das, Phys. Rev. Letters 20, 544 (1968)."N. Bloembergen and T.J. Rowland, Acta Met. 1, 731 (1953);
T. J. Rowland, Progr. Mater. Sci. 9, 1 i1N1l.



187 TEMPERATURE —DEPENDENT KNIGHT SHIFT IN Cd 893

A quantitative estimate of the orbital contribution
from first principles is difficult. "

We simplify our calculation of the Knight shift by
assuming that core-polarization and orbital effects can
be neglected. The justification of this assumption is
found in the recent spin-lattice relaxation-time mea-
surements for Cd of Dickson. " Dickson 6n'ds that
relaxation-time measurements indicate that the con-
tribution of both core-polarization and orbital eRects
to E;„in Cd is less than 10% of the contact interaction
term and is of opposite sign.

In summary, we assume in this paper that E;„is a
direct result of the hyper6ne contact interaction, and
K,„derives solely from the spin-dipolar interaction.

III. THERMAL EFFECTS IN LOW-TEMPERATURE
BAND STRUCTURES

A. Introduction

Most energy-band calculations, which are based on a
one-electron theory, are done in the approximation that
the nuclei are at rest and at their equilibrium positions.
This approximation is valid at T=0 K for nuclei which
have a negligible zero-point motion. However, as the
temperature is increased, thermal lattice vibrations are
excited and the nuclei undergo displacements about
their equilibrium positions. These displacements can be
analyzed in terms of the normal phonon modes of
the solid.

To obtain the possible electron energies and wave
functions at all temperatures, we need to incorporate
the thermal vibrations into the Hamiltonian for the
electron system.

The two contributions to the temperature dependence
of the electronic properties of the system are (1) the
implicit effect of the volume thermal expansion of the
solid, and (2) the explicit effect of the electron-phonon
interactions in the crystal at constant volume.

In this section, we will treat the temperature depen-
dence of the electronic energies and wave functions
(resulting from the thermal vibrations) in the Born-
Oppenheimer approximation and then set up the
formalism to do a practical calculation of the energy
levels of cadmium as a function of temperature. The
T=O K PP of SF will be the starting point.

B. Schrodinger Equation for Electrons

Thermal eRects cause the ions to suffer displacements
about their equilibrium positions. I.et us denote the
instantaneous position of the vth atom by R„; a lattice
configuration is then specified by the set {R„}of ion
positions. The Born-Oppenheimer (BO) approxima-
tion" allows one to write the Schrodinger equation for

' R. J. Noer and W. D. Knight, Rev. Mod. Phys. 36, 177
(1964).

'5 E. M. Dickson, thesis, University of California, Berkeley,
1968 (unpublished); Phys. Rev. 184, 294 ()969).
r.N' J. M. Ziman, Theory of Solids (Cambridge University Press,
New York, 1964).

the electrons in a static lattice, the particular ion con-
figuration being specified by {R„},as

where P„({R„},{r,}) is a many-electron wave function
and the terms in the Hamiltonian are the electron
kinetic energy, the electron-electron interaction, and
the potential energy of the electrons in the 6eld of the
ions (in their displaced positions {R„}),respectively.

The lattice dynamical equation (in the BO approxi-
mation) which gives the normal phonon modes is

6' 8'—+~({~.})+(E.({R,})).I&;({R,})
4 v 2~ rlR„2

=(E ) x({R.}), (32)

where ( ), refers to a thermal average over the many-
electron states.

The Schrodinger equation (3.1) for the electrons
depends on the exact nuclear configuration. However,
measurements of electron energies and other physical
quantities depend only on the average configuration of
the nuclei. Therefore we must calculate the ensemble
average of the expectation value of operators which
depend on the lattice positions. This average is taken by
analyzing the nuclear displacements in terms of phonons
and taking the average thermal occupation of all
phonon states.

In what follows, the electrons are treated in the one-
electron approximation; this means that the electron-
electron interaction is approximated by a self-consistent
(Hartree) field. We are interested in calculating en-

semble averages of one-electron energies

(E&({R„}))„=(x;({R„})
~
(P&(r, {R„}),(T+V(r, {R„})7

&&A(r, {R.}))I &i({R.}))& (3 3)

where ( )i denotes the phonon ensemble average,
fq(r, {R„})is a given one-electron wave function, and

Ez({R„})is the one-electron energy for the state k i7 for
a particular configuration {R„}.V(r, {R„})is the self-

consistent potential seen by the electron.
The calculation of (E~({R„}))ican be further simpli-

6ed by using the PP method to solve for the electron
states. A simple derivation of a PP formalism" based
on the orthogonality of the core and conduction-electron
wave functions will be briefly discussed here.

The electron wave function can be written in the form

Pq(r, {R„})=&~(r) —Q e,(r —R;)(&,(r —R,) ~ Q„),

@.(r) =P~o+~~ G+k),
(3 4)

17 k indicates all the necessary quantum numbers which define
the state, but it is not necessarily a wave vector."W. A. Harrison, Pseldopotentials in the Theory of 3fetals (W.
P. Benjamin, Inc. , New York, 1966).

(
—A' 8' e'

+2' -+V({R}{r'}) I2' ar; '~ (r;—r,
~

)&P„({R„},{r,})=E„({R„})P({R„},{r;}), (3.1)
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where Rf(r —R,) are the core states with quantum
numbers t centered at the ion positions R;, and 6 is a
reciprocal-lattice vector;

l
6+k) denotes a normalized

plane wave with wave vector 6+k.
The one-electron wave equation, with the use of (3 4),

becomes
(T+V+ V fr)ft)k Ekft)—k—)

V.~.=Z(E.-E)~ ( -R;)&~ l~.)

displacement from equilibrium, d is the number of
atoms per unit cell, and

(k', f).ffk) =— dr e
—'k "f).ff(r) e'" '

Vp

with Vp being the volume per atom.
The ion displacement y„ is expanded in terms of the

normal phonon modes":

The operator Vg has the character of a repulsive
potential which cancels out most of V(r, {R„)).One can
think of the electron as moving in a smooth PP V,gg

= V+ Vff, with pseudo-wave-function pk.
Equation (3.3) for the one-electron energy becomes

equivalent to the simpler pseudo-wa, ve-equation

&E ({R.))) =«({R.})l(& ( {R)),
LT+ v, ff(r, {R„})flak(r,{R„)))I x,({R„}))f. (3.5)

Since V,~~ is small, it is possible to use perturbation
theory to calculate the instantaneous one-electron
energy and wave function. In the nondegenerate case
we have

y„=Q (k/2M 'V(o„)'f 2(e„ba„e'2 ""

+es.b(bs.+e'2. R,o) (3.8)

In (3.8), (bs, and (22,+ are the destruction and creation
operators for phonons in the mode qs, e„~ is a polariza-
tion vector, the index b labels the atoms in a unit cell,
and R,'=Rfo+Rb', where Rbs is the equilibrium position
of the bth atom within the /th unit cell.

For a general process where no real phonons are
created or destroyed, it has been proved by Glauber2P
that

g~.k 'yv —g
—lF

where

Ek({Rp))=E„'+(k
l
V.ff l k)

(Ek'-Ek ')

(k'l V,fflk)
4'k (r{R )) lk)+p lk )(Ek'-Ek')

where Ek' and lk) are the free-electron energy and
wave function, respectively.

Calculation of &Ek({R„)))f thereby reduces to the
task of calculating the ensemble average of both the
Fourier coefficients of the effective potential V,~~ and
their absolute values squared.

We now make the rigid-ion approximation in which
we assume V,g~ to be a sum of ionic potentials, whose
shape is independent of the ionic position:

V.ff =p f),ff(r —R„).

W=-', Q(fs/2M''V(o„)(2ns, +1)lk e„bl' (3.9)

and ns, is the average occupation number of phonons in
the mode fls. (The usual Debye-Wailer factor is e 'w).

Using (3.9), the ensemble average of the Fourier
coefficient (3.7) becomes

«k
l
V ff l k))+ (k n ffk) —g e'o'""

d

xe "' "~k—k, G. (3.10)

In the Appendix we prove that the Fourier coe@cient
squared is

&I&k'v. flk) I ).= I(k ...„»d-

+(Q/2~g)lo) )

The Fourier coefficients and their absolute value
squared then become

(&k'I V «lk))~

&& lp(k —k') e b(f 'e' b'e w(kr 'f) f k) I2

X(2n„+1)f)k k ~, o. (3.11)

=(df'V) '(k' n, ffk)&Q e'(' "' (R"'+y"))y

&I&k'I v «lk) I')~

—(afar) —2 Q ei(k k') ~ (Rgb—Rgb)—I(k~ 2) fk) I2

The second term is an electron-phonon interaction or
self-energy contribution to &Ek)f . This term is of

(3.7) negligible importance compared to the first term and is
omitted. "

X &ef(k—k') ~ (y„—yr))

where 3~ is the number of unit cells in the crystal, R„'
is the equilibrium position of the vth atom, z„ is the

"J.M. Ziman, E/eotrorfs affd Phot)or)2 iOxford University Press,
I.ondon, 1960).

"R.J. Glauber, Phys. Rev. 84, 395 (1965); 98, 1692 (1955).
"We have calculated it for a typical case, and it is less than

10/& of the dominant term,
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Then we have

(Eg({R,})&p =Eg'+(k')v. haik)d
—'

Xg e'o R"e-~4 . ,ops'(E, ' —E,')-'I (k',v,nk)d-'

Since the Fourier transform (O, IG+k) of a core
s state is a slowly varying function of IG+kl and
mostly G+k's of magnitudes near the Fermi wave
vector are mixed, PQ+Q may be approximated by

k'

XQ e'o'"~'e ~I'g~ R o. (312) where
Po+k c G+ky

c=l1—Z ~ (o)(~ lk &3/O'I& )
(3.18)

Note that by neglecting the second term in (3.11), we
have regained periodicity. Consequently, the electron
can be thought of as moving in a periodic effective
potential (U,ii(r, {R„}))p with a wave function pq which
satis6es the equations

(T+(V ff(r, {R„}))p)$~=(E~({R„})&pp&,(3.13)

4~ =4~+2 4~ .
+k ~k'

(3.14)

C. Formulation of Knight-Shift
Temperature Dependence

We refer to p. as the ensemble average pseudo-
wave-function.

The results above justify our speaking of a Brillouin
zone and Fermi surface for other than T=0 K.

Returning to Eq. (3.16), we see that the problem is
reduced to one of calculating the ensemble average of

(IA(R) I'f(k,s))p=C'&l4. (R) I'f(k,s))p (319)

We have made at this stage one further assumption,
namely, that the density of states at the Fermi energy
E~ and the character of the electronic states at Ep are
weakly varying functions within the ensemble and can
be taken out of the average and replaced by their
ensemble average value. Then in (3.19) it is possible to
replace the P average of the product by the product of
the P averages. This assumption permits us also, at a
later stage in the calculation, to change the order of
averaging over the ensemble and over the Fermi surface.
We therefore write

(I&.'«s)
I f(k s)&.=(l&.'(R') I'&.&f("s»p

Now we would like to relate the ensemble average
pseudo-wave-function p. of (3.14) to the calculation of
the Knight shift.

The hyperfine interaction between the electrons and
the jth nucleus depends on the nuclear configuration
{R„}.We are interested in the ensemble average of this
nuclear-electr

For a general point in the 3rillouin zone, nonde-
generate perturbation theory gives

(k'I V, i)I k&

y, '= I
k)+P' — —

I
k'),

~k ~k'

&H- & =&—(8 /3)vn -(&+.({ .-},{R.})I

(k', v.iik)
1+2 P

0 +,0
where 0', is the many-electron wave function.

The wave function +, is a product of one-electron
wave functions fz properly antisymmetrized to take
account of the Pauli exclusion principle. Using this 0,
we obtain

X —E e' '"'e 4-', o

once couphng
where

I
k& is a plane-wave state.

Proceeding exactly as in the calculation of
(E.({R„})&p,we obtain

X~"~( —R') I
+.({ '},{R.})))., (3.»)

(H,»&p (8~/3)pic-I„Q——(Igq(R;)m, f(k,s)&p, (3.16)
ks

where

Q Po „e;i~+O~.R
G

+ L1—2 ~'(o)&~
I G+k&j/&A l4'&.

where s is the electron spin, m, is the spin, R, is the
position of the jth atom, and f(k,s) is the Fermi
function. IP&(R;) I

is easily simplified

ly, (R;) I'= Iy, '(R,) —2 e,(o)&o, (r —R;) Iy, '&I2/&p„l4„&

A(2n„+1) (k', v.haik) 1
+2+ e&G RPe—W

2McV(a„(Eg' —Eg') d ~

XI(k—k'). e„~l'&. ~~, .o

+higher-order terms in V,ii . (3.21)

The third term is much smaller than the second
term" and is therefore ignored. With this approxima-
tion, the result in (3.21) can also be obtained with the
ensemble average pseudo-wave-function @z. Con-
sequently, we have

(14.'(R ) I '&p=(le. (R,) I

')p.
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The PP parameters chosen by SF are shown in
Table I.' The low-temperature band structures resulting
from these parameters are displayed in Fig. 1. These
band structures show a significant departure from a
nearly-free-electron hcp band structure. '8" The so-
called butterflies (third and fourth bands centered about
L) are raised above the Fermi level, and the monster
(second-band hole surface) is not connected across the
F3f symmetry line. These differences result from the
large, nonlocal contribution to the PP from the outer
d shells of the ion cores.

Spin-orbit coupling does not affect the bands signi6-
cantly, and it has not been included in the form of the
PP used to calculate the Knight shift here; i.e., we have
made X„=X~=0.

Now we examine the energy bands and Fermi surface
at higher temperatures, i.e., T=298, 462 K. The band
structures are calculated in a manner similar to that of
SF, except that the lattice parameters are changed"
and the structure factor

which we approximate by

W(G, T)=D(T)G'
with

1 2-VVO
D(T) =—

6 (27r)'
d(l~ ~(2n„+1).

2MSce„l

The phonon dispersion relations used to calculate
D(T) are those extrapolated. from Zn. "The results are

D(T=O'K) =0.004, D(T =298'K) =0.093,

D(T =462 K) =0.150.

The accuracy of quantitative calculations using this
temperature-dependent band structure is sensitive to
the choice of phonon dispersion curves.

Sz =p *K(G)= cos2s-Pp' ()'1+2k)+-,'(j
is replaced by

Sz(G) =e-~to r& cos2srp pr(6+2(p)+ ,'l$. -(4.2)

We must then evaluate W(G, T)

W(G&T) =-,' P(h/2M1V&o„)(2n„+1)
~
(G.e«p) ~'
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Figure 2 shows the resultant Fermi surfaces at 7=0
and T=462 K. The Fermi surface at T=462 K
becomes more free-electron-like in that the waist con-
nects across the I'M line and the butterfly drops below
the Fermi level. These have a large effect on the spin
susceptibility and the Knight shift, which we calculate
in Sec. V.

V. CALCULATION OF SPIN SUSCEPTIBILITY
AND KNIGHT SHIFT

A. Calculation of X~(T)

The spin susceptibility for a gas of noninteracting
electrons is

I I I I I

0.28 0.32 0.36 -0.40 0.44 0.48 0.52 0.56 0.60 0.64 0.68 0.72

k„(Bohr radii 'j

(b)

FIG. 2. Comparison of cross sections of the Fermi surface of
Cd at T=O and T=462'K, along with the values of (IggI')„and
Ao for various points on the Fermi surfaces. (a) Cross section of
the lens in the I'APE plane. (b) Cross section of the monster in
the I'EM plane (Z=0.0).

T
('K.)

0
298
462

Crystal structure
parameters

a c
(~)

Debye
factor
D (T)

(Bohr radii) 2

Fermi
energy

Ey
(Ry)

2.9684
2.973
2.984

5.5261
5.606
5.650

0.004
0.093
0.110

0.651
0.644
0.634

TABxx I. Temperature-dependent parameters of
the band calculations.

X„=(sp'1V (Ep), (5.1)

where E(Zz) is the density of states at the Fermi
surface and po is the Bohr magnetism. The susceptibility
for a real metal can be quite different from the free-
electron gas because of the electron-electron interaction.
Pines'4 has shown that the electron-electron interaction
enhances the spin susceptibility, with the enhancement
being primarily a function of the electron density. The
enhancement factor has not been calculated for Cd.

"J. C. Slater, Qaamtem Theory of Mo(eel(es aid Solids
(McGraw-Hill Book Co., New York, 1965), Vol. II, p. 467.

24 David Pines, in Solid Skate I'hysics, edited by F. Seitz and
D. Turnbull (Academic Press Inc. , New York, 1955),Vol. I, p. 367.
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The Fermi energies are Ep(T=O K) =0.651 Ry and
E~(T=462'K) =0.634 Ry. The density of states at
T=462'K is 16'Po greater than that at T=O'K. It
should also be pointed out that the density of states at
the Fermi energy for T=O K agrees excellently with
the experimental value extracted from superconduc-
tivity data, " as well as with the specific-heat value
when electron-phonon corrections are properly taken
into account.

In order to save computation time, the Fermi energy
and density of states at T=298 K were determined not
by a detailed and lengthy numerical calculation as in
the other two cases, but by an approximate scheme
which consisted of the following steps: (a) estimation
of the Fermi energy by averaging the energy shifts at a
fairly small (—30) number of points close to the Fermi
surface, Ep&"'Kl=0.644 Ry, and (b) averaging over
the Fermi surface the change in electron group veloc-
ities

I vgEI.
The density of states at T=298 K was found to be

10% larger than the T=0'K value.
This yields, from (5.1), the susceptibility (in cgs

volume units)

x„(T=O'K) =0.54&&10
—',

(X~(T=298'K))„=0.60&&10 ',
(X~(T=462'K))„=0.63&&10 '.

0.2 Q. 4 0.6 0.8 1.0

At T=0, the fairly large crystal potential is the cause
of the sizable decrease in density of states at EI; from
the corresponding free-electron value (see Fig. 3). At
higher temperatures the factor e ~(~ ~) effectively re-
duces the potential V,~~ and allows the density of states
to become closer to the free-electron value. In the limit
of vanishing potential (V,rr-+ 0) one could obtain once
again the free-electron density of states.

One can see this effect more explicitly by looking at
the Fermi surface. It becomes increasingly free-electron-
like at higher temperatures. Figure 2 shows this effect
for the lens and the monster.

E, Ry

FIG. 3. Density-of-states curves for Cd at T=O and T=462'K.
Corresponding free-electron curves and Fermi energies are also
shown.

However, we have estimated it by fitting our calculated
E;„at T=O K to the experimental value. The same
enhancement factor is then used for E,„at T=O'K and
for both E;„and E,„at the other temperatures. This
enhancement turns out to be 1.55.

Assuming (5.1) to be correct, we need only calculate
the density of states at the Fermi surface. The density
of states N(Ep) refers to the band density of states a,nd
is obtained from the band structure. "

The density of states was calculated at the three
temperatures T=O, 298, and 462 K. For T=O and
T=462 K, eigenvalues were calculated on a mesh of
200 points in a 1/24 symmetry section of the Brillouin
zone. The number of mesh points being too small for
reliable statistics in a 0.01-Ry spectral histogram of
N(E), a, Monte Carlo routine was used to generate
15 030 points in the Brillouin-zone symmetry section.
The corresponding eigenvalucs at these points were
obtained by quadratic interpolation and then placed in
their proper spectral boxes. The resulting curves for
N(E) are shown in Fig. 3.

"The density of states as obtained from electronic specific-heat
data contains an electron-phonon interaction enhancement factor.
That correction does not apply in the calculation of x~.

B. Calculation of E;„
In Sec. 3, we showed that

I'-=(8 /3)(~. (T)) c'(&IA(R;) I').).,
where C'=669 (evaluated by using the wave functions
given by Herman and Skillman'e).

By means of (4.1) we obtain

&6+X2

(I4.(R ) I')~=K-
G 2rYVp

+ P no+grro ~ps(G —G ) (5.2)
2+Pp 6 ~e

26F. Herman and S. Skillman, Atomic Structure Calculations
(Prentice-Hall, inc. , Englewood CliGa, N. J., 19651.
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where S(6—6') is the structure factor (4.2) and e is
the order of the secular equation.

The average density of the electron in state k at the
nuclear position ((lp~(R;)I')„) has a wide range of
values for states on different regions of the Fermi
surface (see Fig. 2). A Fermi-surface average of this
density therefore requires calculation at many points.

For each of the three temperatures (T=O, 298,
462 K), we calculated the electron density for 34 points
on the monster and for nine points on the lens. The lens
was approximated by an oblate ellipsoid of revolution,
thus enabling an accurate Fermi-surface average over
it to be performed. The average over the monster part
of the Fermi surface was performed by dividing it into
strips, the boundaries of the strips being planes parallel
to the I 0001] axis. The most troublesome surfaces here
are the sharply rounded corners (see Fig. 2), where the
density varies greatly; however, only small errors should
result, since the density is smallest here.

Putting together the two averages above, we found

no((l j, l ),),=o.74, at T=o'K
=0.81, a,t T=298'K
=0.86, at T=462 K

where QQ is the crystal volume.
Thus, relative to the T=0 K density, the density at

298 and 462'K increased by 9 and 15%, respectively.
The large part of this increase resulted from a change
of the wave functions in the monster from p to s
character.

rising (X~)~ from the previous section, along with
the enhancement factor of 1.55, we find close agreement
with experiment, as is shown in Fig. 4. E;„increases by
19% at T=298~K and by 31% at T=462 K:

E;„(O'K)=0.35, E;„(298'K)=0.42,

E;,.(462'K) =0.47.

We can also investigate whether the NMR of Cd
above its melting point can be well approximated by
that of an interacting free-electron gas. '~ The electron
density at a nucleus should be

f1o((l e. I
')~) r =1 o

and the density of states is the free-electron density of
states giving

(x„)~——(1/0.57)x~(T =O'K) .
We then obtain

E';„=0.81%.
This compares excellently with the experimental value
of 0.80%%uo.

Thus our calculation of E;„fits experiment closely.
Core-polarization and orbitals eRects are probably

27N. C. Balder, Phys. Rev. 177, 471 (1968). Balder's results
suggest that the free-electron approximation may not be valid for
liquid metals.
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THEORETICAL CALCULATION
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FIG. 4. Experimental and theoretical isotropic Knight shift.

small, in agreement with Dickson's prediction based on
experiment. '5

((lP l(3 cos' —1)/r'I|t )) =A„yA, , (5.3)
where

c4 y ——Q P a.o +gao+gS(6 —6')P (6'+k
l
O,„)

G' G

&((O,„„l(3 cos'n —1)/r'lO4„„)(O,„ l G+k),

A, g
——Q Q no +gno+gS(G —6') (8m/5)

G' G

XP ((6'+klO4g„)(O4rg I (3 cos'n —1)/r'l 6+k)

+(G'+kl(3 cos'n —1)/r'lO4q )(O4d lG+k)).

The value of A, q was calculated at the three tem-
peratures and was found to be

~1oA sv(0'K) =21, QoA. a(298 K) =24,

QoA, g(462 K) =22.

It is apparent from these values that it is tempera-
ture-independent to a very good approximation. It is
also positive, with positive contributions from the lens
and monster and, as will be seen immediately, is only
about 20% of the absolute value of A~.

C. Calculation of X,„
The anisotropic Knight shift E,„ is given by Eqs.

(3.24) and (3.25). Tn order to evaluate E„we must
evaluate the matrix element of Eo(cosn). When the PP
form is used [Eq. (3.25)], many terms appear. The
dominant terms (an order of magnitude larger than the
others) are the two which involve matrix elements of
Po(cosa) between core wave functions and between core
wave functions and plane waves. When in addition
selection rules for matrix elements of spherical har-
monics are used, the relevant matrix elements can be
expressed as
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VI. CONCLUSIONS

By including the effect of lattice vibrations in the
PP scheme of calculating electronic properties of metals,
we have explained the apparently paradoxical result

The quantity A„ in Eq. (5.3) as calculated by the
methods of Sec. V B yields

QsA„(0 K) = —44, DoA„(298'K) =99,
QsA„(462 K) =104.

When these values are repla, ced in Eq. (5.3) along
with A, q, we obtain

E. (O'K) = —0.006%, E'.„(298'K)=0.034%,
Z,„(462'K)=0.037%.

These values and the experimental curves are dis-
played in Fig. 5. The discrepancy could be calculational
since A„has its largest values in the highly rounded
regions of the monster (see Fig. 2)

The values of A„deserve some separate remarks. The
contribution to A~ from the lens is of positive sign (i.e.,
functions with p, -like summetry) while the contribution
from the monster is negative, indicating p, —p„-like
symmetry. The contributions from both parts, then,
tend to cancel one another, and almost complete can-
cellation occurs at T=O'K. As the temperature in-
creases, several changes take place: (1) The s-p character
of the wave functions on the lens changes only very
slightly; (2) the s character of the wave functions on the
monster increases sizably at the expense of the p part,
diminishing the contribution of the negative p, —p„
part of A~; (3) the Fermi-surface area of the monster
increases more rapidly than that of the lens, contribut-
ing to an increase of the negative part of A~; and (4)
the butterfly gives also a negative contribution at those
temperatures for which the corresponding level falls
below the Fermi energy.

As a consequence of these four changes, E,„6rst
increases with temperature because of (1) and (2) and
then tends to saturation as a result of (3) and (4).

of the changes in the isotropic and anisotropic parts of
the Knight shift.

Qualitatively, all effects can be explained in terms of
the following simple theoretical results: (1) The third-
band lens is a mixture of s-like and p, -like states, which
a,re moreover, roughly temperature-independent; (2)
the second-zone-hole monster consists mostly of states
which in the neighborhood. of the ions are s-like and
p, —p„-like; (3) the shape and symmetry of the states
on the second-zone surface are very sensitive to the
strength and symmetry of the PP; and (4) as the
temperature increases and the PP decreases in strength
and becomes less anisotropic, the states on the second-
zone monster become more s-like and less p —p„-like.

As a consequence of these four effects we 6nd that
(a) as the temperature increases, the s contribution of
the monster increases, with a consequent increase in
E;., (b) As the temperature increases, the p, —p„
contribution of the monster decreases, with a con-
sequent destruction of the almost exact cancellation
between p, —p„contribution of the monster and p,
contribution of the third-zone lens; E, therefore also
increases. (c) Upon melting, Cd becomes a, free-electron-
like metal and E;„increases by 33%. This agrees with
Ziman's hypothesis ' and con6rms it quantitatively.

In conclusion, we would like to point out that the
effect found in Cd and not in most other metals (Mg
with equal valence and structure shows a temperature-
independent Knight shift"), should also appear in Zn,
which has a very similar electronic structure and
PP. If the serious difhculties which arise from the low
isotropic abundance of Zn'~ and the poor signal-to-
noise ratio in the NMR signal could be overcome,
experimental confirmation of this hypothesis should
prove quite interesting. In addition, Zn and Cd should
both exhibit strongly temperature-dependent properties
in other experimental data, in particular in the optical
spectra. A theoretical study of this effect is now under
way.
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APPENDIX

Consider the equation

(e""e"'").= 1+(lE(ik y.)(ik y,)7').+ " (A~)

The terms with an odd number of factors of y go to zero

because they contain products of an odd number of
creation and/or destruction operators.

Since (ik. y„)o is small compared to unity, (A1) can
be written as

(eik ~ y„eik y&) —e Iy—e I—V' e'(i kyeik y„+ik.y„iW ye)

=e yre Ir'+e ~e w'&&Is(ik y„ik y, +ik y„ik y„)„,

where W refers to the vth atom and W' refers to the
pth atom.

Equation (3.8) and the properties of creation and
destruction operators give

—,'(ik y„ik y„+ik yik y„)=g (tt/2IMIVto„)

&({Lk e„k7pk e„s 7(n„+1)e*'«R"' "e'&+c.c.). (A2)
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Phase-Shift Analysis of the Fermi Surface of Copper
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In an earlier paper a method was described whereby the partial-wave phase shifts that characterize the
interaction between the conduction electrons and the lattice in a metal may be derived from experimental
Fermi-surface data. In the present paper we apply the method of phase-shift analysis to study the shape
of the Fermi surface of copper, which is known to be strongly perturbed by the d-like energy bands that lie
almost 2 eV below the Fermi level. By adjusting the values of the s, p, 6, and f phase shifts, and the Fermi-
energy parameter, we construct a model Fermi surface on which the areas of the (100) belly and the (111)
neck and belly orbits, the dog's bone, the four-cornered rosette, and the lemon orbit, are in good agreement
with the results of precision measurements of the corresponding de Haas —van Alphen frequencies. The belly
anisotropy of the model surface is also in good agreement with the experimental data, and the volume en-
closed by the surface does not di&er significantly from 1 electron/atom. The radii of the Fermi surface of
copper in the (100) and (110) symmetry zones are determined to an accuracy of +0.1%, and the results are
in good agreement with the radii recently deduced by Halse by an independent technique. It is shown that
the numerical values of the phase shifts are consistent with the position of copper in the Periodic Table. The
local potential of Chodorow for Cu+ produces phase shifts that are in substantial agreement with the results
of the present work. A simple nonlocal correction to the Chodorow potential is proposed, such that the Fermi
surface derived from the modified potential is entirely consistent with the experimental data. The energies
associated with certain optical transitions in metallic copper are computed from the modified potential, and
are found to agree with the results of recent piezo-optical experiments to better than 0.2 eV. It is concluded
that the method of phase-shift analysis is capable of representing accurately the form of the d-like electronic
energy bands in metals, and that the modified Chodorow potential may well prove to be the best starting
point for a full calculation of the band structure of copper in the vicinity of the Fermi level.

I. INTRODUCTION

AS a result of several experimental investigations, ' '
the geometry of the Fermi surface of copper is

now known in substantial detail. Copper crystallizes in

~A. B. Pippard, Phil. Trans. Roy. Soc. (London) A250, 325
(1957).

Yu. P. Gaidukov, Zh. Eksperim. i Teor. E iz. 37, 1281 (1959)
/English transl. : Soviet Phys. —JETP 10, 913 (1960)].

~ D. Shoenberg, Phil. Trans. Roy. Soc. (London) A255, 85
(1962).

4 H. V. Bohm and V. J. Easterling, Phys. Rev. 128, 1021 (1962).
'A. S. Joseph, A. C. Thorsen, E. Gertner, and L. K. Valby,

Phys. Rev. 148, 569 (1966).

a fcc structure, and single crystals of copper may
readily be grown with the high degree of chemical and
structural perfection necessary for Fermi-surface studies
by resonance techniques. According to the free-electron
model, one would expect the Fermi surface of copper
to be spherical and to lie entirely within the first
Brillouin zone, which for the fcc Bravais lattice is a

6 I. M. Templeton, Proc. Roy. Soc. (London) A292, 413 (1966).
7 J.-P. Jan and I. M. Templeton, Phys. Rev. 161, 556 (1967).

W. J. O' Sullivan and J. E. Schirber, Phys. Rev. 170, 667
(1968); ibid. , Addendum (to be published}.

M. R. Halse, thesis, University of Cambridge, 1968 (unpub-
lished}; and Phil. Trans. Roy. Soc. (London) A265, 507 (1969).


