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The form V (R) =- (C /R ) [2& tan (d/R)] is proposed as an approximation to the re--AB AB 6

tarded van der Waals potential V (R) acting between atoms or molecules A and B. Here
C is the London-van der Waals constant and d=23n@ n@ Kc/SC, with the nE s de-AB ~ AB

noting static electric polarizabilities. V is shown to be in excellent agreement with avail-
able numerical calculations of V (R) based on the Casimir-Polder formula, which requires
infinite summation over excited atomic states. A heuristiq-explanation for the validity of the
formula is given.

I. INTRODUCTION

The effective potential VAB, describing the low-
energy interaction of an atom or molecule A, with
a similar system B, has been the object of theo-
retical and experimental study for many years.
As first shown by London, ' the electrostatic inter-
action between the constituents of A and B leads,
via second-order perturbation theory, to

AB AB 6 R»e,'

V - —kc(23/4s)n n /R,AB A B 7 A»b; (2)

here b is of the order of the maximum wavelength
of light emitted by the systems and n~ denotes the
static electric polarizability, as it would be com-
puted within the same approximations. Since
a-a, and b-2nn 'a, [a, = Bohr radius, n = e'/ke]
there is a substantial region where neither (1)
nor (2) are good approximations. Although
Casimir and Polder' have derived, under the
above-mentioned restrictions, an expression for
VAB valid at such intermediate values of R, its
exact evaluation requires a double summation over
the excited states of A and 8 involving unknown
dipole matrix elements, or, alternatively, knowl-
edge of the dynamic polarizabilities for pure
imaginary frequencies.

In recent years, the study of the interaction of
atoms and molecules at low energies has been
greatly intensified. ' It seems, therefore, that it

here a is a length of the order of atomic dimen-
sions. The effects of the interaction of the atomic
electrons with the transverse radiation field
were first considered by Casimir and Polder, '
who showed (neglecting electron spin and using
the electric dipole approximation for virtual photon
emission) that

would be highly desirable to have available, if
possible, a good approximation to VA~ whose
complete specification requires a minimal amount
of information concerning excited atomic states.
It is the purpose of this paper to put forward a
formula with just such properties, which is,
moreover, remarkably simple. The formula
agrees very well with the results of several numer-
ical calculations based on the expression given
by Casimir and Polder; a theoretical explanation
of its validity is given which suggests that it may
be used with confidence for many-electron atoms,
in which case reliable calculations of this type
would become increasingly difficult.

II. INTERMOLECULAR POTENTIAL

For the sake of clarity, we note first that the
techniques of covariant dispersion theory can be
applied to study not only the asymptotic form of
the long-range forces arising from the exchange
of mass-zero quanta'-' but also to find the force
at any distance. A general analysis' of the poten-
tial V2 (R) arising from two-photon exchange
between any two systems A and B, both of which
are neutral and spinless, leads to the following
result. Let M denote the Feynman amplitude for
the elastic scattering of a photon with momentum

q and polarization e by a neutral spin-zero system
of mass m and momentum p. M may be written
in the form

where M =F (o t)T +E (o t)T

with T = —(q Pq' ~ Pg + q . q'P P
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—q'&q' & —q' &q P")/2m

Z "'=r "'+2(q' qg"' q' "-q")
M E

and o=Q+q), t=(P-P'), P=P+P'2 2

The tensors T& and TM are such that the invari-
ants I'g and I'I have the property

III. ARCTANGENT APPROXIMATION

We now propose as a good approximation to

CEE(R) the function

C (R) = C . (2/v) tan d/R,Aa -1
EE

A B AB
where d = 23n n kc/8C

(7)

(8)

F (m', 0) =4mn, F (m', 0) =4mn

where nE and zM are, respectively, the static
electric and magnetic polarizability of the system.
Then'

V2 (R) = V (R)+ V (R)+ V (R)+ V (R),
2y

(3)

where, if the t dependence of the I's is neglected'

V (R) —C (R)/R', (4)

with

C (R)= ~ J J dk dk k k p (k )p (k )

x j dye P (PR)/(g +k )(g +k ). (5)

Here, e.g. , kA = (oA —MA')/2&A, PE (kA) is the
absorptive part of FEA(oA, 0) and BEE(rI) = r/ + 2ri3
+ 5&2+6&+3. [CE~ is similarly defined with pEB
replaced by p~I3, etc; P~M= PEE, b«&~E

(rI4+ 2g' ~q') j . If A and 8 are both atoms
or molecules and pEA and pEB are approximated
by the values obtained by considering only the
interaction of the transverse radiation field with
nonrelativistic electrons and making the dipole
approximation, (5) becomes identical with the for-
mula of Casimir and Polder. Although there are
cases where the magnetic terms in (3) become im-
portant, ' we confine ourselves to the normally
dominant, purely electric term VEE(R) or, equiva-
lently, to CEE(R). The latter may also be written
in the form

0.0— He- He
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That the arctangent function might enter into a
simple approximation to VEE(R) is suggested by
previous experience with the dispersion-theoretic
analysis of dispersion forces. ' Once the form (7)
is adopted, the length d is conveniently chosen to
guarantee that VEE(R) has the correct asymptotic
form (2).

To test the validity of (7) at intermediate values
of R, we have compared it with the results of
numerical calculations based on (5) (for the case
A = B = H atom) and on (6) (for the cases A =B =He
and A=H, B=He). 'o As can be seen from Fig l, .
the agreement is very good, especially in view of
the simplicity of (7), which involves no new con-
stants beyond those already entering (I) and (2).
The difference between CEE(R) and CEE(R) is in
no case larger than a few percent, for any value
of R.

The accuracy of (7) may perhaps be understood
as follows. We put g =q/R in (5) and integrate
by parts to rewrite (5) in the form

I'~ t'~ dkA dk p (k )p (k )
I3

C (R) =
EE 8m J ) w v k +k

C (R) =- f, dtnE (g)n (g)

x e ~ P (gR) (6a)
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where n ((u) =-

E 27t '
7) k' —co'

is the frequency -dependent polarizability.

(6b)
FIG. 1. Comparison of the arctangent formula [Eq.

(7) ], with the results of numerical calculations based on
the Casimir-Polder formula. The plotted points were
obtained from Eq. (5) for the H-H case, and from Eq.
(6) for the other cases (Ref. 10).
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where

x dt) N —[P (n)e ],dn (9)

k tan ' ('g/k&R) —k tan '(t) /k R)
N=— ' (10)

C (R) = C N(R),

where N(R) is a weighted average of N = N (k~,
kII, q; R). Note further that N is a slowly varying
function of the integration variables and also that
for R -~, N-(2/m)((/R 1

where $ = t) /kA&, with

k~ = kAkR/(kg+ kB). These facts and the form
(10 suggest that if we define a mean value g
= $ (R) of $ by writing

N (R) = (2/s) tan ' [ g (R)/R] (12)

then $ (R) will be a slowly varying function of R.
[Additional support for this form of N(R) comes
from the observation that the function N = (2/s)
xtan '($/R) is a good approximation to N for all
values of kg, kB, and g. N coincides with N for

Thus, enter the arctangent. To arrive at (7), note
first that if N is replaced by unity the right-hand
side of (9) reduces to CEE(0) = C&R so that (9) may
be written in the form

kg/kR» 1 or kR/k~ » 1, and when both k~ and kR
are small or large relative to t)/R; the maximum
error (- 20%%uo) occurs for kg = kR = 'g/v 2 R. ] On
approximating $ (R) by f, (~) in (12) and noting
that (2), (11), and (12) imply that $(~) =d, defined
by (8), we obtain Eq. (7).

It should be emphasized that our discussion is
heuristic and by no means constitutes a derivation
of the validity of the approximation —C@R(R)
= CgR(R). A general statement about the validity
certainly cannot be made without imposing some
restrictions on the spectral functions pE (k) a.nd

pR~(k), e.g. , that they be slowly varying in rele-
vant regions of k space. The agreement with the
numerical calculations shows that the pE(k) for
both H and He satisfy these restrictions. We
should also remark that attempted fits with other
simple functions, such as d(d+ —,'mR) ' or d[d'
+ (—,'mR)'] 'I', which, like (2/s) tan-'(d/R), involve
no additional parameters and behave as (2/m)(d/R)
for R -~ but which have no corresponding theoret-
ical support, turn out to be much less satisfactory.

In conclusion, we believe that Eq. (7) can be
used with considerable confidence in the planning
and analysis of atomic scattering experiments at
very low energies. We hope that the availability
of a simple but apparently quite accurate expres-
sion for the dominant part of the retarded van
der Waals potential" will help stimulate experi-
mental efforts to measure these forces in elemen-
tary scattering processes.
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As described in Ref. 6 and shown in Ref, 7, the ex-

act asymptotic form of (3) is V2& =-D/R Ref. 7, where
D=23(&E &E +o'M &M ) -7(oE &M +&M &E )/4&.
This implies, for&=H, B=He, that V2& is repulsive
at large ~.

i0The points for the latter two cases are based on the
calculations of P. Getzin and M. Karplus, who used
Eq. (5). (P. M. Getzin [Columbia University, Ph. D.
thesis, 1967 (unpublished)]; P. Getzin and M. Karplus
(unpublished)). We thank Professor G. Feinberg for
bringing this work to our attention. Before becoming
aware of it, we computed &EE(&) for&=&=H directly
from (5), using results obtained during the exact com-
putation of CEE(0) IM. 0 Carroll and J. Sucher, Phys.
Rev. Letters 21, 1143 (1968)]. This case is also
treated by these authors, who used (6) and the exact
values of e@ (~) obtained by M. Karplus and M. Kolker,
J. Chem. Phys. 39, 1493 (1963). The two calculations
are in complete agreement.

Approximations for the other Cgy(~), analogous to
Eq. (7) for &~@(&), are considered in Ref. 7.


