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The conductivity of Ti8015 is activated over the whole
temperature range investigated. The activation energy
of 0.087 eV could be involved in exciting the d electrons
into a band from a localized state, or it could be as-
sociated with an activated mobility with the electrons
hopping from one localized state to another.

V. SUMMARY

Several transitions have been observed in single
crystals of the titanium oxides by electrical conductivity
measurements and differential thermal analysis. Most
of these transitions correspond closely with the transi-
tions observed in previously reported magnetic sus-
ceptibility data obtained on powders or sintered pellets
of these compounds. The one notable exception is the
lower-temperature transition in Ti407 which has been
shown to involve some structural rearrangement with-
out affecting the magnetic susceptibility.

The behavior of Ti407 is similar to that of U~O3 except

that Ti407 undergoes two separate transitions. The erst
involves a change in magnetic susceptibility, while the
second involves structural rearrangement with no
change in susceptibility. It was pointed out that existing
theories apparently do not provide a satisfactory ex-
planation of the semiconductor-to-metal transition in
Ti407 or account for the properties of Ti509 and Ti6011.
The striking changes brought about by relatively small
structural alterations in this series of materials suggest
that highly detailed theoretical treatments will be
needed for any satisfactory degree of understanding.
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A comparison is made between the semiclassical and the quantum-mechanical treatment of the anomalous
skin e8ect. The latter theory is based on the density matrix. The author calculates the value of the surface
impedance with both theories. The difference depends on a parameter X, which is the ratio of the skin depth
to a typical de Broglie wavelength. This wavelength corresponds to the velocity component, normal to the
surface, of an effective electron. The order of magnitude of the correction depends on the relaxation time,
and can amount to 10 jo for sufficiently pure metals.

1. INTRODUCTION

KCAUSE much information about the structure
of solids is obtained by means of electric conduc-

tivity measurements in the frequency region of the
anomalous skin eRect (ase), it is obvious that a proper
description of these experiments is needed. In the liter-
ature two different approaches have been followed
for treating the ase: (i) the semiclassical approach,
which is based on the concept of the distribution func-
tion, ' and (ii) the quantum-mechanical approach
founded on the density matrix. ' ' It has been reported
by several authors' that no significant discrepancies
exist between the treatments. In this paper it is shown

' G. E. H. Reuter and K. H. Sondheimer, Proc. Roy. Soc.
(London) A195, 336 ($948).' D. C. Mattis and G. Dresselhaus, Phys. Rev. 111,403 (1958).

' D. C. Mattis and J. Bardeen, Phys. Rev. 111,412 (1958).
4 A. B. Pippard, Documents on 3IIodern Physics, The Dynamics

of Cottducteort Electrons (Gordon and Breach, Science Publishers,
Inc., New York, 1964), Chap. 5.

that this conclusion is not correct. The reason for this
is the fact that the motion of electrons, close to the
boundaries, was not properly accounted for in Ref. 2.
This is because use has been made of the "speculum
assumption, "defined in Sec. 2, which is not correct for
a quantum treatment, as is shown in Secs. 6 and 7.
Although the subject of the ase has tended to become
almost "classical, " it should be emphasized at this
point that the treatments given in the textbooks are
fundamentally incorrect for this reason. In order to
make a quantitative comparison between the two ap-
proaches, let us confine our attention to the value of the
surface impedance. of an electron system with a metallic
density. In order to make it clear at which point the
present analysis differs with the existing ones, a formal
description is given of the response of the electron
system to an applied electromagnetic field. In Sec. 3
the relation between this response and the surface
impedance is established. In Secs. 4 and 5 a brief
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upper half of the complex ~ plane. The current-densi'ty
and electric field components, J and E„are related to
each other in two diferent ways: (i) by means of the
response theory and (ii) by means of Maxwell's equa-
tions. If the average values of J, and E in a plane s
are denoted by J (s,oo) and E,(s,oo), respectively, the
linear response theory gives a relation which is of the
following type:

J,(s,(u) = ds' E(s,s')E.(z',~), (2.1)

I"ro. 1. Geometry of the system.

indication is made of the contents of the semiclassical
theory of the ase, which is in agreement with the exist-
ing literature. ' In Secs. 6 and 7 a quantum treatment of
the ase is given, which differs from that of Ref. 3. The
results of linear response theory which are needed in the
text are given in the Appendix. Preliminary results of
this investigation have been given elsewhere. '

A reason why it has not yet been possible to identify
the quantum corrections is that all observed deviations
of the surface impedance can be ascribed to surface
roughness within the improper semiclassical framework.
It should be possible to distinguish experimentally
between surface roughness and our quantum correc-
tions, however. For this purpose, one needs a pure
metal (oor) 1) with a sufficiently smooth surface
(80-90%%uq specular reflection at glancing angles is attain-
able today). The frequency range between 1—100
Gc/sec seems most promising. The rather rapid decay
of the corrections for cur &1 may be useful aid.

2. FORMAL DESCRIPTION OF RESPONSE

In order to evaluate the value of the surface imped-
ance, it is necessary to make some specifications about
the surf@,ce of the system. For convenience, it is con-
sidered to be smooth and rigid, which implies that it
is represented by an infinite potential wall. Let these
walls be located at a=0 and s= —L, as shown in Fig. I.
The other boundary conditions are considered to be
periodic with periodicities L and L„along the x and y
directions. Ultimately, the limits L, L„, L —&~ are
taken so that the system becomes semi-infinite. For
convenience, the system is assumed to be reQection
symmetric about the x—s plane. This is realized for a
free-electron system with the geometry of Fig. 1. The
simplilcation is that the current-density components
along the y direction do not couple to electric field
components along the x direction and vice versa. In
order to apply the response theory of the Appendix,
the system is considered to have been in thermal equi-
librium until t= 0, the instant at which the experiment
is started. The Fourier transforms of currents and 6elds
are accordingly one-sided in time and analytical in the

' A. P. van Gelder, Phys. Letters 21, 18 (1966).

if the system has the just mentioned symmetries. The
function E(s,s') depends on co. Physically, E(s,s')
describes the transport of electrons from the plane s',
where electrons are accelerated by the electric field
E (s', co), towards the plane s. The function Emay hence
be looked upon as a propagator of signals which propa-
gate through the electron system. If we neglect the
inhuence of the boundaries for the moment, then, if the
system were reRection-symmetric about the x-y plane,
the propagator E'(s,z') would only depend on the value
of

i
s —s'i. I.et us denote this propagator by C(i s—s' i),

so that we would have

E(z,s') = C(i s —s'i) . (2.2)

The crudest and most simple effect of the presence of
a boundary at s'=0 is the following: a signal which is
emitted at s' by means of the electric field propagates
towards the wall and will be reemitted back into the
bulk. If the signal were not distorted by this reemission
process, it would arrive at s as though it had traveled
a total distance (s+s') through the bulk without being
disturbed. If this reasoning were correct, we would have

E'(s,s') =C(is —s'i)+Cis —s'i). (2.3)

J.(s,a&) = ds' C(i s —s'()E.(s',co)

ds' C(is —s'i)E.(—s', ~). (2.5)

' C. Kittel, Quavers Theory of Solids Uohn Wiley 8r Sons,
Inc. , New York, 1964), Chap. 16.

It is not at all obvious that this result is correct, so
that one generally expects the following trivial expres-
sion for E(s,s'):

(s,s') = C(l z —z'I)+C(l s+ s'I)+Q(s, s'), (2.4)

where all corrections which are not incorporated in the
crude assumptions leading to Eq. (2.3) are contained
in Q. It should be mentioned at this point that the
assumptions leading to Eq. (2.3), which imply that
Q=O, are equivalent to the frequently used speculum
assumPtion. s This is readily seen if one substitutes
Eq. (2.3) into (2.1), which gives
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Z(O, oi) —Zo(0,&o) = a o dk Jz(k oi)E o(k,~). (3.18)
2' 0

For this derivation we have used the inverse transform
of Eq. (3.2), valid for L —+~:

00

g(e, cv) =— dk cosks g(k, M) . (3.19)

Note that Eq. (3.18) is an exact expression for the cor-
rection to Z(0,oi), because of the inadequacy of the
speculum assumption. Another expression for this
difference follows directly from Eq. (3.18):

This equation would also have been obtained if Eq.
(3.15) would be iterated with respect to J~, a procedure
which is only meaningful if the correction due to Jz is
small. Equations (3.15) and (3.16) can be combined
to give

5 (k,oi) —E o(k, cu) = oiicopoa iJ~(k,o&)E o(k,~d). (3.17)

Integration with respect to k gives

metry, this field does not contribute to the value of
the surface impedance. The symmetries responsible are
rejections about the x—s and the y —s planes, sym-
metries which vanish in the presence of an applied
magnetic field. If the frequency is sufFiciently high, as
is the case for the extreme anomalous-skin-effect region,
this model is well known to be adequate for conduction
in metals at low temperatures. This is due to the fact
that the "bottleneck" of the energy transfer from the
electromagnetic field to the system is not the transfer
of momentum and energy from the electron system to
the lattice, but rather the transfer of energy from the
electromagnetic field to the electron system.

In order to derive a semiclassical expression for the
propagator E(s,s') of Eq. (2.1) or for the equivalent
expression in Eq. (3.11), it is necessary to solve the
Boltzmann equation for the distribution function

f(r,v, t):
Bf Bf Bf—= —V' ——V' —.
8t Bj.' 8v

(4.1)

Since the boundaries at s=0 and s= —L are smooth
and rigid, Eq. (4.1) must be solved with the boundary
conditions

Z(O, oo) —Z (O,oi) ='joopog de JE(s,io)E,o(s,oi) (3.20).
f(x,y, O, v„v„,v„t) = f(x, y, 0, v„v„, —v„ t)

Although these results are mathematically exact, their
usefulness depends on whether or not the iteration of
Eq. (3.15) with respect to J& converges rapidly. In
order to calculate the corrections to lowest order of the
iteration procedure, one has to evaluate the functional
Jii with respect to E,o, rather than E„ in Eq. (3.13).

It should be mentioned that Eqs. (3.15) and (3.16)
determine the ratio of the field E,(k,&o) and a. The latter
quantity may very well be considered as fixed and for
instance be made equal to 1, in which case E,(s,&u) reduces
to Z(s, &u). It should finally be mentioned that the trans-
forms of Eqs. (3.2) and (3.19) should be applied with
care. For instance, to interchange differentiations with
integrations, in general, is not allowed, because of non-
uniform convergence.

4. SEMICLASSICAL TREATMENT OF
ANOMALOUS SKIN EFFECT

Except for the restrictions of Sec. 2, our treatment
has been quite general thus far. For instance, it applies
to systems of interacting electrons. Let us, from now
on restrict ourselves to the model of a free-electron
system. This does not imply that the particles do not
scatter at the boundaries, however. The motion of an
electron is hence only determined by the self-consistent
electromagnetic field and by the walls of the system.
In principle, there is a difficulty connected with the
longitudinal field which, on one hand, is a result of two-
particle interaction and on the other, a part of the
electromagnetic 6eld. However, on account of sym-

and (4.2)

d'v fo(v) =1.

In order to solve Eq. (4.1), we define the functions

F(v.) = dv, dvo fo(v), (4.3)

x Sy8z)N dh e'"'(L,L„) ' dx dy dv, dv„

~p&zpGO x ~p&z)07 x ~p ~zp CO
p (4.4)

f(x, y, L, v„v„, v„t)=—f(x, y, L, v„v„, ——v„t).

These conditions, used by Reuter and Sondheimer, ' are
referred to as the speculum conditions for the Soltz-
mann equation. In order to avoid confusion, we would
like to mention that this boundary condition is not u

priori equivalent to the "speculum assumption" which
was defined in Sec. 2. The acceleration v in Eq. (4.1)
equals (e/M)[E(r, t)+vt&B(r, t)j, where e is the charge
of an electron and M is its mass.

In order to solve Eq. (4.1) for linear response theory
with respect to the electromagnetic field, f is replaced

by nofo(v)+ f'(r, v, t), where fo is the semiclassical
equilibrium distribution function and f is the first-
order correction. Here, n is the unperturbed electron
density, so that
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and
f (z,

—v.,~) =f.(z,v„( ) f.—(z, —v„o~) . (4 5)
this limit, Eq. (4.10) reduces to

o(k,or) =-,'vn'e'/(Mvp~ k ~).
It is straightforward to show that f+ and f satisfy the
following set of linearized equations:

ioif (z,v„(o)= v, (8/Bz) f+(z,v „oi) . (4.7)

Partial derivatives with respect to x and y have dis-
appeared owing to the periodic boundary conditions.
Equation (4.2) requires f to vanish at z= 0 and z= —1.,
so that v.(8/Bz) f+(z,v„oi) also vanishes at these bound-
aries. Elimination of f out of Eqs. (4.6) and (4.7)
gives rise to

~

~ ~

8' ) n'e
a) +v, ' ~f+(z,v„o~) =2io~ F(v,)E,(z,oi). (4.8)

Bz') M

Application of (3.2) gives

(oi' —v 'k') f+(k,v.,oi) = 2io~(n'e/M)F(v, )E,(k, o~) .
The current density

8 woe

i(of+(z,v.,oi) =v, f —(z,v„o~) 2—F(v,)E,(z,o~) (4.6)
Bs 3f

and

Consequently, one obtains

E„'(k,oi)/u= 2(k' —in'/
I
k

I ) (5.1)

where the characteristic wave number o. is defined as

e= (4ziroio~v2)'t3(c2vp) (5.2)

and oi„ is the plasma frequency, o~„= (n'e')'tz(eoM) 't'.
The reciprocal value of n is referred to as the skin
depth; it is the characteristic distance over which the

electromagnetic field decays into a metal. It is some-
times convenient to represent Z(z, o~) of Eq. (3.8) as
(2/v. n) B(o.z), if the function h is defined as

dk coskx
k' —i

(5 3)

The surface impedance follows from Z(0,o~) = —', n '
&&(1+,iV3)—in this approximation. The approximation

implies that ~o~/a~&&vp, so that o&&&10i4 sec ' for
metallic densities. The real part of the function h is
just Re[h(x)]= 6ire'+-,'ver'"&' sin(-', xv3+-', v).

J.(k,o)) =e

is hence given by

dv, f+(k,v„oi) 6. QUANTUM TREATMENT OF ANOMALOUS
SKIN EFFECT

with
J,(k,o~) = o-(k, oi)E,(k,&o), (4 9)

ie'e' +"
a(k, o~) =-

M

F(v,)
d'v g

peak

(4.10)

S. SURFACE IMPEDANCE FOR
SEMICLASSICAL CASE

The value of the surface impedance is obtained if one
substitutes the result of Eq. (4.10) into (3.16). Let us
consider the low-temperature limit, in which case F(v,),
defined in Eq. (4.3), can be approximated by

F(v,)=-,'vp —'(vp' —v, ') if iv, i
& vp,

and by zero elsewhere. Here, ~& is the velocity of an
electron at the Fermi surface. For frequencies which
are not too large, it is sufficient to consider only those
values of k for which ~o~/k~&&vp. For metallic densities
this approximation. is only valid if cog&10'4 sec ~. In

Comparison of this result with Eq. (3.11) shows the
validitv of the speculum assumption for a semiclassical
free-electron system.

Note that the imaginary part of co is positive, so that
the integral of (4.10) is well defined. In order to find
the conductivity for a physical frequency cv, one has
to take the limit Im(o~) —+ 0. If the Boltzrnann equation
had contained a collision term with a relaxation time
v, one would have had to identify Im(oi) with r '.

In order to derive a quantum-mechanical expression
for the response of the free-electron system, it would
not be correct to make use of the procedure of the
previous section because the notion of a distribution
function is not compatible with the principles of quan-
tum mechanics, as is well known. In order to make a
comparison with the semiclassical theory, an electron
system will be considered which is dynamically identical
to that of the preceding section. It is again our purpose
to derive an expression like Eq. (3.11) for the response.
For the details of the linear response theory, we refer
to the Appendix.

The linearized current-density component along the
x direction, J,(r, t), is given by the following expectation
value:

J.(r, t) = ', e P ([v.;, b(r —«,-) j+)~

—(e'/M)~*(r, t) 2 (~(r—«t)) ~ (6 1)

Here, e is the charge of the electron and 3E is its mass.
The vector potential of the electromagnetic field is
A(r, t). The symbol v is an abbreviation of M 'hp,
where Ay is the momentum operator of the electron.
The operator v corresponds to the velocity if the
electromagnetic Geld were absent, which is the case
for the unperturbed system, where A=0. The symbols

( )i and ( ),~ refer to the nonequilibrium expectation
value at time t and to the equilibrium value, respec-
tively. Because the system is translation-invariant
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along the x and y directions, the expectation value current density, Eq. (6.2), gives

P, (8(r-q;))«can be replaced by (L,L„) ' g, (8(s-q„.))«.
According to Eq. (3.1), one has 4e'A

J (s,&o) = P P k,' sin(ki. s) sin(k~, s)
~2+I ~~,S„ I I„a2z

J,(s,(o) =e(2L,L„) '

—e (ML,L„) 'A, (s, ) P (b(s —q„)), . (6.2)

f'(k„k„,kg, ) f'(—k.,k„,ki,)x
~ —(k/2M) (k„'—ki, ')

ds' sin(ki, s')

The nonequilibrium expectation value of this equation
can be evaluated with the aid of Eq. (A4) of the Appen-
dix. In order to do this, one has to replace the single-
particle operator j by the corresponding operator
fv»8(s —q,)j+ in the text. For the evaluation one has
to know the complete set of eigenfunctions of the single-
particle Hamiltonian of the unperturbed system, and
the interaction Hamiltonian FX'.

If, as in Secs. 4and 5, the boundary at x=0 is repre-
sented by an in6nite potential well, the eigenfunctions
of the unperturbed Hamiltonian are given by (r~k)
= (r~k»k»k, )=2't'(L, L„L) '~2exp(i(k, x+k„y))sin(k, s).
The energy which corresponds to this wave function is
E(k)= (fz /2M)(k +k +k ). A complete set of wave
functions corresponds to the assembly of quantum
numbers: k, =2s.(L,) 'n„k„=27r(L„) 'n„, and k,
=n.(L) 'n„ if n, and n„rae integers and if e, is a
positive integer. It should be emphasized that the cor-
rections which will be found are due to the fact that we
use the proper set of eigenfunctions rather than a
plane-wave representation.

The single-particle interaction Hamiltonian FI& is
given by

2e
Xsin(k2, s')A (s', cu) — A (s,a&)

3IV

X P P f'(k.,k„,k,) sin'(k, s). (6.5)
It:x,&y &z

J.(s,(v) =
16M'x4

dk, dk„dp dk k, '

f'(k„k„p+-', k) f'(k„k„,p ——-', k)
X (cosks —cos2Ps)

»e —kpk/M

Here, V is an abbreviation of L I„L, the volume of the
system. The convention for the summation is to sum
over all quantum numbers, where it is understood that
k and k„can be positive and negative, whereas k~,
and k2z can only be positive. Because the summand
is even with respect to k&, and k2„one may extend the
summations with respect to these variables to negative
values as well, provided a factor ~ is taken into account.
In the limit L —+~ we replace the summations by
integrations. Let us also de6ne the following variables:
ki, =p —2k and k2.= p+~k. Then Eq. (6.5) reduces to

IJ,'= —(ek/M) p A(»l, t)+ el (tl, t) . (6 3) X ds'(cosks' —cos2ps')A, (s',&o)+ A, (s,co)
8&'M

Here, A is the vector potential of the electromagnetic
field and C is the scalar potential which corresponds to
the self-consistent longitudinal field. It should be
mentioned with respect to Eq. (6.3) that the term which
is proportional to A' has been left out, because we are
only interested in the linear response with respect to
the electromagnetic field. Furthermore, we have chosen
Coulomb's gauge, div A(r, t) = 0.

In the Appendix we define the operator

dk dk„dk, f'(k„k„,k,) (cos2k,s —1) . (6.6)

J.(s,cd) =
4M'z4

dk(casks) dp

Since f'(k) is even with respect to the components of

k, Eq. (6.6) reduces to

d] eitot+ 1 X (cosks' —cos2ps')A (s', a&)

Because the system is translation-invariant along x and

y directions and refiection-symmetric about the x-s
and y-s planes, it is obvious that only the following
part of II„' will contribute to the value of J,(s,»0):

f'(k„k„,p+-,'k) f'(k., k„, p —-', k) —e'
X + A, (s,o))

(v —Apk/M SMm'

X dk, dk„dk, f'(k, k„,k.)(cos2k,s—1) . (6.7)—(ek/M) p.A.(q„co) . (6.4)

This statement can also be verified by inspection of The transformations p —+-,'k and k —+2p are used to
Eq. (A4). Application of (A4) to the expression for the derive Eq. (6.7). Let us define the normalized distri-
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o zo — rm(z {o,oz)-z'{o,&p))

I Z'(o~j
0.2C

to the surface impedance follows from Eq. (3.18):

Z(0,oz) —ZP(0, oz)

0.20

0.16—
=2n 'm 'lim

g -+0 fkfi

0.1 2

0.01

g

X dp] p' —
f

() —pk+i»)-z
)PI{&

0,04—

10

{

10

{

10

= —4(nhzr) ' ( i ) 1 1

(kt)

FzG. 2. Relative quantum correction of the real part of the surface
impedance for a free-electron system (r = ~ ).

tive mass for the Z direction; explicitly,

X= 2k&on s(c)sE/c)k, s)

The orders of magnitude of X and g for an isotropic
free-electron system with metallic density are X 10 '
u'~' and g 10 ~ '1'. More precisely, in mks units,
1=0.023 &pits(e/E&)'", if EF is the Fermi energy of an
isotropic free-electron system.

The just-mentioned assumption that Jz is a small
correction to the semiclassical treatment implies that
the value of ti&ozzpJzz(k, pp)

~

is small in comparison to
~2a~, in view of Eq. (3.15), This implies that

1 +p dp (1,
7r p p' i/ I p I

'A—pk/n+i» {—
if use is made of the definition of n, and if
F(-,'(n'P'+k')zz') has been replaced by 3/4k+, which is
legimate apart from a correction of the order of g '.
According to this estimation, the extra current-density
term in Eq. (3.15) is small if X)1. For this reason we
expect the lowest-order result of the iteration pro-
cedure to be a good estimation for A.)1 or for co&10'
sec '. For the proof we have made use of the following
identity:

lim dp = —3~
P+ Ps i/IP I P a——i» a'+1

a ln(a) 2zriV3 ao(a'+1) a4
—2i — — +i7r, (7.3)

a'+1 9 a'+1 a'+1

if Im(a) ~&0. The quantum corrections are extremal for
k values in the vicinity of k&nP. These values of k are
small compared to k~ if X&g, which corresponds to
co&10' sec '. For this reason we restrict our analysis,
based on iteration of Eq. (3.15), to the frequency
region of 10'&or&10'4 sec '. The quantum correction

(1 $4 1n($) V3 1+j' 1
+i~ — — +-, (7.4)

1+$' 9 1+$s 21+$'

where f is an abbreviation of X 'k. Here, the second
identity has been derived with the aid of Eq. (7.3).
Equation (7.4) can be evaluated analytically:

Z(0, a&) —ZP(0, pp)

2
—ln9, +—(—SX'+9Xo—SX'+7)

mn1 —P' x 54

2 iX 4zrv3
+— (X' —s) in', + ()i' —X4) . (7.5)

~n 1—X' 27

The relative increment of the imaginary part of Z(0,pp)

with respect to the semiclassical treatment is shown in
Flg. 2.

For the derivation of our results it was explicitly
assumed that the electrons are free. The question arises,
to what extent our calculations apply to a realistic
electron system with interactions. To answer it, we
consider a relaxation-time model in the usual sense, i.e.,
by replacing the frequency pp with pi+i/r It follows.
from a comparison between Eqs. (6.12) and (7.1) that
the parameter X has to be replaced bye (1+i/ozr).
Here, g is referred to as the relaxation time. Careful
inspection of the steps leading to Eqs. (7.4) and (7.5)
shows that Eq. (7.5) is also valid for complex values of
A.. This extension of the theory is only valid if the elec-
tric field is given by Eq. (5.1), i.e., for the extreme
anomalous-skin-effect region. It appears that the effect
of relaxation is to reduce the quantum correction which
we have calculated for the free-electron model. The
effect of this reduction is shown in Fig. 3.

A physical explanation for the quantum correction
which we calculated in this section is the following.
Although a/l electrons contribute to the value of the
surface impedance in the semiclassical theory, it is
obvious, after inspection of Eqs. (4.10) and (5.1),
that the contribution of certain electrons is Inore
important than that of the others. In particular, it
appears that the electrons for which zz, &o/k»p/n, i.e.,
those which contribute to the pole of Eq. (4.10), are
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It may be that in practice the quantum corrections are
larger than calculated here, owing to the effective mass
of the electrons. It should finally be mentioned that the
quantum corrections, which have been discussed in this
paper, may very well have been overlooked by experi-
mentalists. The reason is that diffuse scattering also
gives rise to an increment of the surface resistivity
which can be comparable with the quantum correction.
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APPENDIX' LINEAR RESPONSE THEORY
FIG. 3. Relative quantum correction of the real part of the

surface impedance for diferent values of the relaxation time ~.
For convenience we have taken 'A=0.04&'".

dominant. Corresponding to Pippard's terminology, 7

such electrons are referred to as "effective. " If the
electrons are free (r —+Do), an effective electron spends
a time comparable with the period of the electromag-
netic Geld inside the skin layer and is hence capable of
absorbing an optimum amount of energy out of the
radiation field. The classical boundary condition, the
speculum condition, implies that the velocity and po-
sition coordinates at a=0 of these effective electrons
have to be determined simultaneously. From a quan-
tum-mechanical point of view such a statement can be
made provided the de Broglie wavelength, which corre-
sponds to the velocity component normal to the surface,
is sufficiently small —in particular, if it is small com-
pared to the skin depth. For an effective electron this
implies that 23Eoi/n'fi=7i))1, which is in agreement
with Eq. (7.5) for the free-electron case. If oir))1,
Pippard s effectiveness criterion implies that those elec-
trons are effective which spend a time comparable with
the relaxation time inside the skin region. Formally,
this corresponds to replacement of co by 1/r, which
implies again that the semiclassical treatment is valid
for (7 ())1.

Summarizing, the quantum corrections for the semi-
classical theory of the anomalous skin effect depend on
the ratio of the skin depth to a typical de Broglie wave-
length. This wavelength corresponds to the velocity
component, normal to the surf ace, of an effective
electron. The Inagnitude of the correction is given by
Eq. (7.5), where X is given by Eq. (7.2). The quantity co

is the frequency if the electrons are free, and it is the
frequency multiplied with 1+i/&vr if a relaxation time
is introduced. The results of this treatment are assumed
to be valid for the frequency region 10'(~(10"sec '

on behalf of the approximations which have been made.

' A. B. Pippard, Proc. Roy. Soc. (London) A224, 273 (1954l.

(F)q=(zA) ' dki Tr{p'[F(z—ti), Bc~,'j ). (A1)

Here, the operator F(t) is defined as F(t)=e'" '+"
&&Fe '" '+". Equation (A1) can also be written as

dt e'"'(F)g (ik)—'([F„,3e„'7 )„——, (A2)

8 W. Kohn and J. M. Luttinger, Phys. Rev. 108, 590 (1957).
9 H. Ehrenreich and M. H. Cohen, Phys. Rev. 115, 786 (1959)."R.Kubo, J. Phys. Soc. Japan 12, 570 (1957).

The expectation value of an operator F at time t is
given by (F)t,=Tr[p(z)F), where p(t) is the density
operator which satisfies dp(t)/dt= (z'6) 'PC, p(t)$
The Hamiltonian K may depend on Z. Obviously, (F)&
satisfies d/dt(F), = ih '([K,F) )i.

The single-particle density operator f(z) is defined

by the requirement that (a (ki)a(A2))„=(k,
~
f(1) ~ki),

where at(k) and a(k) are creation and destruction
operators of a particle in a single-particle state ~k).
The expectation value of an operator J=P„j„(nis the
particle index) is given by (J)&=Tr[f(Z)j ), where j is
the single-particle operator corresponding to J. The
trace in this expression must be evaluated for a com-
plete set of single-particle states. In case X=+„H„,
where H is the single-particle Hamiltonian, it follows
that (d/dt) f(t) = (ik) '[H, f(t)j . In order to prove this,
one has to investigate the equation of motion of the
operator F=a (kz)a(k2), using the proper (anti)com-
mutation relations. If the system is in thermal equi-
librium, the operator f is diagonal in the representation
of II, so that f= f'=(ee& —»&1) ' (+ sign for Fermi,
—sign for Bose statistics).

If BC contains a time-independent part 3."and a time-
dependent interaction BC&', the equation of motion for
p(t) can be linearized with respect to the interaction.
In this approximation one obtains for (F)t,
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dt e'"'F(t) and K„'= dt e'"'3C~'.

of these quantities if the system were not disturbed,
i.e., if K= Ko. Furthermore, qi(0) = qi, and p~(0) = p~, .
The density function satisfies (d/dt)p(t)= {3C,p(t))ps,
where {A,B)ps is the Poisson bracket, defined as

The symbol ( ),~ refers to the equilibrium expectation
value.

If the particles are noninteracting, it is obvious that
the expectation value of an operator J=P„j„satisfies
the analogous equation

BA BB cjA M3)
I

~

8/A; t9 Ie 8 Ie 8/A;

Linearization with respect to the interaction BC&' leads
to the classical analog of (A1):

dt e'"'(J)&——(i') '(Lj„,H„'j )., (A3) dt e'"'(F),= ({F„,Se„')ps)„.
The proof of Eq. (A3) is analogous to that of (A2) on
account of the analogy of the equations of motion for
p(t) and f(t). Equation (A3) can be made explicit for
the complete set of single particle eigenstates of II,
denoted by ~n):

Here

dt e'"'F fqr(t) pj, (t)j,

dt, e'"'X, '(qipi, ) .

(A5)

dt e'"'(J),=P P (e( j(m)(mtH '~N)

f'(F- ) f'(F- )—
X (A4)

Aei+F„F. —

Classically, the expectation value of an observable
F(qy, pq) is defined as

If the particles are noninteracting, it is convenient
to make use of the single-particle distribution function
f(r, v, t), which satisfies (d/dt) f(t)= {V,f(t))ps, where
the PB refers to the coordinates and momentum com-
ponents of a single particle. Hence classical analog of
(A3) is

d«- (~).=«j.,~. )»).. (A6)

(F),= dqadp, p(t)F(qpp, ),

if p(t) is the density function and (qipi, ) is a symbolic
notation for all coordinates and momenta of the par-
ticles. By convention, qi, (t) and pi(t) refer to the values

Here, the Poisson bracket { )ps refers to the position
and momentum coordinates of a single particle. Equa-
tion (A6) is also used for the semiclassical case, where
the unperturbed distribution function is identified
with the quantum-statistical one.
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Quantum Corrections in the Theory of the Anomalous Skin Effect in the
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A comparison is made between the semiclassical and the quantum treatment of the anomalous skin
effect for an electron system which is placed in a static magnetic Geld. It is shown that the surface impedance
can generally be expressed in terms of a Green's function. For weak applied magnetic fields, there exist two
types of quantum corrections, one of which has been treated by Prange; and the other is discussed in this
paper. Both corrections imply that the surface resistance oscillates as a function of the applied field B.
The frequency dependence of the values of 8 for which the oscillations occur, co'", is in agreement with
experiments by Koch, Kuo, Khaikin, et al.

l. INTRODUCTION

'N a previous paper, ' referred to as I, we have
- - investigated the inequivalence of the semiclassical
and the quantum treatments of the anomalous skin
effect for a free-electron system in the absence of an

~ A. P. Van Gelder, preceding paper, Phys. Rev. 184, 833 (1969).

external magnetic 6eld. It was shown that both theories
lead to equivalent results, provided the value of the
skin depth is large compared to a characteristic de
Broglie wavelength. This wavelength was shown to
correspond to the velocity component of an effective
electron in a direction perpendicular to the surface. If
this condition is not satisfied, the uncertainty relation


