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The electronic thermal resistance of a metal can be
expressed as

W, =X, '=Wp+W;,

where Wp pp/L——pT is the thermal resistance caused by
impurity scattering and 8"; is the ideal thermal resis-
tivity caused by phonon-electron scattering. lV; is ex-
pected to be proportional to T'. In Fig. 6 we have
plotted 8'; for samples 1 and 2. In both cases we have
used our estimate of the lattice conductivity (Fig. 5)
for sample 2 to obtain the electronic thermal conduc-

tivity. The ideal thermal resistivities are in good agree-
ment with each other and show a T' temperature de-
pendence from 14 to 25 K.

IV. SUMMARY

The thermal conductivity of high-purity thorium
has been measured from liquid-helium temperatures
to 200 K. Over this temperature range the thermal
conductivity is in good agreement with theoretical
predictions.
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The effect of the presence of thermal Rayleigh waves on electrons is estimated. Most accessible to experi-
ment is the case where the electrons are confined to the surface region by a magnetic field (magnetic surface
level). The broadening of the level is calculated and is found to be linear in temperature in the temperature
range of greatest interest.

I. INTRODUCTION
'

~
VER since the publication of The Theory of Sotcrtd, I

i surface waves in elastic media have held the
attention of physicists and other scientists, particularly
seismologists. Only recently, however, have Rayleigh
waves been produced and their attenuation been
measured in crystalline solids in the ultrasonic fre-

quency range. ' Ke shall consider here the case of
elastic surface waves in conducting media, where they
do not seem to have been directly observed up to now.

The existence of these waves has, in the main, the
same consequences for electrons as that of ordinary
phonons, namely, there is a contribution to the electron's
lifetime, to the electron-electron interaction, and to
the effective mass. There is also, of course, a contribu-
tion to the attenuation of the elastic wave, but we shall

not consider that here.
Ordinarily, these effects are negligible, which no

doubt accounts for their failure to be discussed in the
literature. The reason is that Rayleigh waves penetrate
just about a wavelength into the solid, so that they
seldom interact with the electrons. In particular, the
phonon-induced effective mass and electron-electron
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interaction depend for their strength on high-frequency
virtual phonons, so that the corresponding virtual
surface phonons are not important, penetrating as they
do only a few lattice constants into the solid. (If very
finely divided material is used, or the effective surface-
to-area ratio is greatly increased, the effect may become
important, and give rise to an enhancement of the
superconducting transition temperature, for example. ')

It is thus necessary to keep the relevant electrons
from alienating themselves from the surface, either by
reducing the surface to volume ratio, or by supplying
a force which pins the electrons against the surface.
%hen the force has as its origin a magnetic Geld, the
result is a localization into quasidiscrete levels confined
to within about 10 ' cm from the surface, and known
as magnetic surface levels. 4 A similar case in semi-
conductors leads to localization on the scale of 10
cm. ' The primary eGect of the Rayleigh wave is to
contribute to the decay of these levels.

The theory of Rayleigh waves in anisotropic crystal-
line solids is considerably more complicated than the
corresponding theory of the bulk phonon modes, and
the best possible calculation would certainly require
extensive computer calculations. ' In this paper, we
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wish only to survey the general features to be antic-
ipated and to suggest some areas where experimental
investigations may bear fruit. Accordingly, we assume
that the medium is isotropic in its elastic properties,
and employ Rayleigh's own solution to the elasticity
problem. As we shall see, the relevant wavelengths are
generally long enough so that the discreteness of the
lattice is of no importance.

In the general case of anisotropy, true surface waves
propagating in a given direction parallel to a crystal
face may or may not exist, and they may decay into
the bulk regions with a complex exponent. ' Further-
more, the so-called bulk phonons will have modified
displacement vectors near the surface in the same region
in which Rayleigh waves have their existence, and this
modification will be reQected in the electron-phonon
effects. We think that all of these complications are
irrelevant insofar as the main features of the result are
concerned, and probably just modify the over-all
magnitude of the effect by some modest amount.

II. ELASTIC SURFACE WAVES

The displacement of the lattice in the presence of
Rayleigh waves can be written

polarization index X runs over all phonon modes of the
system, both bulk and surface in character.

III. ELECTRON-SURFACE-PHONON
INTERACTION

In the presence of a lattice displacement, the local
Fermi surface will dilate, deform, and rotate. Electrons
passing through the region from others of differing
displacement, will see a local "deformation" potential
which can scatter them. The simplest aspect is that of
the dilation V'. u which is independent of Fermi-surface
structure. This component is certainly important and
we shall treat it as a prototype, since in the case of
bulk phonons it has been found to lead to qualitatively
correct results except for the over-all numerical factor.
Anyway, Eq. (1) already represents a substantial
simplification, as we have discussed.

A second contribution of different type arises because
the surface becomes corrugated. A perturbation treat-
ment of this effect' shows that it depends on the normal
derivative of the electronic wave functions at the
nominal surface, and upon the magnitude of the
displacement of the surface. We assume, therefore, that
the interaction Hamiltonian may be written as follows:

u&1 ——zqAe'q' e "'—kBe'q' e I"
)

n, = PA&'&'*c &' i—,qB&'l *c "' — (1b')

where p=q(1 —cg'/CP)'" k=g(1 cp'/cP)", and —the
speed of the wave c„satisfies

&r =&D+&s,

HD —— P" (x)V' uP(x)d'x,
X(0)

(sa)

(Sb)

(1—c '/c2)'I'(1 —c '/c ')'i'=1 —c '/2c ' (2)

in which we have adopted the notation c~ and c& for the
longitudinal and transverse sound velocities, respec-
tively. A typical situation would be c, 0.9c& and
c, 0.5ci. The dispersion relation (2) and the coefficients
A and 8 are determined up to normalization by the
requirement that the stresses vanish at the surface
z=0. In (1), il is a vector parallel to the surface. The
boundary condition is such that the normalization can
be chosen to satisfy

d & Uqz '+q'X'=~M'~qq')

aqua +a—qi

ll(X) =P ltq, y(X)
(2p~.~/h) "'

where the a's obey the canonical Boson commutation
relations, and p is the mass density of the solid. The

where Nqz is the displacement associated with any of
the eigenmodes either bulk or surface, of the elastic

system. With this normalization the constants A and 8
are proportional to (1/Sq)'", where 5 is the surface
area.

As usual, phonon operators aqua are introduced by
putting the displacement at x:

O' cjft 8$
IIg= — d g Q-

2ss 3 t9s Bs
(5c)

in which f(x) is the electron annihilation operator. We
show later that the effect of IIq can be neglected.
We have also introduced e for the electron density,
E(0) for the electron density of states at the Fermi
level, and m3 the mass of the electron for motion in the
s direction. This mass is often an order of magnitude
less than the bare mass of the electron for surface
levels of interest, which are associated with cylindrical
portions of the Fermi surface.

We next specialize in the case of magnetic surface
levels, in which the interesting electrons are confined to
the surface region by a magnetic field in the y direction.
Electric-field-induced levels can be treated analogously.

The zeroth-order Hamiltonian is therefore taken as4

8' eV Bs
,+ + (u))4d'*

2m3 Bs c

+Q Ace,a,l all, (6)

in which the I orentz force has given rise to a potential
which traps the electrons to the surface. The electronic
eigenstates of (6) are

a-, =e-(z)c"*40',
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where p is a vector parallel to the surface and @„is

P„(s)=n'I' Ai(ns —a„)/Ai'( —a ) . (8)

According to the Golden rule, the width of the state
will be

The wave number n in (8) is n=(2eHE/Ac)'~' with
E= m3V, /A standing for the Fermi-surface radius of
curvature. The Airy function has been denoted Ai
and its derivative Ai'. The zero of the function is at
a„=[23~(m —~)$'". The energies of states (7) are
given by

IV. LIFETIME OF ELECTRONIC STATES
DEFORMATION CONTRIBUTION

We wish to discuss the lifetime of a state (7) against
emission or absorption of a surface phonon coupled to
it by means of HD. A detailed calculation of this requires
the solution of an integral equation, as the lifetime
entering the conductivity can be quite di6erent from
the ordinary lifetime. Furthermore, the lifetime depends
on the energy by which the electron exceeds the Fermi
energy, and the number of phonons present. Since we
shall be primarily interested in the temperature
dependence of the lifetime and we shall eschew anything
more than an estimate of the order of the magnitude
of the lifetime, it will suffice to calculate the scattering
rate of an electron at the Fermi surface due to the
absorption of thermal surface phonons. The tempera-
ture dependence of this process is the same as that of
an electron at excitation energy kT which can both
emit and absorb phonons. For the moment we ignore
the transport effects.

It is only sensible to consider the case of relatively
low temperatures much below the Debye temperature,
so that only rather long-wavelength thermal Rayleigh
waves are present. Since the velocity c„1.5X10' cm/
sec is typical, one has for the typical wave number qy
of the Rayleigh wave at temperature T,

cfr=kT/Ac„~106 T( K) (c111 ~)

The penetration of the compressional components of the
Rayleigh wave is governed by the magnitude p, and so
is very nearly the inverse of q~. The shear components
penetrate about three times farther.

At a temperature Tj such that

gz'~a~/n = 1
~

the Rayleigh wave just matches the penetration of the
electron. Near this temperature the problem is com-
plicated, so that we consider first the limiting case
T(T~. Under this condition H~ cannot cause a transi-
tion out of the state e to another state m, but can
cause a transition from the initial state y to another
I+q

which becomes, upon specializing to the case at hand,

dg ( g B cp

(2')'4 2@v,/h N(0)' cP

XN 78L6(P)+ha, —e(P+ q) 7. (9)

In (9) we have put N~=1/(e""~1"r 1)—and 2'=C'/q5'
The latter has the explicit form

1 1—', X 1 ——,'5 2—= (1—~)"' +
C' 1—X 1 —5 1—~X)

where X=c„2/cp and 8=c„'/cp. C is generally about
unity. The factor c„'/cP in (9) arises because the
dilation couples only to the compressional components
of the displacement. By analogy with results for bulk
electron-phonon coupling, inclusion of the shear cou-
pling would lead to the same general form for the result.
Note that although the density of states of the surface
phonons is two-dimensional, the extra factor of g in
the normalization ensures that the mean-square dis-
placements remain finite, although they are, of course,
somewhat larger than in the three-dimensional case.

It is now easy to perform the angular integration and

I' =C1(c,'/c P) (c'/c, ')I'g,

where C~ is a constant of order unity and c is the mean
phonon velocity occurring in F&, the width due to bulk
phonon emission. The temperature dependence of I'q

is T'. Thus, on the basis of this analysis, a T' law is
expected to hold for T& T~, and the surface-wave
contribution is expected actually to exceed the bulk.
contribution.

Unfortunately, the temperature T& is rather low.
Since n 10' (H gauss)'~', we have T1 10 ' 'K. (At
present, only rather low magnetic fields of some gauss
are suitable for the observation of magnetic surface
levels. ) This part of the temperature range will be very
difficult experimentally, therefore.

Actually, since what is measured experimentally is a
surface conductivity, there are transport corrections to
this result. This is especially indicated since the electron
is scattered into another state of very similar properties
to the first.

An analysis which we shall not provide here shows
that in this case the correct lifetime should go as T',
just as for the bulk conductivity in the case of bulk
phonon scattering, and that there should be an addi-
tional two powers of c/c, as compared with the bulk
result. Ke shall not dwell further on this point, since
the prediction is somewhat academic in view of the low
temperature required for its validity.
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At temperatures T&T~ the dominant contribution
comes from Rayleigh waves whose penetration is less
than that of the surface state in question. In this case
the width becomes

(y c
—2psy ) —L 8/up(p2+ 2 ua) (12)

which is valid only for p) u/a„. Calling a =q/p, we have

g dg A~.
q(q'+u'a„a')

Putting x=hc,q/kT, one Ands

D(ua)'r= dS
2+A Vp g2+u2a a2/qT2 cz

The value of the integral depends on the magnitude of
qr as compared with u(a„)'", which is the wave number
of the surface state at the surface. If qr))u(a„)'I',
then I" depends linearly on temperature whereas in the
opposite limit, a T dependence is forecast. Admittedly
unless a„ is quite large, there is at most a small region
such that u/a„&qr&u(a„)'" for which the T' depen-
dence is valid. Introducing T& by qr, =u(a„)'", we then
have for T)T2,

2' d g 2 I
8-c "'0-)I'

h (2~)' m

Xq'N, rr e(p)+h, +E.—e(p+q) —E„j, (11)

where D stands for the bracket in (9). The dependence
on the angle between p and q through the term Vp. q
in the 8 function is very important, and as usual one
must have Vg q«Vpq. LWe make the approximation
e(p) —e(p+q) =V+ qh. j The latter quantity is large
compared with both Ace~ and E„—E .Hence the angular
integration gives just 1/Vpq and in particular is
independent of E, thus allowing the sum over m to
be performed by closure. As a result, we need the
expression

V. SURFACE CORRUGATION SCATTERING

For completeness, we here estimate the effect of the
corrugation of the surface induced by the passage of
a Rayleigh wave. Restricting consideration to the case
qp&n, we have, using Hq and the Golden rule,

2 (hS=—
/ /

u' Q u'

where we put
XNa&Le(p)+h(oe+E e(p+q) E j

fg„(s=o) f'

2p(o, /h

q (1—S)Z&
C2

2p(u, /h 4 (1—-'X) '

The sum over m is estimated by replacing it by an
integral. I.et p, =u(a )'".Then

h' p, 'q
XN, &~ ~(p)+~,+~.—~(p+q)—

~ 2m, l

Fermi surface is required. A favorable factor is that the
important electrons are associated with the cylindrical
portions of the Fermi surface which are more than
likely to occur at zone boundaries where the coupling
to shear modes is strongest. One should also note that
the shear wave penetration is determined by k=q
X (1—c„'/cP)'" instead of by p q so that the character-
istic temperatures T~ and T2 are increased by a factor
of about 3 for the shear mode contribution.

In the regime T&T~ it is possible to neglect the
transport corrections, since transitions between states
of many different quantum levels m are involved. The
surface conductivity is sharply peaked at frequencies
corresponding to the level spacing 8 —L&„so that once
a transition is made out of the state E„it is effectively
lost as far as a contribution to the resonant transition
is concerned.

I C& C n gy—=C2—
cP c & qr3 u(a )~l&

(15) 2x k2 n'V2

A 2m3 7t

d g
(2Eq cosg)"'N, .

(2~)'

where C2 is a constant of order unity. This ratio is a
few percent at helium temperatures. It can be enhanced
by working at lower temperatures, but of course the
absolute magnitude of the scattering rate decreases.
It is to be noted that the surface-phonon scattering
rate depends on the magnetic field, as the ~~ power in
the linear region.

In estimating the contribution arising from the shear
components of the surface phonons, several competing
factors must be borne in Inind. On the one hand, there
is an enhancement arising from the slower transverse
velocities. This tends to be offset by a weaker coupling
to the electrons, since an actual change of shape of the

In the last equation, the integral is over the region
cose&0. The resulting integrals may be performed
to obtain

2m A2

r,=0.048X— n VZ ~ q, "~ .
6 2m'

Thus we estimate

Ig C 1 n

r& c,' (q&)"' E"'
Since E 10' and n 10' cm ', F~ is negligible. The

smallness of this result is primarily due to the smallness
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of the temperature-dependent part of the mean-square
surface displacements from planarity, at the tempera-
tures in question. The total zero-point motion of the
surface is much larger, but this gives rise only to
effective-mass shifts, etc. , and not to lifetime effects.
Not until a state of surface roughness is reached with
displacements comparable with lattice constants, and
momentum transfers to the scattered electrons compar-
able with the Fermi momentum, can surface roughness
be effective in reducing the electron lifetime. This, to say
the least, is readily achieved by less-than-perfect surface
preparation.

VI. SUMMARY

We have estimated that one component of the
electron scattering rate for the case of magnetic surface

levels will have the following temperature dependence.
At exceedingly low temperatures it will go as T', there
will be a transition region and then a T' law, another
transition region, and finally a linear law. In practice,
the two transition regions may overlap sufhciently so
that no intermediate T' behavior may be discernible.
This transition region is generally in the temperature
range of a fraction of a degree, but perhaps could be
pushed up to the range of 1' by judicious choice of
material. Experimentally, the main result is that of the
linear behavior, together with the dependence of the
magnetic field to the ~~ power. We do not minimize the
difficulty involved in being able to analyze the experi-
mental data carefully enough to extract this depen-
dence. 4 However, we think the result novel enough that
it would be of interest to find it in experiment.
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Phonon frequencies of alkali metals are calculated using the single orthogonalized-plane-wave electron-ion
matrix element and the dielectric functions due to Singwi et al. and to Geldart and Vosko. We have calculated
the bare-ion potential by the Hartree-rock-Slater method, where the Slater exchange potential is replaced
by a modi6ed Kohn-Sham exchange potential which approximates correlation effects according to the simple
prescription of Robinson et a/. The calculated phonon frequencies of Li, Ka, K, and Rb are in good agreement
with the neutron spectroscopy measurements.

I. INTRODUCTION
' 'HE study of the lattice dynamics of metals may,

in effect, be reduced to the investigation of the
bare electron-ion interaction and the polarization func-
tion of the conduction electrons. Vosko et al. ' gave a
formulation for the electron-ion matrix element (EIME)
using the single —orthogonalized-plane-wave (OPW)
function for the wave function of the conduction elec-
trons. They used this EIME to calculate the phonon
frequencies of the simple metals Na, Al, and Pb. Taylor
et cl.' find that the single-OPW method gives a fair
representation of the EIME for Na using the Prokofjew
potential as the bare-ion potential. The single-OPW
scheme is therefore justified for a simple metal like
sodium, where the single-OPW is a good representation
of the wave function for the conduction electrons in the
metal under consideration.

In Sec. II, we discuss a method for constructing the
crystal potential. To introduce the notation and to

~ S. H. Vosko, R. Taylor, and G. H. Keech, Can. J. Phys. 43,
1187 (1965).
I'= 2 R. Taylor, R. A. Moore, and S. H. Vosko, Can. J. Phys. 44,
1995 (1966).

provide a base for the discussion of results, we have
given an abbreviated resume of the single-OPW EIME.
The method for calculating the electronic part of the
dynamical matrix and the results for phonon frequen-
cies of Li, Na, K, Rb, and Cs are presented in Sec. III.
The results are discussed in Sec. IV.

II. THEORY

For simple metals which possess a primitive unit cell,
an element of the dynamical matrix D,„(q) for the
phonon wave vector q is usually written as the sum of
three terms:

D.,(q) =D"'"(q)+D*.'"(q)+D*."'(q). (~)

D „&o&(q) arises from the direct electrostatic interaction
between ions, D „'"'(q) originates from the exchange
overlap contribution of ion cores, and D „&s)(q) stems
from the effective eiectron-ion interaction. D „&o&(q) is
evaluated by Ewald's method. '4 Vosko' argues that

8 P. P. Ewald, Ann. Physik 64, 253 (1921).
4E. W. Kellerman, Phil. Trans. Roy. Soc. London A238, 513

(1940).' S. H. Vosko, Phys. Letters 13, 97 (1964).


