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The nonmonotonic behavior of the surface impedance of a thin metal plate excited by a high-frequency
electromagnetic Geld has been examined as a function of a dc magnetic Geld imposed parallel to the faces
of the plate. The line shapes of this rf size effect have been calculated for different types of electronic orbits
and for different modes of excitation of the plate by the high-frequency Geld. The spatial distribution of
the electric Geld, including the Geld "splashes" associated with the anomalous penetration of the electric
Geld into the sample due to chains of trajectories, was obtained self-consistently from the integrodiffer-
ential equation which results after combining Maxwell's equations with Chambers's solution to the
Boltzmann equation under the nonlocal conditions of the anomalous skin effect, assuming diffuse scattering
at the surfaces and a constant relaxation time for bulk scattering. Qualitative comparison with experiment
has been made.

I. INTRODUCTION

'LECTROMAGNETIC fields incident on the
~ surface of a metal with frequencies less than the

plasma frequency of the free charge carriers of the metal
(conduction electrons) do not penetrate deep into the
bulk of the metal; the small amount of Geld energy
that does enter into the sample is confined to a very
thin layer of surface current within the skin depth
5 (5= 10 '—10-' cm for pure metals at low temperatures
and radio frequencies). The changes that the amplitude
and phase of the incident wave suffer upon reQection,
albeit small, can be measured experimentally. These
changes are speciGed by the surface impedance Z of the
metal" deGned as the ratio of the tangential electric
and magnetic Gelds just inside the surface of the metal.
The real part of Z, the surface resistance, measures the
fraction of incident power that is lost to the sample
either through Joule heating or through collisionless
mechanisms of direct interaction between the charge
carriers and the different Fourier components of the
Geld. a The imaginary part of Z, the surface reactance,
is related to the phase shift of the rejected wave or
equivalently the frequency change of the exciting
resonant circuit, i.e., the inductance change of the
exciting coil.4

In very pure metals and at liquid-helium tempera-
tures, the electrons which contribute to the conduc-
tivity of the metal are localized on the Fermi surface,
the scattering with the lattice is reduced, and the mean
free path l may be as large as several millimeters, i.e.,
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many times larger than the skin depth 8. The current
density and the electric Geld are no longer related by
the usual local form of Ohm's law

3(r)= tr E(r);

instead, the current density at a point r in the metal
is deGned by the electric field in a region with dimen-
sions of the order of l. The conductivity e is no longer
a constant of the metal; rather, it depends on the spatial
distribution of the electric field. ' ' In these anomalous
skin-eR'ect conditions and in the presence of an external
magnetic field, sharply deGned changes, hereafter re-
ferred to as resomamces or sAzgularities, occur in the
surface impedance as a function of either frequency or
magnetic field.

The Azbel'-Kaner resonance" is an example of a
temporal resonance in which both the surface resistance
and the surface reactance show minima at those values
of the external frequency which are equal to (or a
multiple of) the cyclotron frequency of extremal elec-
tronic orbits on the Fermi surface.

The rf size effect (RFSE), first discovered by Gant-
makher in tin, ' is a spatial resonance which occurs in
the surface impedance Z of a thin metal plate (thick-
ness approximately equa, l to 1 mm) excited by a high-
frequency electromagnetic field (frequency approxi-
mately equal to 1 MHz) when Z is measured as a
function of magnetic field applied either parallel or at
an angle with respect to the faces of the sample.

Some of the RFSE singularities are geometric in
character and occur primarily at those critical values
of the magnetic field which make the dimensions of a
large group of electron trajectories nearly equal to the
thickness of the sample. Measurement of those critical
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magnetic 6eld values, at which the relatively easy to
analyze resonances appear, yieMs extremal calipers of
the Fermi surface of the metal, thus elucidating our
understanding of its band structure (see Ref. 9, for
example) .

Other RFSE resonances are due to anomalous pene-
tration of the electric field into the sample. '~" This
anomalous penetration of the electric field into the
metal in anomalous skin-effect conditions is connected
with the fact that individual effective electrons, i.e.,
electrons which move parallel to the metal surface
when they are in the skin layer, can carry current away
from the skin layer and reproduce it deep within the
interior of the metal, thus forming narrow "splashes"
or sheets of electric 6eld and current which damp
slowly into the metal. This type of anomalous pene-
tration is to be distinguished from the anomalous
penetration of the electromagnetic field into a metal
due to resonant excitation of the collective motion of
the electron-hole plasma by an external wave.

As has been discussed in earlier works (see Ref. 13,
for example) there are essentially two different mecha-
nisms of selection of effective electrons by the external
magnetic field in order for them to form Geld splashes
within the interior of the metal.

In the first mechanism, the magnetic field is applied
parallel to the faces of the sample. The electrons on
the extremal sections of a closed Fermi surface which
move nearly parallel to the surface when they are in
the skin layer describe a finite trajectory in real space
and create a current sheet at a depth do approximately
equal to the diameter of the trajectory, namely, at the
depth where the velocity of the extremal electrons is
again parallel to the surface. This current splash, which
is a narrow image of the surface current layer, serves
as the exciting skin layer of those bulk electrons which
pass through it with their velocities parallel to the
surface. These electrons in turn create another current
splash at 2Xdo, which excites other electrons deeper
in the metal, and so forth, thus creating a chain of
effective trajectories. This "trajectory chain" mecha-
nism for anomalous penetration of the field in the metal
was discovered experimentally in Sn by Gantmakher. '

The second mechanism of electron selection and
splash formation is connected with the focusing of
effective electrons during their drifting motion into a
metal in a magnetic field inclined with respect to the
surface. The splashes appear at depths which are
integral multiples of n, where I is an extreme value of

' R. C. Jones, R. G. Goodrich, and L. M. Falicov, Phys. Rev.
114, 672 (1968).
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LEnglish transL: Soviet Phys. —JETP 17, 700 (1963)g."E. A. Kaner and V. L. Fal'ko, Zh. Eksperim, i Teor. Fiz. 49,
1895 (1965) LEnglish transl. : Soviet Phys. —JETP 22, 1294
(1966)j."E. A. Kaner, Physics 3, 285 (1967).

D«l, (1.2b)

where D is the characteristic dimension of an extremal
electron trajectory in the magnetic field. Condition
(1.2a) ensures anomalous skin-effect conditions for the
entire characteristic dimension of the electron trajec-
tory, while condition (1.2b) ensures that the electrons
will make many cyclotron trajectories before scattering.

In order to explain in detail the line shapes of the
many singularities of the RFSE, the inhomogeneity of
the electric field in the metal should be combined self-
consistently with the dispersion law of the electrons
and the nature of electronic scattering at the surfaces.

The dispersion law defines the type of trajectories
that the electrons describe in the magnetic 6eld. The
topology of the electronic trajectories in turn affects
very strongly the magnetic. field dependence of the
response of the system to an external electric field.

The scattering with the surfaces affects the "effective-
ness" of the electrons to respond to the high-frequency
Geld. Those electrons which spend a large fraction of
their mean free paths inside the skin layer and do not
collide with the surfaces of the sample will be more
effective in conducting current than the electrons which
collide with either or both surfaces during one cyclotron
period. The relative number of effective-versus-in-
effective electrons due to surface scattering is a strong
function of magnetic field. This follows from the fact
that the size of the electronic trajectories is inversely
proportional to the magnetic field. The diameter of a
circular free-electron trajectory is 2(ch/e)k~/H, where
k~ is the Fermi wave vector, and it is equal to the
thickness of the sample d at the critical value of the
magnetic field Ho, where

Hp ——2(ch/e) (k p/d) .
' V. F. Gantmakher and E. A. Kaner, Zh. Eksperim. i Teor.

Fiz. 45, 1430 (1963) )English transl. : Soviet Phys. —JETP 18,
988 (1964)g.

the normal-to-the-surface projection of the mean elec-
tron displacement in one cyclotron period. The extremal
values of u correspond to conduction electrons at the
limiting points of the Fermi surface, which are defined
as the points of contact of the Fermi surface with
tangent planes perpendicular to the magnetic field.
Near these limiting points the electron velocity is
almost parallel to the magnetic field and the electron
trajectory is a helix with a very long pitch. Splashes
are expected to occur again at those regions of the metal
where a large number of electrons have their velocities
parallel to the surface. RFSE singularities due to
limiting point electron trajectories were first discussed
by Gantmakher and Kaner. '4

For the existence of the anomalous penetration
effects due to either of the above mechanisms, the
following conditions must be satisfied:

(1.2a)
alld
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For magnetic field values smaller than Ho, an effective
electron becomes ineffective during one cyclotron
period since it scatters with the opposite surface of the
plate. For magnetic field values greater than IIp, all
effective electron remains effective during its entire
mean free time r (r»1/0, where 0 is the cyclotron
frequency) in that it is able to return to the skin layer
many times and thus to interact effectively with the
large-amplitude field there.

The inhomogeneity of the electric field in the sample
affects the line shape of the RFSE resonances in the
following important way: An effective electron which
moves parallel to the skin layer and thus spends a good
fraction of its mean free time in the skin layer may
again move parallel to the surface at other portions of
its trajectory in the bulk of the sample or, as in the case
of bilateral excitation (see Fig. 1), in the skin layer of
the other surface. The coupling of the electric field with
the electronic motion in these effective regions of the
trajectory is strongest if the velocity of the electron is
in phase Lmeaning that the dot product v E integrated
over the effective region is maximum —see (2.16a)j
with the electric field and the field amplitude there is
relatively large as compared with the amplitude at
other regions of the sample. Since the magnetic field
determines the size of the trajectories and thus affects
the way in which the effective regions of the trajec-
tories sample the electric field, the coupling between
the electrons and the electric field is a strong function
of the applied magnetic field. It should be recalled at
this point that it is the same electron trajectories,
modified as they are by the magnetic field, which in a
self-consistent manner induce the large amplitude
regions of the field in the interior of the sample by the
penetration mechanisms already discussed.

To observe the RFSE singularities experimentally,
various modes of excitation of the thin metal plate by
the rf electromagnetic wave may be employed; three
such modes are shown schematically in Fig. 1. In the
bilateral antisymmetric mode of excitation, the metal
plate is placed inside an inductance coil which is made
part of the tank circuit of an oscillator. If a change in
magnetic field affects the surface impedance of the
sample, then this leads to a detectable change in the

characteristics of the resonator. The driving currents
are in opposite directions in the two skin layers of the
sample. In the bilateral symmetric excitation the driving
currents are in the same direction in both skin layers of
the sample. In the case of unilateral excitation the
metal plate is excited by a Aat spiral coil placed on one
surface of the specimen. The impedance is either
monitored on the driving side of the slab" or a trans-
mission measurement is made" in which the trans-
mitted radiation is detected by a radio receiver placed
at the other side of the slab.

In all modes of excitation the derivative of the
surface impedance with respect to magnetic field is
measured experimentally by modulating the magnetic
field at an audio frequency and detecting the resulting
signal coherently. "Variations of the detected voltage
amplitude are proportional to the magnetic field deriva-
tive of the real part of Z. Changes in the oscillator
frequency are proportional to the field derivative of
the imaginary part of Z. In a typical RFSE experiment,
the metal plate has a thickness d=10 '—10 ' cm, while
the frequency of the exciting electromagnetic wave
cu/2s. is of the order of a few MHz, i.e., it is high enough
so that 6«d, and yet low enough so that it is much
smaller than the cyclotron frequency of the carriers:

0/2vr=eH/27rmc=2. 80H MHz, H in Oe.

The condition cu«Q ensures that the carriers experience
a nearly static field in the skin layers every time they
pass through them. A mean free path about as large as
the thickness of the plate is sufficient for the obser-
vation of the RFSE singularities.

In the review articles by Gantmakher, "Kaner and
Gantmakher, " and Walsh, ' the various aspects of the
RFSE are discussed in detail with extensive reference
lists to most of the experimental and theoretical
contributions in this field.

Kaner and Fal'ko" have calculated the line shapes
of the surface impedance anomalies in the unilateral-
excitation case for circular electron trajectories and
some approximate, not self-consistent, distributions of
the electric field in the metal. Koch and Wagner"
performed the corresponding experiment in potassium,
and they report rough agreement between the theo-
retical and experimental line shapes; however, the

H=Hx

E = E{z)e y

Y///II/////////////l

(a)

(b)

t////////////////3

f }
{c)

FH". 1. Schematic of three
possible modes of excitation of
a thin metal plate by a rf
electromagnetic field, in the
presence of an external mag-
netic 6eld I applied parallel
to the faces of the plate: (a)
bilateral, antisymmetric exci-
tation, (b) bilateral, symmetric
excitation, and (c) unilateral
excitation.
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observed discrepancies are large enough to indicate
that the approximations (such as neglect of radiation
from the second surface) made in the theory of Kaner
and Fal'ko, which is not the complete solution to the
full boundary-value problem, may well be signihcant.
The line shapes for the oblique held geometry have been
calculated by Kaner. "

In this work an attempt is made to solve self-
consistently the complete boundary-value problem of
the RFSE for an arbitrary Fermi surface and different
modes of excitation of the sample by the external rf
field, assuming diffuse scattering at the surfaces and a
uniform relaxation time for bulk scattering. Only the
case of magnetic fields parallel to the surface is con-
sidered, with electric fields transversely polarized with
respect to H.

In Sec. II Maxwell's equations are combined with
Chambers's solution" of the Boltzmann equation to
produce an integrodifferential equation which is to be
solved for the unknown distribution of the electric
field in the sample, subject to appropriate boundary
conditions. In Sec. III a numerical procedure is de-
veloped by which the integrodi6erential equation of
Sec. II may be solved approximately. Some model
calculations are carried out and the resulting curves
are discussed in Sec. IV.

II. THEORY

To determine the electric field distribution inside
the metal it is necessary to solve Maxwell's equations
together with the kinetic equation for the electron
distribution function of the metal, subject to ap-
propriate boundary conditions; of course, the dynamics
of electrons in an external magnetic field have to be
taken into account explicitly.

For a semiclassical electron with charge —
I
e I,

position r, quasimomentum p, and energy h(p), the
equation of motion in a fixed magnetic field II is

p= —(I eI/c)vH, (2.1a)

n(h, p,) =
I eI H/m*(8, p,)c, .

where the cyclotron mass is defined to be

m*(h, p, ) = (1/2~)aS(h, p.)/8h;

(2.4a)

(2 4b)

here S(h,p,) is the cross-sectional area of the energy
surface h(p) = h intersected by a plane normal to H
at a given p, .

If the displacement current D in a metal is neglected
(conductivities of good conductors are much larger
than radio frequencies: o.=10" sec ', &v=10' sec '),
then Maxwell's curl equations have the form

V XH= (4s-/c)j,

v XE= —(1/c) H.
(2.5)

Assuming a time variation of the form e '"' for the
fields and eliminating H from (2.5), we obtain

O'E (s)/Bs'= —s(4s-oi/c') j„(s), n= x, y (2.6)

where the system of coordinates is shown in Fig. 1.
We have neglected the variation of the fields in x and y
since the wavelength of rf radiation is much larger

As is evident from (2.1a) and (2.1b) upon integration,
the momentum-space orbits and the projections of the
real-space trajectories on the plane perpendicular to
H are similar, the similarity factor being eH/c, and are
rotated by ~7r about the direction of II relative to
each other. Some real-space trajectories and the ways

, in which they span a thin plate are shown in Fig. 2.
The size of a trajectory in a given direction is in-

versely proportional to the magnetic field. From
(2.1a), (2.1b), and H=Hx, as in the geometry of Fig. 1,
the dimension of a closed trajectory in the s direction is

s-:—s--=
I (~/e&) (p, ,- —p, .--) I, (2 3)

with a similar expression for the dimension in the y
direction.

The cyclotron frequency of an electron describing a
closed orbit is given by

with the electron velocity given by

v = i = 8 h/ap.

The integrals of motion are

h(p) = h= const,

plr = p'H/H= collst,

(2.1b)

(2.2a)

(2.2b)

and they define the electronic orbits in momentum
space as simply intersections of the energy surface
h(p) = h by planes normal to H, insofar as the magnetic
field only drives the electrons around their orbits
without change in energy, leaving the projection of
their momentum along II conserved. The electro-
magnetic 6eld is assumed not to disturb the topology
of the orbits.

"R.G. Chambers, Proc. Roy. Soc. (London) A65, 458 (1952);
A238, 344 {1966).

v

H= Hx

FIG. 2. Electron trajectories spanning a thin metal plate in the
presence of an external magnetic field: (a) an effective electron
which describes a bulk trajectory, {b) an effective electron in the
skin layer at the surface s=0 which becomes ineffective during
one cyclotron period because of diffuse scattering at s=d, (c) an
ineffective electron which collides with both surfaces, {d) an
effective open trajectory, and (e) an ineffective "lens" trajectory.
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than 5, the distance of spatial variation of the fields
is the z direction.

From the continuity equation we have

j.(s) =0. (2.7)

Owing to the fact that the main contribution to the
current density is made by electrons moving almost
parallel to the surface of the metal, we can assume
that E,=O and thus disregard (2.7) in later con-
siderations. ~

The current density in (2.6) is defined as

i-(s) = —2 &'p ~-(p)f(s; p),
(2~fi)'

(2.8)

where f(s; p) is the perturbation addition to the
equilibrium Fermi distribution function,

fs(h) =
l exp(h —Ss/kT)+1 j ', (2.9)

reduces to

1
v(p)f= L(~f/»)-»-i~fj, —

0

v(p) = E~l. (p)j ' —~~/~

(2.11a)

(2.11b)

in the relaxation-time approximation. Justification for
the introduction of a relaxation time into the anomalous
skin-eBect problem has been given in Ref. 7. Since in
all of the subsequent model calculations we assume that
the relaxation time for bulk scattering is constant over
the entire Fermi surface and equal to r, the quantity
y reduces to

(2.11c)

in the case of low frequencies (co«Q, to«1/r).

due to the influence of the external fields. The velocity
of the electrons v(p) is defined by (2.1b) as the gradient
of the h(p) = h surface, where h(p) is the dispersion
law of the electrons, i.e., the relation between the
quasiparticle energy 8 and their quasimomentum

p h~(T) is the chemical potential of the electrons, k

is the Soltzmann constant, T is absolute temperature,
and the factor of 2 in (2.8) is due to the electron-spin
degeneracy.

The kinetic equation for f(s; p), linearized in the
electric field E, is'

&f/&q+(s. /&)& f/'&s+yf= (l sl/&)v E&fs/&&, (2.10)

where the independent variables are the coordinate s
along the inward normal of the metal surface a=0, the
energy of the electrons 8, the conserved component of
the quasimomentum p, and the dimensionless "orbit"
or "phase" variable y=Qt in place of the real time t. In
terms of these variables, the element of volume in
momentum space is given by dp, dp„dp, = m*l dp, d hdtv,
whose Jacobian is the cyclotron mass

l
no* .

The quantity y in (2.10), defined by

The electrons are assumed to scatter diffusely at the
surfaces of the plate (this was thought to be almost
always the case" '4; see, however, Ref. 25):

f(0; p) l..&s=0,

f(d; p) I..(o=o
(2.12)

where X(s; p) is the "time" immediately preceding qr

that an electron collided with either boundary, if at
"time" p it is at a depth s of the plate with momentum
p."Formally, X(s; p) satisfies the equation

1
s —— dq" s, (q",p„h) =0, X(s; p)(q, (2.14a)

X(z;p)

if the electron started at the boundary a=0, or the
equation

s—— dq" s, (q",p„h) =d, X(s; p) & q, (2.14b)
X(z;p)

if the electron collided with the surface s=d before
reaching s at "time" p. Obviously, we have

X(0; p,p„8)= q, s,)0
X(d; (p,p„h) = q, s,(0.

(2.14c)

The meaning of X(s; p) is made more explicit in Fig. 3.
If neither (2.14a) nor (2.14b) is satisfied, then

) (s; p) = —~, (2.14d)

and the electron at a depth s with momentum p never
collides with either surface; in this case (2.13) reduces
to Chambers's solution of the Boltzmann equation" for
an infinite medium.

In the case of periodic bulk trajectories which never
collide with either surface, the integral of (2.13) reduces

"R.G. Chambers, Proc. Roy. Soc. (London) A215, 481 (1952).
24 K. Fuchs, Proc. Cambridge Phil. Soc. 34, 100 (1938)."J.F. Koch, in Solid State I'hysics, edited by J. F. Cochran

and R. R. Haering (Gordon and Breach, Science Publishers, Inc. ,
New York, 1968), Vol. 1, p. 253.

6 E. A. Kaner, Zh. Eksperim. i Teor. Fiz. 34, 658 (1958)
LEnglish transl. : Soviet Phys. —JETP 7, 454 (1958lg."P. Bloomfield, Physica 32, 1189 (1966).

Af ter colliding with the surfaces the electrons are
scattered into the equilibrium distribution f&(8), i.e.,
the perturbation addition to the distribution function
due to the external fields becomes zero.

The solution of the Roltzmann equation (2.10),
subject to the boundary conditions (2.12) for a thin
plate, is the following (see Ref. 26, for example):

lel ~fo
f(s; p)= d p' expl: —7(p —p') jv(s ',p*, h)

g(z p)

1
K 3 dp 'vg (p ) g) 8 ) 213

n
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to an integral over one period only:

dy' = L1—exp( —ypo) 7
—'

—+0

d &p', (2.15)

where yo is the period of the orbit.
Equation (2.13) has the following simple content: An

electron with energy 8 and momentum p, along the
magnetic field passes through the plane z of the conduc-
tor at the "time" y after having been scattered into a
single trajectory at an earlier "time" p' and at the
depth

z *d (d, X)
@+1 I

// Q (z„,gg

(z, y) t )(z),y, )
= (z;,p)

' 'Y 7-'
/(z;, $)

~7), 4, l ized, p, )

(z;,g)g
/
I

(o, X)nz

H= Hx

g(z;,y)

J(z),g, )

(o,) )

do ""(v",p*, h)

with a probability of reaching (s, &p) without scattering
equal to

(2.16b)exp t:—V(~—~')j.
The perturbed distribution function is then the integral
over all the electrons which scattered into the trajectory
at (s', y') with energy 8—d, h, weighted by their proba-
bility of reaching (s, q).

From (2.8) and (2.13) the current density at s
becomes

of the conductor thus receiving from the electric field

at s' during the time d p'/0 an energy increment

AB=
I eI v(q', p., 8)

1 ~ dp'
~ K z— d(p" v, q", „8 2.16a

0 „0
E'xo. 3. Coordinate mesh used in the reduction of the integro-

diGerential equation (2.25) into the system (3.4) of s —1 linear,
algebraic equations. Before reaching the depth s; at "time" ~ the
electron crossed the plane s; at "time (s)" P,. The instant of the
last collision with the surface at a=0 (or s=d) is g. The origin
y=0 is chosen to correspond to the point on the trajectory with
the lowest s value.

and the integration over energy in (2.17) can be elimi-
nated; we need only integrate over the Fermi surface,
i.e., integrate over all trajectories that pass through z
with energy hz, momentum p along the magnetic
field, and velocity direction characterized by p.

By substituting the current density (2.17) in Max-
well's equations (2.6) the following integrodifferential
equation results:

O'E. (s)
&-p(s, k)&p(k), (2.20)

in which the kernel E p(s, &), which depends implicitly
on the magnetic field H, is the integral

e2

i-(s) =2
(2vrh)'

d~ ~-(v,p., &) SarCOe2

E.p(s, &)
='

c'(2s.h)'
dy A p(s, &; y,p ), (2.21a)

(z; y, yz, &)

dv' exp' v(~ v')jv(v—',P., B—) with the restriction that

E p(s, $) =0 for $(s;„,()s, , (2.21b)
1

~ K z —— dp 8, p 8 . 217
0

s; =max{0, s—so),

s,„=min(d, s+so),
(2.1S)

and so is the dimension (in the s direction) of the
maximum trajectory in the total electron distribution.

From the steplike character of the equilibrium distri-
bution function at low temperatures we have that

( 8fo/8 8) = 8—(8—Ss), (2.19)

This is the nonlocal form of Ohm's law, which is to be
used instead of (1.1) and which relates the current
density at s through an integral conductivity operator
with the electric 6eld at another point of the metal plate
within the region (s;,s, ), where

(z'p p )

dq '
expI —7(p —p')jap(~' p, )

reduces to

1
X5 $—s+— dq "o,(p",p ), (2.22a)

0

A p(s, k; v, p*)
expI —v(q —4,)7&p g.,p.)=s-(o,p.)Z

I (1/0)"(0.,p.) I

(2.22b)

i.e., the range of the k.ernel is of the order of the charac-
teristic dimensions of the trajectories in the z direction,
provided l))Is .—s; I.

The function A p(s, $; q,p,), defined by



using the properties of the 8 function; here the summa-
tion over s is over all the zeros iP, (s, &; y, P ) of the
argument of the b function which exist between
and X(s; q, p,):

s(~, (; v nx)

dp"v, (q ",p, ) =0, (2.23)

O'E(s)
dP l~ (s,~)E(g), (2.25)

where the y subscripts have been dropped; and the
surface impedance (2.24) reduces to a scalar

4' M E (s) 47I CO

z(a) =i (8+iX), (2.26)
c' M(s)/Bs, o+ c'

using the second of the curl equations (2.5). The
quantities R and X in (2.26) have the dimensions of
length and will be called the resistive and reactive skin
depths, respectively. ' Either R or X or both will be
of the same order as the penetration depth of the field
into the metal.

III. NUMERICAL MODEL

ln order to solve the integrodifferential equation
(2.25) numerically, the electric field distribution inside
the metal plate will be calculated approximately at a
finite mesh of points s, , i =1, . . . , v+1 (see Fig. 3),
where the plate has been divided into i (i is an even
integer) unequal divisions such that si ——0 and s„+i——d.

The density of the mesh is high near the surfaces or
in the regions where the spatial variation of the electric
field is expected to be large. The mesh is taken to be
symmetrical about s= ~d in order to exploit the sym-
metry of the kernel E(s,)) which results from the

8A. B. Pippard, I'lectronics and E'lectron Physics {Academic
Press Inc. , New York 1954), Vol. VI, p. 1.

li (s; y,P,) having been defined in (2.14).Their, (s,(; p, P,)
are simply the instants (previous to p) at which a
given trajectory crossed the plane s=P of the metal
plate before reaching the depth s at "time" p, and they
are shown explicitly in Fig. 3. The singularities in the
integrand (2.22b) which occur whenever v, Q„p ) =0,
i e., whenever the effective region of a trajectory
crosses the plane s= f, are eliminated by an integration
by parts.

The surface impedance tensor Z p is defined by the
following general expression':

J» ~,=o+——(c/4ir)Z p(H&&n) p ~, 0+, (2.24)

where n is the unit vector along the normal to the surface
and H is the rf magnetic field near the surface. For an
electric field which is transversely polarized with
respect to H=Hx (see Fig. 1) the integrodifferential
equation (2.20) reduces to

E;"=Q A,,E, , (3.2)

where the differentiation coefficients 3,, depend only
on the coordinate mesh, and a polynomial of degree
(q —1) pa, ssing through the q points immediately
closest to E(s,) has been assumed to approximate the
curve I'(s) in that neighborhood (q=3 in the present
calculations).

The integral of (2.25) is approximated by the
quadrature formula (generalized trapezoidal rule for
unequal spacings")

d~ E(s,~)E(~) = P AE,,E;, (3.3)

where the quadrature weights Q, depend only on the
coordinate mesh and where the elements E,; of the
kernel E(z,)), which depend on the magnetic field and
contain all the physics of the problem, are given by
the integrals over the Fermi surface in Eq. (2.21a).
These integrals are evaluated numerically. For the
integration over p, we sum over all the slices normal to
p, in which the Fermi surface has been divided in such
a way that the connectivity of the orbits in the kth
slice is different from that of the (k+1)th slice; for
example, the orbits in the kth slice may be closed and
circular while they may be open, or they may have
various other topologies, in the (k+1)th slice. For the
integration over p we sum over all the possible types of
orbits, labeled by /, that the electrons describe for a
given p, and difFerent directions of their velocities. The
integrations over p, for the kth slice and over p for the
t th orbit are carried out by using convenient quadrature
formulas (Simpson's rule, for example" ). Explicit use of
this indexing of the orbits in order to carry out the
calculation of E(s,]) is made in Sec. IV C (see Fig. 11).

Using the approximations of (3.2) and (3.3), we can
reduce the integrodifferential equation (2.25) to the
following set of (i —1) linear, algebraic equations:

v+I

QE;,E;=0, i=2, . . . , v, (3.4)

~'F. P. Hildebrand, IntrodzIction to 2VzsmericaL Analysis {Mc-
Graw-Hill Book Co., New York, 1956).

central symmetry of the Fermi surface 8(—p) = h(p):

I~(s, ~) =E(d—s, d —~). (3.1a)

In terms of the symmetrical niesh just defined, (3.1a)
becomes

(3.1b)

The second derivative at the left-hand side of (2.25)
evaluated at a point s; of the coordinate mesh defined
above is approximated numerically by a linear combina-
tion of functional values E;=E(s;) through a q-point
differentiation formula"
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which are to be solved (by Gaussian elimination" )
for the (v —1) unknown values of the electric field
E,=E(s,), i=2, . . . , v. The values of the field at the
two surfaces Ei—=E(0) and E„+i=E(—d) are assumed to
be known from the experimental boundary conditions
and the continuity of the tangential components of
the electric field at a surface. From (3.2) and (3.3) the
complex coeKcients R,; of (3.4) are simply

As soon as E(s) is calculated at the finite mesh of
points s; for a magnetic field value H~, the first deriva-
tive BE/Bs at the s=0 surface is approximated by a,

linear combination of E, near E(0), and the surface
impedance at Hi is calculated using (2.26).

To ensure numerical convergence for the above
scheme, the spatial distribution of the points in the
coordina, te mesh can be varied until further changes
in the mesh produce variations in E(s) which are smaller
than a given small amount. In doubling the total
number of divisions (from i = 26 to v= 52, for example)
so as to increase the mesh density either near the sur-
faces or in the interior of the sample, the large structure
in the surface impedance above the nonresonant back. -

ground suffers variations with respect to shape, posi-
tion, and strength which are only of the order of 1/o
or less.

and (c) Unilateral excitation:

E(0)= 1,
E(d) =0. (4.1c)

The boundary condition (4.1c) is not a good physical
approximation, for it does not take into account the
anomalous penetration of the field into the metal and
neglects radiation at the second surface. We consider
it, however, because in view of the linearity of the
boundary conditions (4.1), it is trivial to construct the
solution corresponding to (4.1c) by simply taking the
average of the other two solutions Lthose corresponding
to (4.1a) and (4.1b)]. This average solution produces
a smooth variation of the surface impedance as a
function of magnetic field, in disagreement with
experiment. By assuming that an outgoing plane wave
emerges at the s=d surface, however, the correct
solution for the unilateral mode of excitation can be
constructed from Maxwell's equations in the plate and
the boundary condition E'(d) =~(cu/c)E(d), which
results from the continuity of the tangential com-
ponents of the electric and magnetic fields at the
second surface. The line shapes observed by K.och
and Wagner" (using the single-sided geometry) in the
surface impedance of potassium together with the
RFSK transmission line shapes will be investigated in a
subsequent paper.

(a) Bilateral, antisymmetric excitation:

E(0)=1,
E(d) = —1,

(4.1a)

(b) Bilateral, symmetric excitation:

E(0)=1,
E(d) =1, (4.1b)

IV. MODEL CALCULATIONS AND RESULTS

In this section the formalism of Secs. II and III is
used to calculate the electric field distribution inside a
metal plate, of thickness d=1.56&&10 ' cm, which has
been excited by an electromagnetic field of frequency
cv/27r = 1 MHz. From the calculated electric field
distribution for different external magnetic field values,
the approximate surface impedance of the plate is
obtained as a function of the external magnetic field.
This is done for various model Fermi surfaces and for
diferent modes of excitation of the plate by the rf
field. The only phenomenological parameter introduced
in the formalism is the mean free path / which we tak. e
to be equal to the thick. ness of the plate.

The electric field at the two surfaces (normalized
to unity for simplicity) is assumed to be real. Explicitly,
the boundary conditions for the different modes of
excitation are taken to be

v=lp(y cosp+z silly), (4 2)

where v~ is the Fermi velocity, which in the actual
calculations has been taken to be 0.864X10' cm/sec,
the Fermi velocity of electrons in potassium. For a.

given value of magnetic field all electron trajectories
have the same size. The height of the Fermi surface
cylinder is adjusted so that it gives the correct number
of electrons (those in potassium again).

Several electric field distributions in the sample for
the antisymmetric and symmetric modes of excitation
are shown in Figs. 4 and 5, respectively, for certain
characteristic values of the external magnetic field.

The calculated surface resistance E. and surface
reactance X, as functions of external magnetic field,
are shown in Fig. 6 together with the derivatives
BR/BH and 8X/BH, which are the experimentally
measured quantities. The magnetic fields in the abscissas
are in units of Ho, where Hp is the critical value of
the magnetic field for which one trajectory diam-
eter exactly matches the thickness of the plate LHO
= 2 (ch/e) (k ~/d) = 628 Oe for k i ——0.746 A ' correspond-
ing to the Fermi wave vector of potassiumj.

A. Cylindrical Fermi Surface; Closed,
Circular Trajectories

In this case the velocity of every electron has no
component along the magnetic field and it is given
simply by
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IzG. 4. Electric field distributions for vari l f

bilateral, antisymmetric excitation c l' d
'

or various va ues of the external ma netic fie
ion; cy in nca ermi surface.

Certain characteristic features are to be noticed in
the electric field curves of Figs. 4 and 5. The field near
each surface damps rapidly into the sample with a
penetration depth 8=5.85X10 4 cm, which is of the
same order of magnitude as the average resistive or
reactive depth of Fig. 6. In addition to this rapid
(nearly exponential) decay within 8, the field has non-
negligible structure for depths almost as large as ten
times b. As is discussed below, the two lengths 6~=48
and As=88, which are shown explicitly in Fig. 4(a),

the
correspond to turning points in the sharp variati f

e surface impedance with magnetic Geld. The general
structure of the field near the surfaces is very much
like the profile of the field in the anomalous skin-eGect
problem of a semi-infinite sample and in the absence of
an external magnetic field. ' This over-all surface
structure of the electric Geld, because of the boundary
conditions which fix E at 2'=0 and s=d does not7

30 g
7S8 (1968).

. W. Nee, J. F. Koch, and R. E. Prange, Phys. Rev. 174
P

change significantly with H' howeve th hever, e c anges in
the slope BEjBZ at the surfaces i.e. th f
field dis 'b

es i e e r magnetic
e istribution near the boundaries are v 1, are very arge, as

demonstrated in Fig. 6 Lsee (2.26)g.
The field distribution exhibits splashes, i.e., regions

o nonzero amplitude, deep in the interior of th t 1

/ p) 1. The location of these splashes is roughly
determined by the size of the effective electron trajec-

en wo trajec-tories. For H/Pp 2 for example i.e. w——h t t
ory iameters completely fill the sample, the field

splash is centered (antisymmetrically or symmetrically)

magnetic field the size of the trajectories is such that
an electron which couples electively with the large
amplitude field in either of the two skin layers has its
other effective region (corresponding to e,= 0) near the
middle of the sample. The peak amplitude of the real
part of this splash is about 0.1—0.15 of the amplitude
at the surface, and the splash width is of the order of a
ew penetration depths. For higher values of magnetic
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1 es of the external magnetic Beld;. 5. Electric field~distributions for various va ues o
t ' citation. cylindrical Fermi surface.bilateral, symmetric exci a io

field, i.e., smaller size trajectories, the structure of the
field in the bulk of the sample becomes even more

l d the "trajectory chains" mentione in the
Introduction make new field and current sp as es

aces of theeffects due to driving currents at both surfaces o t e
late are, of course, always present.
Th l' sha es of I'ig. 6 are reflections of the distri-e ines ap

bution of the electric field not only in the s in ay
but in the interior o eh

' ' f the sample as well; this is evidence

by the fact that singularities appear not ony at
H/Hp=1 but at higher values of external magnetic
field as well. The resonances at higher fields appear
approximately at H/Hp=e, whe
amplitude of these singularities decreases with their
order m while their width increases, in accord with
experiment " In addition, the regions of sharp varia-

"J.F. Koch and T. K. Wagner, Phys. Rev. 151, 467 (1966).

tion o t e curf h E ves seem to coincide with the extrema
ent""of the X curves, also in accord with experiment.

larities in a very obvious way. The surface impedance
lines correspon ing od' t the symmetric mode of excitation
are reversed with respect to the lines of the usua
antisymmetric mode of excitation. uch si nal reversalg
was reporte y a s .d b W lsh."This signal reversal is due to
the fact that for a given magnetic 6eld, say H/

one stun layer to the other add (subtract) to the driving
currents of the second side for the antisymmetric

d f excitation. The constructive
mitted and(descructive) interference between the transmitte an

d rents causes the initial decrease (increase)riving curren

h s.—ETP Letters 1,
. K 1 Zh. Eksperim. i Teor. Fiz. Pis'ma v Redaktsiyu

1, 24 (1965) LEngiish transL: Soviet Phys. —J
116 (1965)j.
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»o 6 Surface resistance R, surface reactance X, and their derivatives Bg/aiV and SX/gP as functions of external magnetic ge]d
for both bilateral, antisymmetric and bilateral, symmetric excitations. Cylindrical Fermi surface.

in the surface resistance E as a consequence of the
increased (decreased) conductivity.

It should be mentioned here that, as a result of the
opposing tendencies in the variation of surface im-
pedance with magnetic field for the antisymmetric and
symmetric modes of excitation, the magnetic field
dependence of the impedance is much smoother in the
mode of unilateral excitation, which we calculate as
an average of the other two modes Lsee (4.1)$. As a
consequence, this calculation does not give the correct
line shape for the unilateral mode of excitation. By
constraining the electric field to be zero at the s=d
surface, the very important inhuence of the transmitted
currents upon the nature of the line shape is neglected,
and the resonance near H/Hp —1cannot reRect the-
emergence of the first field splash at the second surface.

For the bilateral, antisymmetric excitation the
behavior of R, as shown in Fig. 6(a), can be discussed
qualitatively in the following way. For H/He&1 the
transport properties of the plate are dominated by
orbits of the type shown in Figs. 2(b) and 2(c); this

gives rise to a resistance that varies only very smoothly
with II. The sharp decrease and subsequent increase in
R between H/H p 1and H/H p

—1—.08 is to be attrib——uted
to the relatively large number of effective trajectories
of the type shown in Fig. 2 (a). These trajectories, which
interact electively with the fields within both skin
depths (as defined by s=8 and s= d—8), exist only in
this range of magnetic fields. The diameter of the
largest effective trajectory contributing to the initial
dip is equal to d, while the diameter of the smallest
contributing trajectory is equal to d—25, approxi-
mately. This spread in effective trajectory diameters
makes the linewidth of the dip mentioned above,
AH/Hp=0. 08, be approximately equal to 2XB/d. Thus,
from the width of this resonance near H/H p

= 1, a good
estimate can be made for the skin depth.

The large peak in the surface resistance (bilateral,
antisymmetric excitation) with a maximum at H/Hp
=1.15 appears in that range of magnetic Geld values
for which the trajectories that interact effectively on
the one skin layer (defined by s =8) do not pass through
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the skin layer (defined by s=d —8) at the opposite
surface; however, these trajectories do sample the field
distribution near the second surface in regions of non-
negligible structure Lsee Fig. 4(a)$. The diameter of
the trajectories corresponding to the magnetic field
value Hi = 1.15Hp Lat the peak maximum labeled by the
Rrst arrow in Fig. 6(a)] is equal to d —4i, while the
diameter corresponding. to H =s1.30H pLat the second
minimum of R labeled by the second arrow in Fig. 6(a)]
is equal to d —Ap, d, i and A. are defined in Fig. 4(a).
The first peak in the surface resistance, then, reflects
the distribution of the electric field between s=b and
s=As. As is discussed below (Sec. IV 8), it is the
derivative of this peak that Koch and %agner"
measured in their experiment on potassium. For an
electron starting within the depth s= 8, where the real
part of the electric field is large and positive and the
imaginary part is almost zero, the real part of the
product v E which couples the electronic motion with
the electric field (see Eq. (2.16a)j, is large and positive.
For magnetic fields in this range, this electron will

interact with the field near the second surface in the
region between s= d—6 and s= d—A2, where the
coupling product is now negative and the imaginary
part of the field takes its largest values. This inter-
ference between the transmitted currents from the one
surface and the driving currents at the second surface
(for depths larger than 8) is destructive for magnetic
field values in this range and it causes the peak in E.,
while the constructive interference between the trans-
mitted and driving currents (for depths less than 5)
is the primary cause for the initial dip in R.

For the peaks in R (bilateral, antisymmetric exci-
tation) with maxima at H/Hp= 2.22 and H/Hp=3. 10,
similar geometric arguments could be advanced if one
took into account the electric field splashes inside the
sample in addition to the skin layers. However, these
arguments are not easy to make quantitatively; the
secondary "skin depths" in the bulk of the sample
cannot be precisely defined since they "move" self-
consistently with the field (see Fig. 4).

Of course, such simplified arguments in terms of the
coupling product v E for an effective electron are
already included in the general expressions of Sec. II,
where the contributions from utl the effective electrons
as well as all the ineffective ones are properly integrated
over Lsee Eq. (2.17)). In this connection, we note that
the surface impedance is an integral property of the
total electron distribution; the resonant electrons only
perturb the over-all conductivity of the plate. "

The diffuse scattering at the surfaces determines
mostly the position of the first sharp variation at
H/H p = 1. The effect of surface scattering on the
relative population of effective-versus-ineffective elec-
trons is maximum for magnetic field values immediately
after H/H p 1; then, the trajecto——ries of the type shown

"R. G. Chambers, Proc. Phys. Soc. (London) 86, 305 (1965).
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PIG. 7. Mean-free-path dependence of the surface resistance.
Bilateral, antisymmetric excitation; cylindrical Fermi surface.

in Fig. 2(c) cease to exist and the trajectories of the
type shown in Fig. 2 (a) appear for the first time.

The effect of specular scattering on the line shapes
will be examined in a subsequent investigation. For
different magnetic field values and different frequency
ranges one may have to use a combination of the two
scattering mechanisms in order to make explicit
comparison with experiment.

The collisions in the bulk, described by the mean
free path l, affect not only the intensity of the lines
but their shape as well. This is seen in Fig. 7, where the
surface resistance for the bilateral antisymmetric
excitation has been plotted as a function of magnetic
field (near H/Hp= 1) for different ratios of l/d, ranging
from l/d= —', to l/d= 8. As the l/d ratio decreases from
l/d = 1 to l/d = is, the initial dip in the surface resistance
(between H/Hp 1and H/Hp=1. 08——) gradually dis-
appears while the subsequent peak still persists,
although damped considerably. This demonstrates that
the important influence of the mean free path is that
it affects the effectiveness of the electrons in bringing
currents from the one skin layer to the second. The part
of the line (initial dip) which reflects the constructive
interference between the driving currents (in the region
within 5 of the first surface) and the transmitted
currents from the corresponding skin layer at the
second surface is washed out faster than the parts of
the line (first peak) which are mediated by smaller-size
trajectories. As the ratio l/d increases from l/d= 1 to
l/d=8, the initial dip in R increases considerably in
amplitude (almost by a factor of 10), while the subse-
quent peak increases at a smaller rate. In addition to the
large variation in amplitude, there is a shift in the
position of the first maximum towards smaller magnetic
field values as l/d increases. The shift in the position
of the first minimum is almost negligible. As the ratio
l/d decreases, the line shows a general broadening
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H=H
X FIG. 8. Spherical Fermi sur-

face. The real-space trajec-
tories for a given p, other than
p =0, are helical in nature;
their projections on planes
normal to H span the sample
as shown in Figs. 2(a) —2(c).
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which has been derived for the anomalous skin-effect
problem in the semi-infinite metal and in the absence
of external magnetic fields. '

The critical value of the magnetic field Bo corre-
spon s to the first (i.e. , leftmost) sharp variation of the
line, as has been correctly assumed to be the case in
the experimental works that measured calipers of Fermi
surfaces using the RFSE as a spectroscopic tool (see
Ref. 9, for example).

which is larger in the resistance peak than it is in the
prece ing resistance dip. These observations regarding
the mean-free-path dependence of the line shape will

e useful in the qualitative understanding of the

Sec. IVB .
o serve line shapes in potassium (see th d'see e iscussion in

The ba ke background surface resistance and surface
reactance are related by the well-known relation

B. Syherical Fermi Surface

For a spherical Fermi surface the velocity of the
electrons is given by (see Fig. 8)

v=vs (x cos8+y sin8 cosq+E sin8 sing). (4.3)

For a iven i.e.g' *, i.e., ", t"e real-space tra]ectories are,
~ ~

in general, helices. The velocity (4.3) has a component
a ong the magnetic field for all values of p„except
P,=, which corresponds to the stationary "belly"
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Fyo. 9, Electric 6eld distributions for various
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Fermi surface. The dotted curves in
(b) are experimental (see Ref. 15).
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orbit at the equator of the Fermi sphere. Since the
magnetic field has been chosen to be parallel to the
surface of the sample, the electron trajectories return
to the same depths for a given value of the external
magnetic field, and, even though they are helical in
nature, it is convenient to visualize them as spanning
the plate in the way depicted in Fig. 3.

The electric field distributions and the surface
impedance curves are shown in Figs. 9 and 10. The
normalization field Ho is defined by the diameter of
that "belly" trajectory which spans the plate exactly
once. Because there is a large dispersion in the sizes of
possible trajectories [ranging in diameter from zero
at the limiting points of the Fermi distribution to
2(ch/&)kr/II at the "belly" orbit], the amplitudes of
the field splashes are small and their widths large. The
over-all intensity of the lines of the surface impedance
is decreased considerably in this case as compared with
the intensity of the lines in the cylindrical Fermi-
surface case, as expected. The lines are also shifted
slightly to the left, as compared with the corresponding
cylindrical Fermi-surface lines, owing to the fact that
for magnetic field values smaller than a given critical
value, say H/Hs 1, there exist small——er trajectories in
the neighborhood of the extremal trajectory which
interact effectively with both skin layers.

The field derivatives of the surface impedance

(bilateral, antisymmetric excitation) are shown in
Fig. 10(b) together with the lines experimentally
observed in potassium by Koch and Wagner. " Any
comparison between the theoretical and experimental
curves is meant to be only qualitative, for the following
reasons. The experimental mean free path is given in
Ref. 15 as l=6&&10 ' cm with l/d= s. The mean free
path used in this calculation was equal to the thickness
of the plate, i.e., l/d=1. The small experimental l/d
ratio has the following unfortunate consequence. Even
in the cylindrical Fermi-surface case, as was discussed
in Sec. IV A and shown in Fig. 7, the amplitudes of the
surface impedance lines reduce by a large factor as the
l/d ratio decreases from l/d=1 to l/d=ts. Such a de-
crease in line amplitude is considerably more pro-
nounced in the case of the spherical Fermi surface,
where the signal is so reduced that the calculated
variations of the surface impedance are buried in the
numerical noise of the present calculation. Thus, an
explicit calculation using Koch and Wagner s experi-
mental parameters was regrettably inaccurate. In
addition, the experimental curves in Fig. 10(b) were
taken at &v/27t=1. 5 MHz, while the calculations were
carried out at to/2~=1. 0 MHz; such a difference in
frequency, however, would only slightly affect the
widths of the lines, leaving their shapes essentially.
unaltered for qualitative purposes. In view of these
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differences between the experimental and calculational
parameters, the vertical scale for the calculated curves
has not been adjusted so as to bring them in closer
correspondence with the experimental ones.

The qualitative similarity between the theoretical
and experimental line shapes is rather good not only
for the first large singularity at H/He=1 but for the
second harmonic as well. From the study made in
Sec. IV A on the f/d dependence of the surfa, ce resistance
line at H/Hp= 1, the first dip in the surface resistance
of Fig. 10(a) would tend to disappear as l/d reduces
from &/d= 1 to l/d=-'s; only the subsequent peak in the
surface resistance would remain, thus yielding a deriva-
tive that would agree even more closely with experi-
ment. Similar qualitative arguments could be ad-
vanced about the agreement of the BX/BH curve with
experiment.

In terms of these qualitative arguments one might
discuss by extrapolation the disturbing difference which
exists between the BE/BH curve which was measured
by Koch and Wagner" in potassium and that which was
measured by Peercy eI, al. ,

'4 also in potassium. The
explanation for the difference between the two line
shapes might lie in the rather strong mean-free-path
dependence of the line shape and very likely on the
nature of surface scattering for large mean free paths.

In the first experiment" the relevant parameters
were l/d= —„n&/2&r=1.5 1VIHz, and o&r=0.0006. From
the l/d dependence of the line shape shown in Fig. 7,
it is fair to say that this experiment measured the
derivative of the first peak in the surface resistance,
since the initial dip might be suppressed because of the
small mean free path. In terms of the arguments put
forth in Sec. IV A, which a,ttribute this peak to the
coupling of effective electrons with the part of the
electric field distribution extending beyond 8, i.e.,
beyond the first exponential decay of the field, one can
understand the large width (a few times 5) of the
observed lines.

In the second experiment'4 the relevant parameters
were l/d= 4, o&/27r = 32.694 MHz, and o&r =0.1. In this
case, the observed BE/BH line exhibits a very large
dip immediately after H/He=1 which would result
from a (negative) steplike discontinuity at H/Hs 1——
in the surface resistance, without the subsequent
large structure which is so predominant in our calcu-
lations. It might be, however, that the assumption
(2.11c), which we have made in our calculations, is no
longer valid for o&r=0.1. This large o&r (more than two
orders of magnitude larger than the cur of the first
experiment and of our calculations) might affect the
phase of the electric field, in the regions beyond 8 and
for time intervals comparable to the relaxation time,
so as to change the character of the interference be-
tween the driving and transmitted currents and thus

' P. S. Peercy, W. M. Walsh, Jr., L. W. Rupp, Jr., and P. H.
Schmidt, Phys. Rev. 171, 713 (1968).

to wash out some of the large peak in R. In addition,
because of the large mean free path of this experiment
it might make a difference whether the scattering at
the surface is diffuse, as we have assumed in our
calculations, or specular —at least for those trajectories
which scatter at the surfaces with small angles of
incidence. In this connection, we mention the impor-
tance of the specularly reflected "skipping" trajectories
in the microwave surface impedance at low magnetic
fields. "So, in order to explain the line shapes observed
in the second experiment, an explicit calculation is
needed that would include possible finite err effects
and, perhaps more importantly, different assumptions
about the nature of surface scattering. In such a calcu-
lation the line shapes observed in the tilted field
geometry will be investigated as well.

, , k-2
L~ i i

I I
i I Pz
V

(bj

H=H

K 2'0-Px & Fx c

X X&C (d) Px =Pxc -&

Fxa. 11. (a) Uiidulating cylindrical Fermi surface which in-
cludes the deformation of the free-electron sphere near a Brillouin-
zone boundary. (b) Definition of p, „H„and the two p slices
labeled by k. (c) Classification of the orbits in a magnetic field.
In &= I (p, ,&

~ p, ~
&p~), the orbits are all of one type; closed

and circular. In slice k=2 (0&
~ p, ~

&p...), there are three types
of orbits, labeled by l, for diferent directions of the electron
velocity: open orbits (1=1, 3) and leiislike (3=2). (d) The nature
of the orbits near the transition section p =p, ,

C. Undulating Cylinder Fermi Surface

The undulating cylinder Fermi surface which in-
cludes the deformation of the free-electron sphere near
the Brillouin-zone boundaries is shown in Fig. 11. The
types of trajectories that the electrons describe in the
sample for a particular orientation of I with respect to
the symmetry axes of the crystal are also shown in
Fig. 11. The Fermi surface has been divided into two

p slices, labeled by the index k. In the first slice (4= 1),
where P, ,(

~ P, ~
&P~, the trajectories are closed and

circular for all directions of their velocity, i.e.,
for 0& &p& 2&r. In the second slice (k = 2), where
0&

~ P, ~
(P, ,„three types of trajectories, labeled by the

index I, are possible for different ranges of y, i.e., for
diff erent velocity directions, (i) open, for 2&r —q,
& &p& p„ i&„(ie))0 (l= 1); (ii) closed, lenslike, for
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y, (p&7r —p, and ~+y, &y, (2~—q, (1=2); (iii)
open, for m. —y, & p&7r+p„v„(y)(0 (1=3). The
velocities of the electrons in each piece of their trajectory
are given by (4.3). At the zone boundaries we take

v„(p„8)= —m„(7r—q „tI) = v p sing,

v, (y„o)=n, (m
—

q „8)=0.

The electric field distributions inside the plate and the
surface impedance as a function of magnetic Geld, for
this Fermi surface are shown in Figs. 12 and 13, respec-
tively. At the value IIO of the external magnetic field
the circular orbit corresponding to the transition section
of the Fermi surface, defined in Fig. 11(d), matches the
thickness of the sample, i.e.,

Ho ——2 (e/e)P, ,/d.

This choice was made in order to emphasize the large
variation of the impedance curves observed in cadmium,

whose Fermi surface this undulating cylinder model is
supposed to approximate, near this value of the field. '

The variety of possible trajectories for different
directions of the electronic velocity and the diferent
ways in which the various trajectories span the sample
contribute to the increased complexity of all curves.
Owing to their different topologies, different trajectories
contribute to the conductivity in different ways.
Because of their shape and the way in which they are
located with respect to the sample, the various trajec-
tories have different degrees of eSciency in bringing
currents from one surface layer to the other and also
in affecting the relative populations of effective and
ineffective electrons. The observed peaks in the surface
resistance and reactance correspond roughly to the
geometric matching of the important trajectories with
the thickness of the sample. The high magnetic Geld

peaks are due to the anomalous penetration of the field
in the sample brought about by multiple trajectory
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