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Microscopic Model for Reorientation of the Easy Axis of Magnetization*
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We present a microscopic model to describe the reorientation of the easy axis of magnetization from one
symmetry axis of the crystal to another, which is known to occur in a number of magnetic insulators. We
6nd that the easy axis either rotates continuously with temperature, beginning at T& and ending at a higher
temperature Tz, or jumps discontinuously with associated hysteresis effects. In the former case, we have
calculated the temperature dependence of the easy direction of magnetization, and the behavior of the
specific heat and correlation lengths in the vicinity of T& and Tz. Measurement of T& and T2 allows the
evaluation of the ratios E'i/E'4 and ICs/E4, where ICi, Kz, and E4 give the strength of the pseudodipolar
spin interaction, and the second- and fourth-order single-ion anisotropy terms in the spin Hamiltonian,
respectively.

I. INTRODUCTION

A XUMBKR of magnetic insulators exhibit a dis-
placive-type' phase transition, in which the easy

axis of magnetization reorients itself from one sym-
metry axis of the crystal to another upon changing the
temperature. ' " Well-known examples of such transi-
tions include the Morin transition in ct-FesOz (hematite)
and the reorientation of the net magnetic moment from
the a- to the c-symjnetry axis, which occurs on heating
in a number of the orthorhombic rare-earth ortho-
ferrites' (formula RFeoz, where R is a rare earth).

*Research sponsored in part by the Air Force Materials
Laboratory Research and Technology Division AFSC through
the European Ofhce of Aerospace Research, U. S. Air Force,
under Contract No. F 61052-67C-0040.

t Part of a Ph.D. thesis to be submitted by L. M. L. to the
Feinberg Graduate School of the Weizmann Institute of Science.' By displacive phase transition we shall intend a phase transi-
tion of the BaTiOe type (as opposed to order-disorder transitions),
which is characterized by a specific-heat anomaly small compared
to Boltzmann's constant kz at the transition temperature. A
similar definition has been employed by Tisza fL. Tisza, Phase
Transformations in Solids (Wiley-Interscience, Inc., New York,
1951), pp. 18-287.' C. G. Shull, W. A. Strauser, and E. O. Wollan, Phys. Rev.
83, 333 (1951);F. J. Morin, iMd. 78, 819 {1950).' R. M. Bozorth, V. Kramer, and J. P. Remeika, Phys. Rev.
Letters I, 3 (1958).'F. J. Darnell, W. H. Cloud, and H. S. Jarrett, Phys. Rev.
130, 647 (1963).' A. E. Austin and E. Adelson, J. Appl. Phys. 33, 1356 (1962).' R. W. Houghton and W. Weyhman, Phys. Rev. Letters 20,
842 (1968).' H. Bartholin, B. van Laar, R. Lemaire, and J. Schweizer, J.
Phys. Chem. Solids 27, 1287 (1966).' H. B. G. Casimir, J. Smit, U. Enz, J. F. Past, H. P. J. Wijn,
E. W. Gorter, A. J.W. Duyvesteyn, J. D. Fast, and J. J. de Jong,
in Colloque International de Magnetisme, Grenoble, 1958, p. 296
(unpublished).

9 R. D. Pierce, R. Wolfe, and L. G. van Uitert, J. Appl. Phys.
40, 1241 (1969).

'0 A. Berton and B. Sharon, J. Appl. Phys. 39, 1367 (1968).
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The behavior of D,I'e03, which exhibits a spin reorien-
tation from the 6„- to the 6 -spin structures' at about
30'K with no detectable specific-heat anomaly, "is also
noteworthy. Indeed, a very large quantity of often
contradictory experimental data is at present available
regarding this eQect in hematite and the orthoferrites.
We list some recent studies" " of the easy axis re-
orientation in these materials which have employed
torque, magnetic moment, and susceptibility measure-
ments, as well as microwave absorption, neutron dif-
fraction, and the Mossbauer technique. Among other
materials evidencing easy-axis —reorientation phase tran-

"N. Yamamoto, J. Phys. Soc. Japan 24, 23 (1968)."R. Wolfe, R. D. Pierce, S. E. Haszko, and J. P. Remeika,
Appl. Phys. Letters 11, 245 (1967)."R. C. LeCraw, R. Wolfe, E. M. Gyorgy, F. B. Hagedorn,
J. C. Hensel, and J. P. Remeika, J. Appl. Phys. 39, 1019 (1968).

'4 F. B, Hagedorn, E. M. Gyorgy, R. C. LeCraw, J. C. Hensel,
and J. P. Remeika, Phys. Rev. Letters 21, 364 {1968).

'~ F. B. Hagedorn and E. M. Gyorgy, Phys. Rev. 174, 540
(1968).

~6 G. Cinader and S. Shtrikman, Solid State Commun. 4, 459
(1966)."S. Foner and S.J. Williamson, J. Appl. Phys. 36, 1154 (1965).

~8 G. Gorodetsky and L. M. Levinson, Solid State Commun.
7, 67 {1969).

»A. H. Morrish, G. B. Johnston, and N. A. Curry, Phys.
Letters 7, 177 (1963).

0 E. M. Gyorgy, J. P. Remeika, and F. B. Hagedorn, J. Appl.
Phys. 39, 1369 (1968).

2' J. Kaczer and T. Shalnikova, in Proceedings of the Inter-
national Conference on Magnetism, Nottingham, England, 19o4
(The Institute of Physics and The Physical Society, London,
1965), p. 589.

'2 T. G. Worlton and D. L. Decker, Phys. Rev. 1?1 596 (1968)."P.J. Flanders, Phil. Mag. 14, 1 (1966)."T.Kaneko and S. Abe, J. Phys. Soc. Japan 20, 2001 (1965).
'-5 D. J.Simkin and R. A. Bernheim, Phys. Rev. 153, 621 (1967).
~6 R. C. Wayne and D. H. Anderson, Phys. Rev. 155, 496

(1967)."G. Cinader, P. J. Flanders, and S. Shtrikman, Phys. Rev.
162, 419 (1967).
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sitions are the ferromagnet~ NdCOS and the ferrimag-
nets' ' Mn2Sb and &a2Co2Feg2Ogg.

Analyses of the above wealth of data have generally
followed phenomenological lines, with the thermo-
dynamic free energy controlling the easy-axis reorien-
tation usually introduced on a somewhat ad hoc basis."
Horner and Varma" have given a phenomenological
treatment of the reorientation occurring in materials
which undergo easy-axis rotation, beginning at some
temperature T~ and ending at T2. They employ the
Landau theory of second-order phase transitions to
describe the easy-axis rotation, assuming that the
macroscopic second-order anisotropy energy varies
linearly with temperature in the interval T~—T~.

Since the preferred direction of the magnetic moment
is determined by the magnetic-anisotropy energy, it is
clear that the easy-axis —reorientation process is governed

by the temperature variation of the anisotropy energy
E acting upon the spin system. The spin-spin cou-

plings, on the other hand, are of the order of the
exchange integral J. As will become apparent in the
following, the small ratio E/J ( 10 ' in many cases)
makes this problem readily amenable to perturbation-
theory treatment.

We shall demonstrate that our model Hamiltonian
does predict that the easy axis of magnetization passes
from one crystal symmetry axis to another as the
temperature is altered. The reorientation occurs by one
of two possible processes:

(a) The easy axis jumps suddenly from one crystal
symmetry axis to the other at the transition tempera, -

ture, the phase transition being of erst order. The
transition is characterized by hysteresis effects, whereby
the spin reorientation occurs at diferent temperatures
depending on whether the transition region is ap-
proached from the high- or low-temperature side.

(b) The easy axis rotates continuously from one

crystal sylnmetry axis to another, the transition begin-

ning at some temperature T» and ending at a higher
temperature T2. For temperatures in the immediate
vicinity of both T& and T2, the usual Landau theory
for second-order phase transitions is applicable pro-
vided that the perturbation series in powers of E/J
converges.

When case (b) is relevant, the calculated free-energy
function displays the general features characteristic of
second-order phase transitions. '~" As for other dis-

should be noted that J. O. Artman e~ a~. t Phys. Rev. 138,
A912 (]963)g have treated the Morin transition in hematite on a
microscopic basis, using spin operators up to second order in the
spin Hamiltonian. Their model predicts the occurrence of a
erst-order phase transition without hysteresis eGects. The pres-
ence of fourth-order terms in the spin Hamiltonian is crucial to
our treatment.

"H. Horner and C. M. Varma, Phys. Rev. Letters 2Q, 845
(1968)."L.P. KadanoB, W. Gotze, D. Hamblen, R. Hecht, E. A. S.
Lewis, V. V. Palciauskas, M. Rayl, J. Swift, D. Aspnes, and J.
Kane, Rev. Mod. Phys. 39, 395 (1967).

"M. E. Fisher, Rept. Progr. Phys. 30, 615 (1967)."P. Heller, Rept. Progr. Phys. 30, 731 (1967).

placive-type phase transitions, ""we 6nd speci6c-heat
anomalies at the transition temperatures, which are
small compared to Boltzmann's constant. This reQects
the absence of major changes in the short-range order
throughout the reorientation region. Our explicit cal-
culation for small E/J serves to verify the assumptions
of Horner and Varma29 for temperatures in the im-
rnediate neighborhood of T~ and T2.

In Sec. II A of this article we present the model
Hamiltonian of our system and solve for the free
energy as a function of the forrnal "order parameter"
8 (&=angle between spin easy axis and s axis) in the
approximation E/J((1. In order to obtain expressions
for the temperature dependence of the relevant anisot-
ropy constants in terms of tabulated functions, we
evaluate our results in the classical molecular-field
approximation in Sec. II 3.

In Sec. III, we brieQy consider the available experi-
mental data for the spin reorientation in hematite and
in the rare-earth orthoferrites in the light of our results.
Finally, we discuss the applicability of the Landau
theory of phase transitions to our model in the case
where the reorientation transition is of the second order.

X,= —P J;,S,"S, (2)

is the isotropic Heisenberg Hamiltonian, and where

X,=Q xs(S;*)'+Q x4(S,')4+ Q xt, ;;S,'S,' (3)
i

describes the spin anisotropy. In (2) and (3) the
quantity S; is the spin operator at site i divided by
its magnitude S. The first and second term on the
right-hand side of (3) represent the second- and fourth-
order single-ion anisotropy contributions, respectively.
The third term on the right-hand side of (3) describes
the effect of the dipolar and pseudodipolar spin inter-
actions, and is of the same order of magnitude as the-

33 K. A. Muller, W. Berlinger, and F. Waldner, Phys. Rev.
Letters 21, 814 (1968).

'4 J. A. Gonzala, Phys. Rev. Letters 2I, 749 (1968).
~' P. W. Forsberg, in IIandbgch der Pbysik, edited by S. Fliigge,

(Springer-Verlag, Berlin, 1956), Vol. XVlI, p. 264."A. Zussman and S.Alexander, J. Chem. Phys. 49, 3792 (1968).

Ir. THEORy

&. Model Hmniltonie. n

For the sake of clarity we will consider a magnetic
insulator having its spins on equivalent sites. This
assumption simplifies the problem and will not ma-
terially aQect the qualitative features of our results.
We expect that such a model will also, in some approxi-
mation, describe the easy-axis reorientation occurring
in antiferromagnets. We adopt the spin Haxniltonian K
given by

X XQ+X~ )

where
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second-order single-ion anisotropy term. "If J denotes
the sum

which measures the strength of the isotropic exchange
coupling of a spin to its neighbors, then" xs/5~10 '
for ions having the '55~2-3d' configuration of Fe'+, which
is our main interest. The ratio x4/J is probably at least
an order of magnitude smaller. The anisotropic part of
the Hamiltonian has been assumed to depend only on
S'. This simplification serves to restrict the easy-axis
reorientation to a single plane, say the x-2,'plane.

It is useful to express X, in terms of operator equiva-
lents of the spherical harmonics. "Thus, neglecting a
constant, we Gnd that

X,=Q LE2Fso(s;)+E4I'4P(S~) j
+ P Er„;pro(s~)Vto(S;). (4)

obtain a2p= F2p(n), aside from a possible normalization
factor, which, in any event, we will absorb into the
anisotropy constants.

From (4)-(8) we obtain42

(X.)=g tE2F'2'(n)(F2'(S ))+E41'4p(n)(Y4p(S ))j

+ P Er, rj[P ] (n)]2(Fr'(S )vr (S )) . (9)

Equation (9) explicitly displays the angular dependence
of the anisotropy energy (X,), and represents the funda-
mental expression for the temperature variation of the
anisotropy coefficients.

It is helpful to rewrite (9) to clarify its relation to
the usual phenomenological expressions for (X,). We
denote the angle between (S) and the z axis by 8.
Then, using explicit formulas for the spherical har-
monics, we may reexpress (9) as a polynomial in sin'8:

(X~)=&o(&)+A2(T) sin28+A4(T) sin 8, (10)

The constants E in (4) are simple linear combinations
of the constants x in (3).

The free energy F of the system, to erst order in ~ (7)E/J is given by" 4~i
F= kT ln Tr(—e &«)+(—X,) (5)

(6)

3
+I —

I
pE.(I;(s,'))+—p E,„,

(42ri ' 42r s,2
iy'j

=—Fp+(X.),

X(I'2'(S*')I"~'(SJ')), (11)

(9 )1/2 3
& «(I'"(S''))—2 E .;;

E4 i 4'- e,j
iy'-j

X(F''(S )P''(S )), (12)

35~ 9 ~r&2

«»= —
I

—
I pE,(1;(s,)).

8 (42ri

where angular brackets denote the thermal average
taken with respect to the Nnpertlrbed density matrix
pp=e &pep/Tre ~+'. It is evident. that the angular de-

( ),(5'i~ '
~

pendence of the free energy arises solely from (X,) in
(5). We shall evaluate this angular dependence using
a method due to Callen and Callen, ' and will brieQy
repeat parts of their derivation for the sake of con-
tinuity. Let us suppose that at temperature T the mean
magnetic moment (S) points along n, where n is a unit
vector. The spherical harmonics I'2o(S) in (4) are
defined with respect to the coordinate axes Oxyz 6xed
relative to the crystal. We transform 7'2P(S) to a new
set of spherical harmonics I'p(S') having n as polar
axis, to obtain Thus, we have

I p(s)= p a,-I,-(s').
m=l

Since Ko is cylindrically symmetric about m, it follows
that

(I;(s))=;(I';(s )). (8)

From the properties of spherical harmonics~~ we

"T. Moriya, in 3fugeetism, edited by G. , T. Rado and S. Suhl
(Academic Press Inc. , New York, 1963), Vol. I, p. 86."E.R. Callen and H. B. Callen, Phys. Rev. 129, 5/8 (1963)."It is clear that this approximation is better, the smaller A/ j.
Its validity is discussed in Sec. III.

'H. B. Callen and E. R. Callen, J. Phys. Chem. Solids 27,
127i (1966).

4' E. R. Callen and H. B. Callen, J. Phys. Chem. Solids 16, 3|.0
(1960), Appendix C.

F=Fo+&o(&)+&2(T)sin'8+24(T) sin48. (14)

It is helpful to consider the rather trivial properties
of F(8). To assist the reader we have plotted in Fig. 1
the simple function (F—Fp —Ap)/I A4I =n sin'8&sin48
versus 8 for various values of the parameter n—=A2/I A4I.
It is convenient to consider the case 24&0 LFig. 1(a)g
and A4) 0 LFig. 1(b)) separately.

When 24&0 LFig. 1(a)j, it is apparent that the
only values of |t for which the free energy is minimized

~ In the derivation of (9) we have put pseudodipolar terms of
the form (I'P(S&') I'~ '(S ))~(F'~'(S ))(I'& '(S/))=0. This is
equivalent to neglecting correlations between di8erent spin com-
ponents of spins belonging to diferent sites when evaluating the
pseudodipolar contribution. This simplification allows us to easily
put Eq. (9) in the form of Eq. (10).
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(F-Fp-Api/(-Aq) a f(8l
a =1.2

2.0-
inciea sing temperature

(F-Fa—
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FIG. 1. (a) Angular variation of the reduced free energy (f Po Ap)/IA41 —for —varying va(ues of the parameter o =—A2/IA41. The
fourth-order anisotropy term A4 is negative. We have taken the easy axis to lie along the s axis at low temperatures. Fxpressions for
P', A0, A2, and A4 are given in Eqs. (11)—(14). The cychc path indicated by the arrows is discussed in Sec. II A. (b) As for (a), but
with A4 positive.

are 0=0 and 0= —,'z. For values of o. such that 0 +&2
the free-energy function has a local maximum, (=4rrr')
corresponding to unstable equilibrium, at values of
0 given by sin'0=-,'n. It is also worth noting that for
0 e 1, the choice 0=0 corresponds to metastable
local equilibrium of the free energy, and that 0=-,'z is
similarly metastable for 1» cx 2.

This type of free-energy function leads to hysteresis
effects. For example, if high temperatures correspond
to large values of rr(T), then on cooling, 8=0 will

remain the locally stable direction of the easy axis until
a temperature T~, where n has decreased to zero. For
T&T&, the easy axis jumps to 0=-,'m. . On subsequent
heating, to return the easy axis to its original direction,
it will be necessary to heat the system to a higher
temperature T,, (T2) Tr) such that cr(T2) =2, before 0

jumps from 0=-,'x to 0.
In Fig. 1(b) we present plots of the reduced free

energy (F Fp —Ap)/A4 for—A4) 0. In the range —2

2 o. 0, the free energy has a minimum at values of
0 given by sin20= —~o.. For o.)0, 0=0 is the only
stable solution, and for n& —2, 0=—,'~ alone is stable.
In contrast to the case A4(0, no hysteresis effects
occur, the easy-axis equilibrium value 0=0 for high o.

passing smoothly to the 0=-,x equilibrium position as
rr(T) decreases. In this case the easy axis rotates con-
tinuously between the crystal-symmetry axes.

In the temperature region where n 0 (easy axis
about to begin rotation), the plot of F versus 8 is

similar to that of the standard Landau theory of
second-order phase transitions. " This similarity has

"L.'!D. tLandau and K. M. Lifshits, Statistica/ Physics (Perga-
mon Press, Inc., New York, 1959).

been pointed out by Horner and Varma, " who, on
phenomenological grounds, assume a free-energy func-
tion of the form (14).

A second, analogous, Landau-type phase transition
occurs in the region n~ —2. In this region the appro-
priate order parameter is -',x —0, as distinct from the
order parameter 0 for the region where n~0. Defining TI
and T, by n(Tr) =0, rr(T&) =—2, respectively, then for
Tl & T (Tp (assuming Tl ~ T2) the spin system is stable
in a phase of lowered symmetry. It is, moreover, note-
worthy that the easy-axis rotation is characterized by
both an upper- and a lower-transition temperature.
Such behavior is not uncommon for second-order dis-
placive phase transitions. "4'

It is instructive to consider the easy-axis reorienta-
tion pictorially, using the graphic portrayal of the
anisotropy energy due to Callen and Callen. 45 Consider
a surface whose distance from the origin in every
direction is proportional to the T=O'K anisotropy
energy in that direction. Let us assume that the spins
then lie along the s' axis. The anisotropy-energy surface
will thus have a valley centered about the point where
the surface is cut by the s axis. Upon heating, the spins
are agitated by thermal energy, and spend part of their
time away from the s direction, and thus sample regions
of the anisotropy-energy surface corresponding to higher
energies. The thermal sampling therefore serves to
smooth out the effective anisotropy felt by the spins
as the temperature is raised, and leads to the well-
known~ decrease in the anisotropy coe%cients with
increasing temperature.

44 Reference 42, p. 433.
4s Reference 39, Fig. 1.
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In the particular case when easy-axis reorientation
arises, the anisotropy-energy surface is such, that upon
the spins sampling larger regions of the energy surface,
a temperature is reached which makes it energetically
favorable for the mean spin direction to rotate. Thus,
upon heating to temperature T~, the spins begin to
sample different regions of the anisotropy-energy sur-
face due to the movement of the mean spin direction,
and not merely as a result of the increasing available
thermal energy spreading the instantaneous spin direc-
tions over a wider area. The initiation of this process
signals the onset of the phase transition.

It is worth emphasizing the significance of Eq. (10)
in the context of the theory of phase transitions. By
employing thermal perturbation theory, we have ob-
tained a Landau-type expansion in powers of the order
parameter for our model. In the following paragraph
we present a plausibility argument to the effect that
As(T) and A4(T) can be expanded in Taylor series
about the transition temperature.

The temperature dependence of As(T) and A~(T) is
determined by terms which typically have the form

Tr[pp(S, ') 7, where m is an integer. At the temperatures
T~ and T2 nothing unusual is occurring as regards the
zero-order density matrix po. Indeed, T~ and T2 have no
connection whatever with the behavior of the isotropic
Heisenberg Hamiltonian po. Thus, while we have no
rigorous proof of this point, the mathematical regularity
of A~(T) and A4(T) at Ti and Ts appears to be very
plausible.

In the following we specialize to the classical mole-
cular-field approximation for po so as to facilitate the
calculation of As(T) and A4(T) in terms of tabulated
functions.

1.00

.80

.60

.40

.20

0.00 .40
T/ Tc

.60 .80 I.OO

FIG. 2. Temperature dependence of (Fsp(S ))r/(Fs (S ))r p,
(F4p(S'))r/(F4 (S))r p, and p(F, (S')r/Fq (S'))r og =(S')s in the
classical molecular-6eld approximation. Explicit expressions for
these function are given in Eqs. (19)—(21).

(FP(S')) = YP (u) exp+ J(S')u7du

exp+ J(S')u7du, (19)

In (16)and (17) the quantity Ki denotes g;,;, ,~; Kr, ;,/E,
where X is the number of spins.

Wolf ' has provided numerical solutions for the ther-
mal average of the spherical harmonics in (16)—(18) in
the quantum case. We shall proceed to the classical
limit to enable the evaluation of ao, a~, and a4 in terms
of tabulated functions. We then have

B. Classical Molecular-Field Ayyroximation

We shall employ the molecular-field approximation
to calculate As(T) and A4(T). We thus approximate
our zero-order Hamiltonian Ko and density matrix po by

5('.p~~ ———J(S') S'

P~0MF /~ P3 (}MS'

(15)f=fp+ap(T)+a, (T) sin'(}+a4(T) sin'(},

where ap(T) as(T), and a4(T) are given by

ap (T) = (5/4s )"'Ks(Yss (S'))+ (9/4s )'IsK,(Y4P (S'))
+(3/4s)Ktg(Yi'(S'))7', (16)

a (T) = —-'(5/4s. )"'Ki(Ys'(S')) —5 (9/4s )"'K (Y4P (8'))
—(3/4 )K DY '(S'))7 (1&)

a, (T) = —(35/8) (9/4n)'"K4(Y4'(S')). (18)

Throughout this section, angular brackets denote the
thermal average with respect to po

The free energy per spin then becomes

where u=cose and (S')= ~(S') ~. Using the relation" 4'

YP(u) exp+7(S')u7du=I~+t~, (PJ(S')), (20)

where I„ is the Bessel function of imaginary argument
of order v, it follows that

(F' '(S')) /(YP(S'))
(PJ(S'))/I (P~(S'&)=I (21)

For convenience we have adopted the notation of
Callen and Callen. " In Fig. 2 we plot the quantities
(Yes), (Y4'), and P(YiP)7' versus T/T, . It should be
noted that

gives the temperature dependence of the mean
magnetization.

Differentiating (15) to obta, in the equilibrium value

"W. P. Wolf, Phys. 14ev. 108, 1152 (1957).
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of 8 between 0 and ~m when u4&0, we have

sinzti = —a2/2a4.

From (17), (18), and (22), we then 12nd

10E2I5/2+60E419/2+3EI(13/2) /Ir
sin'0=—

105E4Isi2

(22)

(23)

l I

Easy axis rotation

I K1/K 4 I
= 10

IKQK4I = I os

Kl &Q

K~~0
K~ &Q

1 Ti da2)
C(T+)—C(T -)=-

2 a4(TI) dTP r,
(25)

The quantities on the right-hand side of (24) and (25)
are always positive-definite. Explicit values for the
a's and their derivatives follow at once using (17),
(18), and (21).

Experimental observation of easy-axis rotation in a
magnetic insulater will, in general, permit ready mea-
surement of the temperatures Tq and T2, corresponding
to the start and end of the easy-axis rotation, respec-
tively. By inverting (23) for tI =0 and Ii =—22r, we can ob-
tain the ratios Ei/E4 and E2/E4, corresponding to the
measured values of T~ and T2, thereby determining the
relative importance of the various anisotropy terms in
the spin Hamiltonian.

"It is worth noting that the presence of the dipolar term is
essential for the complete rotation from 8=0 to —,'m to take place.
If there were no dipolar term, then putting E~=O in (23) and
noting that 19/2 and I&g& are positive-definite functions, it is easy
to check that only a partial-rotation process can occur.

It is plausible that IEII»IE4I and IE2l»IE4I.
Tairing IEI/E41 =10', iE2/E4I =10', EI)0, E2&
and E4(0, then at T =0, the spin-easy-axis equilibrium
position is stable at 0=0. Ln)0, see Fig. 1(b).j Spin
rotation begins at T=T~, for which the numerator on
the right-hand side of (23) equals zero. $42(TI) =0,
Fig. 1(b).g On further increase of the temperature, the
numerator becomes negative (see Fig. 2), and the ratio
—a2/2a4 is positive and increases in magnitude due to
the rapid decrease of Isiz relative to (I3/2) aild Isis.
The rotation process is completed4' when the right-hand.
side of (22) equals unity $42= —2, Fig. 1(b)$. In Fig. 3
we plot the temperature dependence of 8 for the indi-
cated choice of the anisotropy coefficients.

We may compute the rotational contribution to the
specific heat by substituting the expression (23) for
the equilibrium angle Ii into (15), and. using the relation

C = T(azf/BT') —.
e resulting expression is lengthy and is not given

ere; its derivation is quite straightforward. In Fig. 4
we plot C for the indicated choice of Ey E~, and E4.
We will, however, give expressions for the specific-heat
jumps at, the extremes of the rotation process. Employ-
ing (15), we obtain

T2
C (T2 ) C(T2+) =— — — (a2+2a4) r2, (24)

2 a4(T,) dT
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Fro. 3. Temperature dependence of the angle g between the
easy axis and the 2 axis, for the case of spin rotation (+4)p
E4&0). The temperatures T& and T& denote the end-point tern
peratures for the easy-axis rotation process, respectively. We
have chosen the particular values indicated in the figure for EI,
E2q and E4.

In Figs. 5 and 6 we present contours of Ei/E4 and
E2/E4 for given Ti and T2. The values of Ei/E4 and
E,/E4correspond'ing to easy-axis rotation lie in the
region of the T&-T2 plane given by T2&T&. The line
Ti ——T2 corresponds to Ei/E4= —oo in Fig. 5, and to
E2/E 4

——~ in Fig. 6.
As we mentioned at the beginning of this section, our

numerical calculations have been specialized to the
classical molecular-6eld approximation. However, +we
may also utilize Figs. 5 and 6 to evaluate EI/E4 and
E2/E4 (for infinite spin) independent of the validity
of the classical molecular-6eld approximation " ' pro-
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Fxc. 4. Temperature dependence of the anisotropy contribution
to the specific heat, in the case where spin rotation takes place
(&4&0, E4(0). The quantities T& and T2 denote the end-point
temperatures for the easy-axis rotation process, respectively. We
have chosen the particular values indicated in the figure for E'I,
E'2, and E'4.

48H. 3. Callen and S. Shtrikman, Solid State Commun. 2, 5
(1965).
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FIG. 5. Contours of X~/E4 as a function of 7& and 2'2. The
temperatures Tr and T2 denote the end-point temperatures for the
easy-axis rotation, respectively.
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FIG. 6. Contours of Xq/E4 as a function of Tq and T2. The
temperatures Tr and T~ denote the end-point temperatures for the
easy-axis rotation, respectively.

vided that we use the following prescription to obtain
"proper" values for Tj and T2.

Let us assume the experimental relative magnetiza-
tion M*(Tr)/M*(0) at temperature Tt has been mea-
sured. Using tables of the Langevin function I., we can
obtain a corresponding x* given by

M*(Tr)/M~ (0) =L (x*).
The proper value of T~, which we denote by T~*, is

then given by
38(Tt~)T,/Tt* ——x~,

where 8—= ~(S) ~
is the classical molecular-6eld relative

magnetization as a function of temperature. The func-
tion 8(T) is available in the literature. "We plot L8(T)]'
in Fig. 2. A similar procedure gives T2*.

Finally, we note that the calculations of this section
can be extended to the case of finite spin, provided
appropriate account of quantum sects is taken in
evaluating the thermal averages (I'P). Figure 2 of Ref.
40 allows the importance of quantum effects to be
estimated.

f rrr. DrscvssroN
Our model Hamiltonian embodies the possibility, of

two distinct types of easy-axis-reorientation process.
In practice, however, it is not easy to distinguish be-
tween the spin-jump and spin-rotation modes described
in Sec. II A. The experimental difhculties arise from
the extreme sensitivity of the easy-axis reorientation
to slight deviations from ideal crystal structure. Thus,
for example, Hagedorn et a/. ,

""have presented striking
evidence for the effect of slight crystalline inhomo-
geneities on microwave-resonance experiments in the
spin-reorientation region of TmFe03. A further indica-
tion of the difficulties facing the investigators is given by
the vastly differing temperature widths"' '0 for the
Morin transition obtained in various studies of hema-
tite. Similar, though less extreme, variations occur in
the orthoferrites. "

The above experimental difficulties have complicated
the clari6cation of the nature of the Morin transition.
If our model is applicable and if the transition is of
first order, then hysteresis effects should be present.
This has not been observed. On the other hand, recent
careful measurements" indicate that the order pa-
rameter e(T) jumps discontinuously in the reorienta-
tion region. Thus, the situation as regards the Morin
transition is unclear at present.

In the rare-earth orthoferrites, the experimental
evidence available concerning the easy-axis reorienta-
tion tends to support the rotational mode. Micro-
wave'~" and susceptibility" measurements at the
extremes of the transition region are consistent with
a second-order phase transition. The measurements of
Gorodetsky and Levinson" also support a rotational
mode in SmFeO3. Moreover, a recent Mossbauer
study" of ErFe03 provides clear-cut evidence for easy-
axis rotation in this orthoferrite.

%ith regard to the experimental difficulties, it is
encouraging to note that the extreme sensitivity of the
spin reorientation to minor variations in crystalline
perfection is readily understandable in terms of our

"M. r. Darby, Brit. J. Appl. Phys. 18, 1415 (1967l.' L. Neel and R. Pauthenet, Compt. Rend. Acad. Sci. Paris
234, 2172 (1952)."P. J. Flanders, J. Appl. Phys. 40, 1247 (1969).

~2 G. Gorodetsky, L. M. Levinson, S. Shtrikman, D. Treves,
and B.Wanklyn, this issue, Phys. Rev. 187, 637 (1969).
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model. The transition temperature is essentially deter-
mined by the mutual cancellation of the fine structure
and the dipolar contributions to the second-order an-

isotropy in the spin Hamiltonian. Thus, the transition
temperature will be sensitive to slight variations in
either term. In particular, the dipolar term will be
sensitive to strain inhomogeneity.

We have shown that our model Hamiltonian predicts
the usual Landau expansion of the free energy in terms
of the relevant order parameter. This observation
bears comment in the light of the well-known incon-
sistencies" "inherent in the Landau theory. The major
approximation made in Sec. II A has been the neglect
of terms of order (E/J)'. If our perturbation series for
F in powers of E/J converges Lsee Eq. (5)), our
treatment becomes exact as E —+0. In the following
paragraph we shall attempt to estimate the tempera-
ture interval for given E, for which our treatment is
valid.

As is well known, "the Landau theory is not valid if the
correlation function g (r —r') =(Lp(r) —(p))LIt (r') —(p)))
for the order parameter P(r) is comparable to or larger
than (P)' for distances ~r r'~ &—$, where $(T) is the
coherence length. We shall attempt to estimate $,(T)
for our model, where the subscript r refers to the
rotational transition.

The free-energy coupling adjacent spins is propor-
tional to the exchange energy. We adopt a classical
continuum model for our system and consider the case
of nearest-neighbor interactions. It then follows that
the increase in energy due to inhomogeneities in 8 can
be written as D[V0(r) Ve(r)), where D=a'sJ„„S'.
Here a is the lattice parameter, J„„is the nearest-
neighbor exchange coupling, and e, a factor of the order
of 1, depends on the type of lattice.

The standard result" for the correlation length is

where f(e) is given in (15) and represents the effect of
the anisotropy energy. In Fig. 7 we plot 1/$, for the
indicated choice of eJ„„S',E~, E2, and E4. It should
be noted that even far from Ti and Ts, f, is a few
hundred lattice parameters. This is essentially due to
the large factor (J„„/E)'I' which appears in (26) on
substituting for D and rI'J/80'. By comparison, far
from the Curie temperature, $ for the usual ferro-
magnetic-paramagnetic transition is a few angstroms. "

If, in the critical region,

(the subscript r refers to the rotational transition) and
if AC„ is the specific-heat jump at T„, the Landau
theory is validss for values

t
T T„I/T„—satisfying

~

T—T„t/T„& (1/32'') (ks/d, C„$&„')'. (28)

Using the above values of J„„,E~, E2, and E4, we
find from (24) and (26)—(28) that the Landau ex-
pansion will be valid for

~

T T„t/T„& 10—'. For smaller
values of

~

T T„I /T, our—solution is possibly not valid.
In this region it might be invalid to limit the expansion
(5) to first order in E/J, though it is dificult (especially
in the classical limit) to understand the origin of such
a breakdown.

As E —+0, the forces appropriate to the spin re-
orientation become infinitely long ranged, and the
Landau theory is valid everywhere. In practice, since
E/J is extremely small (~10 ' for Fe'+), any possible
deviations from the classical critical exponents would
be virtually undetectable. Experimental evidence on
other displacive-type phase transitions~ ~ '4 " does,
in fact, confirm the applicability of the classical Landau
exponents.

In conclusion, we would like to mention that it
should be possible to consider the easy-axis reorienta-
tion using a spin-wave approximation. Indeed, some
easy-axis reorientations in the orthoferrites occur at
rather low temperatures, where the spin-wave formalism
would be appropriate. The thermodynamic properties
of displacive phase transitions are related to instabilities
arising in collective modes of the system, and thus we
would expect the frequency of a k =0 magnon mode to
approach zero at the easy-axis transition temperature.
In a similar manner the occurrence of ferroelectricity
in perovskite-type crystals such as BaTi03 has been

0.00 .IO

T Tc

I

.40 .50

correlated" with the existence of a zero-wave-number
optical-phonon mode having an anom alously low
frequency.
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