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» this work a theory of exchange in crystalline 'He is developed. A spin Hamiltonian is deduced and
its matrix elements calculated by cluster-expansion methods. A Heisenberg form of the spin Hamiltonian
is found adequate, but with the customary exchange integral replaced by an exchange operator, which has
matrix elements in phonon space. The diagonal elements of the exchange operator are used to derive an
expression for the exchange frequency which depends explicitly on the phonon spectrum of the crystal
and on the short-range (hard-core) correlations among particles. Simple arguments are used to show that
this expression gives the two outstanding features of exchange in crystalline He, viz. , that the exchange
frequency increases exponentially as the lattice constant increases and that it is antiferromagnetic. The
density and the temperature dependence of the exchange frequency are calculated using a phonon spectrum
and short-range correlation function obtained in a self-consistent fashion from a variational treatment.
Various approximations to the phonon spectrum and the short-range correlation function are used in
the calculation of exchange frequency, and the results compared. For example, it is found that the correct
form of the short-range correlation function for small interparticle distance and the anisotropy of the
pair-distribution function must be considered for good agreement with experimentally deduced results.

I. INTRODUCTION

ECAUSE of their small mass and the weakness of
their van der Waals interaction, the isotopes of

helium have a relatively large zero-point energy. They
can be solidified only under pressure even at zero tem-
perature' and the rms deviation in the crystalline phase
is about 30% of the equilibrium interatomic distance.
One effect of these large zero-point oscillations is that
there is an unusually large probability for two atoms to
exchange lattice sites. ' This exchange can be detected
in 'He since these atoms have a nuclear spin —,'.

The exchange interaction energy in crystalline 'He
has been measured to be several orders of magnitude
greater than the dipole-dipole interaction energy of the
nuclear spins. ' ~ This fact makes crystalline 'He unique
in nuclear magnetic phenomena. For example, it is
expected that the nuclear spins will order at a tempera-
ture of about 1 m K for low densities of the solid. At
low temperatures, thermodynamic properties such as
specific heat, thermal expansion coefficient, and the
melting curve are strongly affected by the ordering of
the nuclear spins. Thus for an exchange energy of
1 m K the thermal expansion coefficient is expected to
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vanish at T 0.20 K and the melting curve is expected'
to have an inQexion point at about 10.5 m K. In fact,
the slope of the melting curve has been used' to measure
the exchange energy.

The exchange phenomenon also gives rise to some
unusual features in nuclear spin-lattice relaxation' ' ' in

crystalline 'He, the most notable being the existence of
an exchange bath' 9 in addition to the usual Zeeman and
lattice baths. Measurements of spin-lattice relaxation
times have also been used to deduce the exchange

energy. '4 ' The above methods give only the absolute
magnitude of the exchange energy. Direct susceptibility
measurements can yield both the sign and magnitude of
exchange energy. They have been carried out, ' ""but
the not with sufficient accuracy to indicate unambiguous
deviations from Curie-law behavior.

An adequate theory for the phenomenon of exchange
in crystalline 'He can only be built upon an adequate
theory of the lattice dynamics of the system. Because of
the aforementioned large zero-point energy, it turns out
that the traditional theory of lattice dynamics" is

inapplicable to solid 'He. In the past few years, a theory
for such systems has emerged. " "In the present work,
we extend this theory to include the effects of the sym-
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metry of the wave function under permutation of
particles. Since the effects of exchange are small, the
exchange energy being several orders of magnitude
lower than the lattice energy, we treat the requirements
of antisymmetrization as a small correction. Further,
we treat only pair exchanges since we believe, on
physical grounds, that these are the most important.
The result is that one obtains an effective Hamiltonian
II which operates on the unsymmetrized wave func-
tions, i.e., given the usual lattice Hamiltonian Hl, ,

II=HI.+Ps,
where Hq is the Heisenberg Hamiltonian

(1.2)

and I, is the spin operator for particle i and g,; is an
operator"" referred to as the exchange operator which
has matrix elements in phonon space. The introduction
of an exchange operator is essential, because we are
considering the requirements of symmetry on a sta-
tistical system with a quasicontinuum of eigenstates.
The exchange frequency for the particles at the sites i
and j is the statistical average of the matrix elements
of the operator g;;.

The plan of the paper is the following: In Sec. II, we
give a summary of the existing theory of the lattice
dynamics of solid helium. We discuss here the treatment
of both the long-range and the short-range correlations
in the crystal. In Sec. III, we extend the above theory
to include eftects of symmetry of the particles and
deduce an effective spin Hamiltonian. Further, we
calculate the matrix elements of the spin Hamiltonian

by cluster-expansion methods that are presented in
Appendix A. In Sec. IV, we derive an expression for the
exchange frequency using the matrix elements derived
in Sec. III. We also qualitatively discuss the physical
features of exchange and show that (i) in solid 'He
exchange leads to an antiferromagnetic alignment of
spins and (ii) the exchange frequency increases as the
nearest-neighbor distance in the solid increases. The
details of the calculations on which the results of Sec. IV
are based are given in Appendix B.In Sec. V, we present
results of various calculations of the exchange frequency
based on variational calculation of phonon frequency
and the short-range correlation functions. We compare
them with experimental results and give a physical
discussion of the difference between various theoretical
results due to the approximations involved. In Appendix
C, we discuss various approximations used in this work. .

The principal results of this work have been presented

briefly earlier. "
"D.J. Thouless, Proc. Phys. Soc. (London) 86, 893 (1965).

L. H. Nosanow and C. M. Varma, Phys. Rev. Letters 20, 912
(1968); Atomic Energy Commission Report COO-1569-18, 1968
(unpublished).

Fo(r) =II f(r*), (2.2)

with the rest of the F„(r) being determined, in principle,
by an orthogonalization procedure. In this formulation
rp„(r) takes into account the long-range correlations and
the symmetry of the lattice and F (r) takes into account
the short-range correlations. The energy of the state n
is assumed to have the harmonic oscillator form

~-=h P (n~~+~)~~), (2.3)

The frequencies ~~q, polarization vectors ek), , and the
function f(r;;) are taken to be variational parameters
with the restriction that f(r, ,) —+ 1 rapidly when r;, &R
(8 being the nearest-neighbor distance). We are
interested in the regime T((O'D, 22 for which only
small n are occupied, in which case we expect that the
short-range correlations may be treated adequately by
a cluster expansion since this method works well
for T=o."

We now calculate the free energy as a function of the
variational parameters. In the calculation of the
entropy, we neglect the contribution due to the short-

~' Crystalline helium exists only for T«OD at low pressure.

II. LATTICE DYNAMICS OF QUANTUM CRYSTALS

In this section we summarize the recently developed
theory'3 ' of the lattice dynamics of qluetum crystals
(e.g. , crystalline helium and hydrogen). There are
several special problems in the lattice dynamical
theories of such crystals. In the first place, one may not
expand the potential in powers of deviations from
equilibrium, retain only the first few terms, and then
obtain phonons through the usual normal mode trans-
formation. Rather, one must obtain the elementary
excitations of the system by a partial summation of the
a@hole series. Secondly, due to their large excursions, the
particles "see" the hard-core of their neighbors and of
course avoid it. The dynamics of this "avoidance, " or,
in other words, the short-range correlations, must be an
integral part of the theory.

Here we extend in a straightforward manner one form
of the existing zero-temperature theory" to finite tem-
peratures which are small compared to the Debye
temperature and also point out the deficiencies of the
theory and their bearing on the calculations of the
exchange energy. In essence, the theory consists of a
variational calculation of the free energy using a com-
plete set of trial function states, which are chosen to
have the form

P,(r) = ~„(r)F„(r), (2 1)

where I' stands for the set of coordinates of all the
particles and &p„(r) is the wave function of a harmonic
crystal in the state n, n standing for the set of occupa-
tion numbers of all the phonons of wave vector k and
polarization k Further, Fo(r) is chosen to be of the form
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range correlations (as is justified in Appendix C). The
entropy then is simply that for a system of harmonic
oscillators, i.e.,

this problem is to assume

f(r) e xg —(ri (2 9)

g = —P P Lln(2 sinh(-', Pleiad, &,))
—(-,'pa, ,) cot (,'pa, ,)). (2.4)

To calculate the internal energy, the trial density
matrix

~(r )=Re '"4-(r)4-(") dr P„'(r)

is approximated by

p(r, r')~Pe exalt„(r)P (r') Pe eea dr It„'(r). (2.5)

vrhere

Here, the brackets indicate a thermal average, f'(r, ;)v(r;;)
is the effective nonsingular potential" and

8(r,,) =v(r;, ) —(0'/2m) 7' lnf(r, ,) . (2.7)

The free energy may now be minimized with respect
to co~q and 6k/ ~ The procedure at finite temperatures is
identical to that at T=0"and yields the self-consistency
condition

82
—

Q '( )&( ) —Q( ), (2 8)
87'F87 P

where z is any lattice vector. A similar procedure has
been applied to treat the 6nite-temperature properties
of crystalline neon and argon by Koehler, Gillis, and
Werthamer. "~

Now we brieQy discuss the treatment for the short-
range correlations in quantum crystals. The exchange
frequency depends strongly on the short-range correla-
tion function. A first-principle solution of the problem
has not yet proved possible. The simplest approach" to

~2'N. S. Gillis, N. R. Werthamer, and T. R. Koehler, Phys.
Rev. 165, 951 (1967).

The validity of this approximation is discussed in
Appendix C. If one now uses the partial integration
technique derived in Appendix 81(iv) and retains the
first two terms of the cluster expansion for short-range
correlations, one finds

&=-', 0 p ~kx coth(s&p~k~)+2 L~(R6)/Q(RV) j (2 6)
k, X

with i1(r) =(o/r)'s —(o/r)' and use cluster-expansion
techniques. This approach gives reasonable values for
the energy and good convergence for the cluster ex-
pansion. "However, for small r, the form (2.9) for f(r)
is incorrect; the correct form for a Lenard-Jones
potential being

f(r)-e '" ',
so that (2.9) gives values for the pair-distribution func-
tion which are too small for r&cr and therefore under-
estimates the exchange frequency.

A better approach to the problem is the determination
of f(r) for small r through the derivation of a differential
equation for f(r) obtained by varying the energy with
respect to f(r) Detai. ls ot this method will be given in
a forthcoming paper by Mullin, Nosanow, and
Steinback. 24 This method yields the correct behavior
of f(r) for r&o..

III. SPIN HAMILTONIAN FOR
CRYSTALLINE 'He

In this section, we discuss the general form of the
spin HamiltoIiian for crystalline 'He and derive its
matrix elements by cluster-expansion methods. In
effect, we extend the theory given in Sec. II to include
effects of the symmetry requirements on the wave func-
tion under permutation of particles. It is important to
realize that these symmetry requirements play a part
only if there is an overlap of the wave functions of
individual particles. Thus, if the effective crystal
potential were truly infinite at, say, the surface of the
Wigner-Seitz cell around each particle, the question of
symmetry under permutations would not arise. Since
the potential at the Wigner-Seitz surface is very large
even in crystalline helium, the overlap is small and hence
the effects of symmetry may be treated as a small
perturbation.

It is well known" that the effect of the requirement
of antisymmetrization of the wave function with respect
to permutations of the particles can be expressed in
terms of an effective Hamiltonian

O=Hr, +IIe,
'

which operates on the space of unsymmetrized wave
functions. Here III, is the actual Hamiltonian of the
system (the lattice Hamiltonian in our case) and He, the
spin Hamiltonian, takes care of the exchange effects. In
what follows, we consider only pair exchanges, since we
expect them to be dominant for T«O~ri. This assump-

"J.H. Hetherington, W. J. Mullin, and L. H. Nosanow, Phys.
Rev. 154, 175 (1967).

'4 W. J. Mullin, L. H. Nosanow, and P. M. Steinback (un-
published)."C. Herring, in 3fagnetism, edited by G. Rado and H. Suhl
iAcademic Press Inc. , New York, 1968), Vol. II.
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tion seems plausible because the exchange frequency is
so small and for T((O~n the pair distribution vanishes
very rapidly as the interparticle distance decreases
below r—0-. The latter argument is related to Herring's
criterion" for the dominance of pair exchanges of
electrons in atomic systems. In a crystal, the motion of
the particles and therefore the overlap of the wave
functions depends upon the state of the whole system n.
Therefore the exchange integral for any pair of particles
also depends on n. Since the Heisenberg form for II8
follows" if we consider only pair exchanges, we may
write

&s= —k E 8'jI.-&~
i&j'

(3.2)

where I; is the nuclear spin operator for the ith particle,
and g;j is an operator (referred to as the exchange
operator" ") which has matrix elements in the phonon
space. Thus (nip, , ln) is the exchange integral for the
pair (i,j) for the state n. The exchange frequency of the
pair (i,j), J;; is the thermal average of such matrix
elements and. is therefore given by

J' =Tr(j8',), (3.3)

where p is the phonon density matrix. Thus J;;depends
only on the diagonal elements of g;j, whereas the off-
diagonal elements of g;j contribute to spin-lattice
relaxation in crystalline 'He. They are important here
in contrast to the problem of electron exchange in
dielectrics, since the eigenvalues of III, form a quasi-
continuum, whereas in the latter case the eigenvalues
are separated by several orders of magnitude greater
than the exchange energy.

The Weiss constant in the Curie-Weiss law is propor-
tional to J,, With the definition of (3.2), a negative
value of J;;would give an antiferromagnetic alignment
of spins, whereas a positive value would give a ferro-
magnetic alignment.

The method of obtaining matrix elements of g;j will
now be discussed. The totally antisymmetric wave
function

X.=89"() (3.4)

is considered, where 6, is the antisymmetrization
operator, and P is the product of the spin functions of
all the particles. In Appendix A, the matrix elements
E n= (Xm l

B0
l
X,) are —calculated by a cluster-expansion

scheme which can be used to treat o6-diagonal as well
as diagonal elements of the Hamiltonian. The cluster
expansion is performed only with respect to the short-
range correlations and the antisymmetrization, but not
with respect to the phonons. Retaining only the one-
and two-body terms of the cluster expansion, one
obtains

where
(~')-—= (v -,&'v.), (3.6)

(A ij+)mn= [&pmfijpHij fij (1+&ij)pn7 y

(Dij+)mn=—[pm~fij (1+&jj)wn7 y

(3.8)

(3.9)

and B, and 8;; are, respectively, the one- and two-
particle Hamiltonians and E';; is the permutation
operator for the pair (i,j). Since the exchange integral
for the pair (i,j) is defined as twice the difference be-
tween the singlet and triplet states, it is natural to write

(e.,)-—=4[(&'; )--(&';) .7. (3.10)

This expression involves I';;p„ in an essential way.
Because q„ involves the normal modes which depend
on coordinates of all the particles, P;,p„may be looked
upon as a phonon wave function in which the forces
between the pair (ij ) and all the neighboring particles
are altered. This alteration decreases as one moves
away from the pair (ij ) Fur. ther, the exchange
operator when written in coordinate space, i.e.,
(rig, jlr') is nondiagonal and cannot be approximated
by any form depending only on the coordinates of (i,j).
This fact has ao. important bearing on the spin-lattice
relaxation in solid 'He.

IV. DERIVATION OP EXCHANGE FREQUENCY

In this section, we derive an expression for the ex-
change frequency using the matrix elements of g,j
given in Sec. III. The exchange frequency J,, is given
by (3.3). Using (3.7) and (3.10), we have

(A ij )nn (jVjj )nnJv=42 j-
-(D'")- (D' )-- (4.1)

which, using the low-temperature approximation
discussed. in Appendix C, may be written

~' =4[@"')/(D")—9' )/(D', )7 (4 2)

Using Eqs. (4.8) and (4.9) for (D,,+) and (jV,,+) and the
expressions derived in Appendix 3 for (H,,) and
(I'@H;,), after some cancellation we obtain

~.,=4(f', )- [&f.,"-.,).+(~ /2 )
X(fj )n(TrF, j—TrG;, —2Rj F,;.R;;)7, (4.3)

where for any arbitrary function g(r;, )

(&")-—= (jV"') ./(D")-'"(D", )-'", (3 7)

where the plus sign is associated with the singlet spin
state of the pair (ij ), the minus sign with'the triplet
state, and

&-=2(&')

+Z [(&")--(&')-—(~j)-7, (3 5)

(g")=~ "'IF&i'" «eg(r')

Xexp[ —(r;;—R,;) ~ F;,' (r;,—R;,)7 (4.4)
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{g,,),=—~ '"~F,, ~'"exp( R—ij Fij R'ij)

on intuitive grounds. For simplicity, we may now use
the Einstein approximation to evaluate (5.2), so that
for nearest neighbors

X dr, , g(r, ,) exp( —r,,"G,,"r,,) . (4.5) (2A 3) it2

dr r~f (r) e "-. (5.3)

where we have assumed a Bravais lattice. In the deriva-
tion of (4.3), the term (P,,f,,')/(f, ,') has been neglected
because it is small for T((On.

Equation (4.3) for J,, includes the symmetry of the
lattice through the matrices F.;; and G,, and includes
the short-range correlations through the function f(r).
If we consider the limit T=O and use the Einstein
approximation for the phonon spectrum, we have
F;;=(-,'A) I =G;;, where I is the identity matrix; in this
case (4.3) reduces to the expression derived by Nosanow
and Mullin '6

V. PHYSICAL PICTURE OF EXCHANGE

Before we present the results of our numerical calcu-
lations of J;;, we wish to recapitulate the basic ideas of
the preceding analysis and extract the qualitative
physical results through simple physical arguments. '7

The basic approach is to focus attention on two particles
i and j and consider their motion in the field of the rest
of the particles. The exchange frequency is proportional
to the energy difference between the singlet and triplet
states which is calculated by cluster-expansion methods.

At T=O, the exchange frequency is (0~ il;;~0), and

by (3.10) /neglecting terms (1—(f,io))' and S,so as
small compared to unity]

8J" LP' (wpf')»' (—f* wp)3"
~' L«f' »' («f'i) j, (5 1)

where
S', =LP' (gof'), wof';j ~

It must now be noted that f,imp is not an eigenfunction
of H,, ; if it were, J;;would be zero by (5.1). Since both
terms of (5.1) involve f,,pp and P,,(f,, q p), we may write

J,, S;, , (5.2)

"L.H. Nosanow and W. J. Mullin, Phys. Rev. Letters 14, 133
(1965).

27ln this discussion, an error made in Ref. (21), viz. , the
omission of the second term of (5.1), has been rectified. This
accounts for the difference in Eq. (5.5) and Kq. (17) of Ref. (21)
and allows the substitution of the better approximation (5.4) for
the approximation Hf=0 used therein. Further, Eqs. (17) and
(18) of Ref. (21) are too small by a factor of 2.

Further, F,; and G;, are 3X3 matrices with elements
given by

(F;,—') e
——(2A/nips) po&q oi,ei, (1—cosk R;,)

kX

Xoipx ' coth(-,'PIioii ),), (4.6)

(G;,)~e ——(in/2hlV) Qopx~oi, pi, (1—cosk Rij)
kX

Xiopi coth(~Phppi, x), (4.7)

From (5.3) we deduce that
~ J~ increases in an ex-

ponential way as E increases. Since A decreases as 8
increases such that AE' is approximately constant, the
decrease in 3 gives more weight to the region in the
integral in (5.3) in which f (r) is larger. Further, in this
region fo(r) is well represented by exp(function of r), so
that the increase in J is exponential. In physical terms
(5.3) implies that the increase in J is due to the fact
that, for larger E., there is more "room" for particles to
get around one another.

We may consider (5.1) again to place the above
argument on a somewhat firmer footing and also
deduce the sign of J,, by taking into account the proper-
ties of the short-range correlation function, which is
determined by the interatomic potential. It is already
obvious from (5.3) that the important region of f(r) for
exchange is r&sr In thi.s region f(r) is essentially the
wave function of two helium atoms in vacuum so that
we have

H, ,f(r) of(r) .

To use this result, we write (5.1) as

(5.4)

sJ'i LPii (&pofi;)—, poK;fii)
+(A'/2m)(L f;,V,(P,,p ),pf,; Vpp)

+If' VJ(P'2 v'p) if'j vj I'p j')
Rj(v ofiii «&ii'fii)

—5;;(A'/2m) L(f;,V,po„f;;V;po,)
+(f;;V;o p,f;;V;«)$. (5.5)

Now, by (5.4) the first and third terms of (5.5) approxi-
mately cancel. 2' Further, after some manipulation and
use of the Einstein approximation, we find

'J~ (O'A/4-rn)(A—/2ir)'"e " '"

dr f'(r)e ""~'/~+A(R' —ro)j. (5.6)

VI. RESULTS

In this section we present the results of our numerical
calculations of the nearest-neighbor exchange fre-

The argument regarding the density dependence of J is
the same as that given for (5.3). In addition, (5.6) shows
that J&0 because the integrand is appreciable only
for r&o &E..

In summary then, it follows from simple physical
arguments that (1) J&0 (i.e., antiferrornagnetic);
(2)

~
J~ increases as R increases (i.e., as the density

decreases).
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quency. We do this by evaluating (4.3) under the
approximations discussed in Appendix C.

The results of various calculations and the experi-
mental results are shown in Figs. 1 and 2. The result"
labeled MN was obtained with an Einstein spectrum
for the phonons together with a short-range correlation
of the form (2.9). For NVI and NVII the same form of
the short-range correlation function is used but the
one- and two-branch approximations (see Appendix C)
are used for the phonon spectrum. The two-branch
approximation takes into account, in an approximate
fashion, the anisotropy of the wave function. The results
show that the inclusion of a phonon spectrum is im-
portant both for the magnitude and the density de-
pendence of the exchange frequency. Further, the
proper treatment of the anisotropy of the wave function
increases the magnitude of the exchange frequency,
although the density dependence remains essentially
unchanged.

AVe ascribe the disagreement of the magnitude and
the detailed density dependence of NVII to the in-
adequacy of a short-range correlation function of the
form (2.9). As discussed earlier, (2.9) is too small for
r&cr and overemphasizes the hard core, thus reducing
exchange.

10—
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V. The experimental curves (dashed lines) are the same as in
Fig. 1 and the theoretical curves (solid lines) are described in the
text in Sec. VI.
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Fio. 1. Nearest-neighbor exchange frequency
~
J

~

in bcc 'He as
a function of the nearest-neighbor distance R or the molar volume
V. The dashed curves are the results deduced from experiment
and the solid curves are results of theoretical calculations at T=0.
RHM (Ref. 6) deduced

~
J I

from NMR measurements, while PA
LM. F. Panczyk and E. D. Adams (private communication) j
deduced it from (dP jdT)~ measurements. The theoretical curves
are described in the text in Sec. VI.

In Fig. 2, HMN labels the results of an earlier calcu-
lation" using an Einstein spectrum for the phonons
and with a short-range correlation of the form (2.9)
calculated, however, with the inclusion of three-body
clusters in the evaluation of the variational parameter.
A comparison with MN of Fig. 1 shows that the density
dependence is improved considerably by a better short-
range correlation function. The curve MNS reproduces
results'4 of a calculation with an Einstein spectrum and
with the small r region of the short-range correlation
function evaluated through a differential equation, as
discussed in Sec. II. It is clear that the "softer" short-
range correlation is important in understanding the
Inagnitude of the exchange frequency.

From the results given in Figs. 1 and 2, it is evident
that a calculation of the exchange frequency depends
in an important way on the treatment of the short-range
correlations and the phonon excitations of the crystal.
We have also calculated the temperature dependence
of J;; in the one branch approximation. In this approxi-
mation, we find that

~
J,, ~

increases at each density and
at low temperatures has the form

J,,(T)=J;,(Q)$1+8(T/On)'$'.

The results for 8 are shown in Table I. These results
may be compared with those of Thouless, who obtained
8~4QQQ at R =3.75 A from phenomenological considera-
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3.55
3.65
3.75

TABLE I. Results for b.

OD('K)

32.6
28.8
25.6

302
179
81

and the two-particle cluster term (E;,+) „by

E.„&'i(i,j)
t gm$ijsfij&ij fij &ij (pn(ij)]

((pmkiiqfij +ij(&pm$ij)]fgn$ijyfij +ij(pn$ij)])

tions. We might look upon the increase of
~
j;, t

with
temperature as due to the broadening of the pair
distribution function.

(pm~fij&ij fij (1~&ij)pn]

(t:~-,f"(1+.I'v) v -]L~-,f"(1~~') v -]}"'
—= (E')-..+(E )-,-+(E")-,-, (A3)
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APPENDIX A: CLUSTER EXPANSION OF
OFF-DIAGONAL ELEMENTS

In the theory of crystalline helium, the cluster ex-
pansion has been used extensively. "The usual method
cannot be used, however, to cluster-expand the oG-

diagonal elements of the Hamiltonian. Here, a method
of cluster expanding with respect to short-range corre-
lations and the antisymmetrization of the wave function
is devised, which can be used for any matrix element
and which for diagonal elements reduces to the standard
result.

The matrix element

(x,Ij'x„)
E &~'(1, ,AT) =-

(x,x )'i'(x„,x„)'i'

is considered, where H, I, f, and $ are defined in
Sec. III. The one-particle cluster term (E,),„is defined
by

(v-,&*a -)E,„&'&(i)= =(E;),„, (A2)
(Pmq Pm) ( Pn& 'Pn)

where the plus sign is associated with the singlet state of
the pair (i,j) and the minus with the triplet state, and
where p, f,,', I'... ll, , and H;, are defined in Secs. II
and III. Continuing in a similar fashion, one can dehne
the general cluster term. Using (A3), the first two terms
in the cluster expansion for E,,&+&(1, ,A) are

E &~&(1, ,N) =g(E,)

+2 LE,-"'(i,j)—(E')-,-—(E,)-,-]+, (A4)

where

and

(~ ,&'~-)
(E,.)

L(~-,~-) (v -,~-)]'"
(AT,,+)

(i)(i j)=
P(Di, +)mm(Di;+) nn]'"

(&'i') =L~ f' »'~f'—(1~I' )v.],
(Dij+)mm=—$pmqfij (1&&ig)&pm] ~'

(A5)

(A6)

(A I)

(A8)

Equation (A4) is used in Sec. III to derive matrix
elements of the exchange operator.

1. Some Useful Results

i Normal Coo.rdiriate Trarisforrriation

The variables in the particle coordinate space are
taken to be u, =—(r; R, ), where n denotes Ca—rtesian
direction and r; is the instantaneous position of particle
i, whose equilibrium position is R;. In normal coordinate
space the variables taken to be real are q&z, where k is
the quasicontinuum of wave vectors, and X denotes
polarization. The transformation between I, and q~q

APPENDIX B' CALCULATION OF
EXCHANGE FREQUENCY

The quantities needed for the evaluation of the
exchange frequency J;; will be calculated here. Since
they involve a rather long calculation, it is performed
in steps. In Sec. 81 some useful results are derived or
mentioned. In B2, J,; is derived from cluster expansion
methods using certain averages calculated in 33.
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can be written in the form" (in this section 4 =1)
1/2

u; = p ek, k Q.(k R,)q.kk„, (81)
mg k, X,a=1,2

where ekq is a polariza ion vector and the Brillouin
zone has been split into two equal parts by introducing
0-., the bar over the summation indicates that only half
the Brillouin zone must be summed over, and

Q,(x) = cosx, for o = 1
= —slnx) fol 0 =2.

The polarization vectors of a Bravais lattice may be
chosen to be real and have the property that ek)

'. Using this property, one may write the
inverse transformation of (C1):

t 2m''~3
qkk. =~

~ Q ekk~Q. (k R,)u, .
(1Vi

ii. Phoriom Density Matrix

phonon density matrix

p*(q, q') =(1/~)Z "P'* -(q) jv-(q') (811)

be evaluated. The result for p (q, q') can be obtained by
noting that F,,y„(q) is the same function of the set q
that q, (q) is of the set q, where the set q is obtained
by the transformation
A

gk) o =Pijgkhe=(2m/s)'tsar

C
Q.(k R;)(r;—R;)

+Q.(k R;)(r;—R,) + P Q.(k R&)fu(

=qkk +(2m/1V)'" p ekk LQ.(k R,)

—Q.(k R,)j(r,—r;) . (812)
Thus, on substituting q for q in (86), one obtains
for p, (q, q'),

p.(q, q') = II p-(qkk. ,qkk. '),
k, )k, o.

(813)The phonon density matrix in normal coordinate
space,

whereI
p(q, q') =-2 e "'3-(q)3-(q'),

g n

is considered, where n stands for the set of all phonon
occupation numbers and q for the set of all normal
coordinates; q„ is the wave function of harmonic
oscillators in the nth state and

(83) *
Pk, k(qkkaqkkr )

(pkklrr) expE 3 Ek&(q»~ +qkkr )
—snkk(qkk. —qkk. ')'$. (814)

The diagonal element in (814) can be written

.(q q) =LII(k-/ )'"j p( —l(Q+Q +Q )j (815)
Z=p e

—PEn (84)
k, X

It is well known that p(q, q') is a product of Gaussians:

p(q «') = II pk, k(q». q».'),
k, ),o.

with

Pk, k(qkk. ,qkk. ') = (tkk/~) '"
Xexp) —4k(qkk'+qkk") —srtkk(qkk —qkk')'j, (86)

where

Q = 2 4kqkk. ',
k, k, o

Qs= 2 kkkqk4P)
k, h, a

Qs 2 rtkk(qkk~ qkke)
k, P, o

(816)

(817)

Eked coke tanh(3P~kk)

'gkk =cekk csch(Pcokk) .
The diagonal element p(q, q) can be written as

p(q, q) =L II ((»/~)"'je-',
k, h, a

where
Q Q )kkqkkr ~3

k, h, tr

=(4m/E)g Q(1—cosk R)ekk ekekrtkkr re, (818)
a, P k, X

(88) where
R=R,—R;

and
(89) r=x;—r;.

Thus Qs depends only on the coordinates of particles i
(8]o) and j.

iii. "Exchanged" Photon Derisity Matrix

The expression (3.5) for J,; involves the lattice
average g„exp(—PE„)(q ~,H;;F;;p„). It is essential
for the evaluation of such an average that the exchanged

ie. Generalisatior3 of the Jachsor3 Feenberg 3fethod-
Here a transformation originally derived by Jackson

and Feenberg" will be generalized. It has been used

"H. W. Jackson and E. Feenberg, Ann. Phys. (N. Y.) 15, 266
(&w&).
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work. The integralthe present wor .several times in

Consider the integral
r r' (819)I= dr dr'8 r —r r« ~ r r—)f(r )V'Lf(r)p(r r )]

I= dq exp( —q M q),

KARMANpsA &p ~vH

(828)

ntegr g

r r' . (820I= dr dr'V„P(r —r' r—')f(r')3 V.Lf(r)p(r;

a lacian acting on r.pe
(819) by parts wi rI atin e elements, w

'
hich isc or with

h
' t as q (q q„,'h dcolumn v

Further, M is an z

(820) and integrating—' = —V .8(r —r') inUsing V„8(r—' =—
b rts with respect to r,bypar s

I= — dr rdr'b(r —r') V„

(")V.f:f(r)p(r, r )3) .r' . (821)

arts with respectintegrating (820) by p~rts wiAlternatively, integrating
to r, one finds

-M.. Myy-
M= (829)

I=~"~&'
f
M

f

—l
f
M —'„

f

—l dq.

e — M '„) 'q, ], (830)Xexpf —q, (M '„—. q, ,

y

e d )&e matrices,e an e,„and M» are e, )&eyy

. Then it isrespective y.

r'V, 'Lb(r —r') f(r)f(r p r, rI= dr dr V'„ wher ' '
defined by(822) wher

r'V', —' r') p(r, r')]. (823)dr dr'V'„r'V Pb(r r') f(r)f—(r p r, r

-M, M „--M—'. M —'.„-
(831)

M —' 0 IMy+ Myy M yz yy

I")f(r) V"'Ef—(")p(r;I= dr dr'b(r —r r „' ' r r

ar s res ect to r andarts twice with respec
ect to r' one ge s sect o, t successively(823) with respect o

(824)

be shown thatFurther, it can be s

—M.„—„„(832)—M.„M—'„„M„,.
is the deviation of the z

'
ni it is possible tl f m equilibrium, iparticle rom

' '
m i

r, r') 3) (825)—') V.(f(r) V"Lf(")p(r, rdr dr'b(r —r
—P;,.

P; —P;,—
'v

)
P;,

(833)

and (825) and dividing821), (824), andAdding (819), (
by 4, one finds

w

P,,—').p
——(2A/mS)Q eg&, eg ga P

(834)X 1—cosk Rq)a&I, x

ith elements give y"nb"a 3X3 matrix wit ehere P;;is a

—')(f(r') V„'Ef(r)p(r, r' 3I= dr dr'8(r —r'— r

r,r' —V„. (r') V„Lf(r)p(r, r') j)
(r) V"Lf(r') p(r, r.(f

ac e
'

26 and then regrouping( )' t ton h epo i
the b function and regro

ncies obtained fromonon frequencies oare the p o
formations.ilkthe matrix' by we-

2. a H,,) and (P,,H,,)2. Calculation of

The quantities

dr dr'f(r', ,)f(r;,) iI 8 rI, —r„«';) =(f. ')-' d

I= dr f'(r)p(r, r) V' lnf(r—
„—V'„'p r,r') . (827)r r') f(r') f(r)(V„—V'„.—'p r,r' .

4

v," p(r, r') (835)Xf —(Ii' m, ' v, p rr'/2 )(V"+VP)+~'~3p r,r'
and

dr dr'f (r',, r,,(I''II') =( "f )

r, r') (836)V,'+V )+i;,jp. r, r'XL
—(A,'/2m, ; . r, r
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are considered, where r stands for the set of coordinates With the exponent in p, (r,r ) in this form, it is easy to
of all the particles. see that the integration over r& (k/i j) in M; can be

One may employ integration formula (830) to get carried out by the Kohler formula to get

P'', ~',)=(f'. ) ' df"" .( ') M =7r '(f" ) 'l I, '~''2 dr, dr; dr,' dr

(f, 2) ' dr dr' g 8(rk r-') f—(r;,')f(r;;)
8m Io

&& L(~' —~'')'+(7~ —~ ')'jp*(r, r') (837) where

X8(r, r,')—5(r, r, ')—f(r,,)f(r,,')(V V'—)'

&&expL —~(x—z') C„(x—s')

-l'1...-'~-lQ 'j, (843)

The first integral is straightforward; it is denoted by
(I';,v,,) and is given by Eq. (4.5). The second integral
may be written (—A'/Sm)(M;+M, ), where M, denotes
the integral which has (V', —V,')' in the integrand. It is
clear that 3E,=M, . One may integrate in 3II; with
respect to all primed coordinates but r, ' to get

M =(f ')—' dr, dr, ' dr

F;, —F;,
—F,; F;,

and where F;, is a 3&(3 matrix with elements given
by (4.6). Next, the partial differentiation in (838) is
performed and the 8 function used to integrate over the
primed variables; the center-of-mass integration of
coordinates i and j is then performed to get

M =rr '~'(f ') '
~
F,, ~

"'D [exp( —R,,"F,,"R;,)]

kc„ c„
where C,,=C,;, C;;=C,, are 3&&3 matrices. Further,

pr, —R,qx=/
Kr, —R,i

(r; —R;)
kr, —R,

F„'= -', (x+z'),

)&8(r,—r, ')f'(r;, )LV —7''$'p (r,r'). (838)

In Eq. (813) for p, (r,r'), the exponent is 2 (Q+Q, '+Q3).
Transforming to coordinate space by (82) and with
some manipulation, one has

—,'(Q+Q, ') =-,'(x —z') C„(x—z')+q C q, (839)

where C is the 3E)&3E matrix of force constants and
C~. is the 6&(6 matrix:

&C dr, ,f'(r, ,) exp( —r,,"G,, r,,), (844)

D = —2 TrF —Tr(C, ,+C,,+4P,;+4P,;)
+4R F'R (845)

(H,,)= (vg)+(A'/2m) TrC;, . (847)

Since TrC, ; is the sum of the phonon frequencies, the
second term in (847) is the kinetic energy contribution
to (II;,).

and G,; is a 3&&3 matrix with elements

(G;,).p ———,'(C,,+4P;,—C;„—4P,;).p,

which may be expressed as in (4.7). Finally,

(P,,II,,) =(I',g,,) (A /4m)M—; (846.)

The quantity (H,,) is much easier to evaluate; the result
is merely quoted:

and y is the column vector containing all (rk —Rk),
kWi,j;as elements. With Eq. (818) for Qa, it is possible
to write

(x—z ) ' C*.' ( —z )+-'Q =-'(r. ' —s' ')

C+4P,; C+4P,, r,
(840)

C,,+4P,, C,,+4P, ; —s,,'

APPENDIX C: APPROXIMATIONS USED IN THE
SELF-CONSISTENT PHONON CALCULATION

Since the exchange integral is sensitive only to
averages over the phonon spectrum, it is not necessary
to do the calculation of the phonon spectrum exactly.
Ke have used the following two approximations for the
self-consistent phonon trial wave function.

(1) The "one-branch" approximation (OBA):
where r;, '=r;—r; s, =r,+r, ', and

(I ~i)as=(2m/&)2 rikk&kka &kl3ky
k, )

(841)

(P,,).p=(2m/1V)p cos(k R;;)gkkekka*&kg, . (842)
k, X

(2) The "two-branch" approximation (TBA):
longitudinal mode

~or~t, each transverse mode

ekk 0 /k, longitudinal mode.

(C1)

(C2)
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TABLE II. Calculations of the ground-state energy E0 for a
nearest-neighbor distance R=3.653.. Here EA and SCPA refer
to calculations using the Einstein approximation (Ref. 13) and
the self-consistent-phonon approximation (Ref. 17), respectively.

Approx

Eo (cal/mole) 11.7

OBA TBA SCPA

10.1 7.7 7.3

These equations together with the orthonormality
relation for a Bravais lattice,

P ekkaekXP ~aP 1 (C3)

define the approximations.
In both of these approximations, the matrix (F;,) p

of (4.6) is diagonal. In the OBA the results are

krrs P2
dk-

COp

(F' ')-p=~-p
SSp7l p

XL1—sin(kR, ,)/kR;;] coth(-', Phoik); (C4)

in the TBA they are

(F' ')-p=~-p
4~p7r o&a&A:m

dk(1 —cosk R;,)

Xlolkl ekla coth(sp~olkl)

+oik (1 ski ') c—oth(-', phlokl) j. (C5)

The virtue of the "two-branch" approximation is that
(F;; ') p has the correct form for nearest and next-
nearest neighbors. If the s a,xis is taken along R;;, the
matrix is diagonal with the z and y components equal.
In both approximations the analog of (2.8) can be

TABLE III. Calculations of the width parameters important to
the exchange integral calculation for the various approximations.
Here R is the nearest-neighbor distance in angstroms and V is the
volume in cm'/mole. The quantities Fll(Gll) and Ili(Gi) are the
components parallel and perpendicular to R, respectively. In the
EA, there is no distinction between Il and G; in the OBA there is
no distinction between parallel and perpendicular components.

~l r PJ Grr Gg

R V EA OBA TBA TBA OBA TBA TBA

3.45 19.0 0.864 0.993 0.973 0.847 0.935 1.000 0.867
3.55 20.7 0.794 0.895 0.878 0.767 0.843 0.884 0.768
3.65 22.5 0.719 0.801 0.787 0.669 0.755 0.786 0.685
3.75 24.5 0.649 0.718 0.705 0.618 0.676 0.703 0.613

obtained straightforwardly by operating on (2.8) with
(4x-) j''dQk and using (C1)—(C3).To apply these results
to calculations of exchange we need the matrix (G;,) p

defined by (4.7). The results are straightforward to
obtain and quite analogous to (C3) and (C4).

Typical numerical results obtained using these
approximations are given in Tables II and III along
with various comparisons to other calculations. In all
cases, the short-range correlations were treated using
the analytic form of Ref. 13. From Table II we see that
the TBA is almost as good as the SCPA in calculating
Ep, a quantity which also depends on an average over
the phonon spectrum. In Table III, we see how the
"width" parameters change as better approximations
are adopted (note that F„=std in the EA, to make a
comparison with earlier work). It is the difference
between F„(Gl,) and F,(Gi) which leads to all improve-
ments obtained from self-consistent calculations.

(rr')=2 p ""lr.(r)lr-(') dr lr „'-(r)

Now
5= —kp lnp,

and if we write f,;=1+x, then, on expanding the
logarithm, the contribution of the short-range correla-
tions to the entropy is 0((x'))(&1 for the f(r;;) used in
this work.

APPENDIX D: LOW-TEMPERATURE
APPROXIMATIONS

Ke shall now discuss the approximation leading to
(2.5), which is necessary because of the nonorthog-
onality of the set (2.1). Equation (2.5) is exact for
T=O, and it is a good approximation as long as
(0( f;is~0) (n~ f,is(n) for those excited states of im-
portance. For T(&O'z only low-lying excited states are
important and the choice of an f(r,,), which is nearly
unity for r;;&0., makes it likely that the above condition
is satisfied. In fact, our calculations have shown that
(fs)~(0~ f'~0) for T&(Oil, a result which further sup-
ports the use of this approximation. The above argu-
ment also supports the derivation of (4.2) from (4.1), so
long as overlap integrals between important excited
states are not large.

In Sec. II, we have taken the density matrix p for
the system to be that of a set of harmonic oscillators.
Thus we have neglected the contribution of the short-
range correlations to the entropy. The correct expression
for p is


