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Quasiclassical Methods in Spin Dynamics*
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We present an extension of the concept of the Wigner distribution to include spin. The results are then
used to indicate a method by which classical approximations to spin dynamics emerge naturally from the
exact quantum theory, and estimates of the accuracy of these classical approximations can be computed.

I. INTRODUCTION
" 'N recent years, a number of calculations have been
~ - performed by various authors' 7 in which spin
dynamics were treated. classically. These calculations
have been concerned with predicting magnetic prop-
erties of Inaterials. The use of classical spin dynamics
considerably simplified the computations over com-
parable computations using quantum dynamics. ' 4

The approximation involved in using classical spin
dynamics has been rather difFicult to evaluate. The
approximation is known to be valid for large spins. '
However, even when it is applied to spins of -', or 1,
classical theory seems to give quite reasonable results.

Here we present a computational technique in which
a classical approximation emerges quite naturally
from the exact quantum theory, and by which the
approximations made in using classical dynamics can
be accurately estimated. This technique is just an ex-
tension of the use of the Wigner distribution familiar
in computations involving position an'd momentum. ' "
The method can be generalized to arbitrary spin. How-
ever, for simplicity we consider here only spin —,.

II. SINGLE-PARTICLE SYSTEM

We define a Wigner distribution in terms of tI(t)
and a unit vector Q by

p„(e)=1+3d(t) a. (2)

The components of Q are also c numbers.
We can use this distribution function to compute the

expected values of any operator A(S) by finding an
appropriate Wigner equivalent of A(S). That is, we
need a function A„(Q) such that

1
da p„(a)A.(~) =TrD(t)A (S) .

4'
(3)

where ao and the components of a are c numbers.
If we take the Wigner equivalent to be

A„(a)=a,+-,'a a,
then a trivial calculation shows that (3) is satisfied.

Suppose we have another operator B(S), where

As was the case with D(t),we can write A(S) in
the form

A(S)=tip+a S,

B(S)=bp+b S (6)
In order to illustrate the general technique, we shall

first treat a single particle with spin s. The density then we can construct the Wigner equivalent of B(S)
matrix for this case can be written as in the same way,

D(t) =-', +d(g) S,
where hS is the spin angular momentum operator, and
the components of d(t) are c numbers.

B„(a)=bp+~b a.
We could also use (4) to compute the Wigner equivalent
of the product A (S)B(S)by noting that

A(S)B(S)=(apbp+ea b)+(-', iaXb+apb+bpa) S. (8)~ Work supported in part by the National Science Foundation.
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It is more convenient to note that there is a Groenewold
rule' which expresses the Wigner equivalent of the
product (A (S)B(S))„in terms of the Wigner equiva-
lents A„and B„.This rule turns out to be the following:

(A(S)B(S)) =A (&)GB (&),
where

G =&+il. 0XI.—I. l. , (9h)
435

and I. and I. are vector differential operators acting
to the left and right, respectively. The components of
AL and AI, are just the components of the orbital
angular momentum operators —ibr XV, where Q =r/r
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Q„GQ„=b„.+ie„. Q (10)

The proof of (9a) follows most easily when we note that The last terms in these equations are included to
account for spin-spin relaxation. Equations (17) give,
for Q, (t),

Of course p, , v, and n refer to Cartesian components and
is the totally antisymmetric tensor.

Consider the Heisenberg operator A(t) such that

Q, (t) =e ~'~'r'(Q cosQ)pt+Q„sinMpt),

cop =pB.

(18a)

(18b)
d i—A (t) = PHA—(t) —A (t)H].
dt

Then the Wigner equivalent A„(t) must satisfy

Vsing this result in (16) we have

(S,S,(t))r=~ (coscoot)e
—

I I +~i(Qz) e ~'~ r' sinopot, (19)

where

d—A„(t)=-PI„GA„(t)-A„(t)GH„]
dt A

(12a) (Q.)=— dQ p (D)Q, =2TrDS, .
4'

(2o)

= —(2/h)PI„L aXLA. (t)], (12b) Now we use (19) in (14) to obtain

where II„ is the Wigner equivalent of the Hamiltonian
a.

If we take H= —ApB S, then for Q(t) Eq. (8) gives

T2~"(~) =kt &(1—e'"") (1—(Q,))
1+(M —cop) T2

—e(t) = —p,BX@(t).
dt

(13) + (1+(Q,)) . (21)
1+(~+~0)

dt—e'"'(S,s, (t))r,
— 2~

(15)

and ( )r indicates a thermal average.
Using our earlier results, we can rewrite the thermal

average in (15) as

1
(S,s, (t)),=— dO p„(a)-,'LQ, GQ. (t)]

4x
(16)

Equation (13) can be thought of as a, restatement of the
Ehrenf est theorem.

We have now, however, the capability of using an

equation of the form of (13) and Eq. (9a) to compute the
Quctuations in the spin components.

Consider for example a system of spins with a mag-
netic 6eld 8 applied along the s axis. In a resonance
experiment the out-of-phase susceptibility is given by"

x"(a) =S„(&u)her 't(i1 ee"")—, (14)
where

The absorptive processes in resonance experiments are
given by the first term in (21). For high temperatures,
we can expand e&"" and approximate the average
(Q,) =0. Then the first part of (21) can be written in
the usual form

x"(~)=—'(&'p, 'pcs) T2/L1+ (~—+0)'2', 2] (22)

These results are meant only to illustrate the tech-
nique. They can be derived by other methods.

III. MANY-PARTICLE SYSTEMS

In this case, we take the spin angular momentum
operator for the jth particle to be hS;. The density
matrix for an S spin system can be written as

D(t) =2 &+ P P P p. . v& "~(t)
+=1 jl«' ' ' jn vl vn

XS;,„, S;„„„. (23)

pw(Qi ' 'Qg) =1+Q Q Q p
"1' ' '"n3&p'—+

and we recall tha, t there are no approximations;n (16) Then we deine the Wigner distribution as

To describe the time dependence of Q, (t), we will use

the Bloch equations" for t&0 and

(s,s.(t)),=(s.s, (—t) &,*, n=l j1«' ' ' jn v1 ~ ~ vn

XQ..., Q;„.„. (24)
d Q, (t)—Q, (t) =pBQ„(t)—

~2

d Q„(t)—Q„(t) = —tiBQ, (t)—
dt T&

'2 T. Izuyama, D. Kim, and R. Kubo, J. Phys. Soc. Japan 18,
1025 {1963).

» I'. Bloch, Phys. Rev. 70, 460 {1946).

(17b)
A (Si, . ..,S~) =ao+ P p Q g, ,

&=& j1« ~ jn v1 ~ vn

Xs;,., S;„.„. (25)

(17a)
We can also write any function of the spins A (Si S~)
in the form of (23)
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Then the signer equivalent of A is

A„(Qg QH)=co++ P Q 2 "a ... "'"""
+=& dlC ' ' Cfn &1' ' '&n

Q;. Thus for the Heisenberg model

2z—A.(t)=—P H„G,.{Q G;,}A„(t)
df

(33)

Ke can easily verify that

&&0;,„, 0;„,„. (26)
2if

A. (t) =e~ —p H„G,.( p G,',) A„(O). (34)

TrA (S, SH)D(t) = '
dQg dQH

(4s-)"
Now let us consider the special case

D(t) =2-H, (35a)
&&A„(Q~ QH) p„(Q~ QH) . (27) which implies

Also we can show that a Groenewold rule can be used
to compute signer equivalents of products

Pm=~ ~

With these values (27) becomes

(35b)

(AB)„=A„(Q&. QH)GB„(Q&, . . .,QH),

where
6 Gg ~ ~ 06@

and G; is in the form of (9b)

G;=1—L; L,+~L; Q;XL;.

(28a) T.A(S„.. . ,S )

(28b) dQH A (Qg, . . .,QH) . (36)
(2~)"

Frequently, we must obtain traces of operators. For
(28c) example, consider the partition function

Z=Tre &~.Since the Heisenberg operator A(t) can be written in
the form of (11), we can write an equation of motion
for the Wigner equivalent again as Using (36), we can write this as

(37)

Z—A (t) = {II„GA„A—„GH„}, —
d1

(29)
Z= (2n)—" dQ, dQH(e eH)„. —

(38)

where G is given by (28b). Of course, in this case we
cannot write Eq. (29) in the form of (12b). Consider
6; divided into two parts, namely,

Let us de6ne 2' such that

s(8) =(e '")-. (39)

G;=G;.+G;„,

G;,=1—L; L;, (30b)

Then we can determine s by constructing a differential
equation in P.

where

z—A„(t)=—H„(G—G*)A„(t),
di

G;„=zL,"a,y L;.

Let us note that (29) can be written

(30c)

(31a)

&(P) =(—He '")-—
d

L (He PH+e PHH)— —

= —:H-(G+G*)(~),

s(0) =1.

(4Oa)

(4ob)

(40c)

(40d)

G*=(R.—R.) . (GHe GH ). —(3Ib) For the Heisenberg model, the arguments we used
to obtain (32) give

We have then, for H„at most bilinear in the Q;, (as,
for example in the Heisenberg model) ~H(G+G ) =HI (G] ~' ' 'GH~

+2 Gt-G~'. ll G'.). (41)
H„(G G*)=2H„Q G;„g Gp—„ (32) jl Ig~ l +~.

Thus for the Heisenberg model (40c) becomes
where g;» indicates the product over all j' not equal
to j.Equation (32) can be most easily seen by expand-
ing (31b) in powers of the G;„and noting that the next
term in (32) is cubic in the G;„s, and it and all higher
terms will vanish when B„at is most quadratic in the

—s(p) = H(Gg. GH, —
dp

+ Q G;.G;. g G,'.,)s(P). (42)
jl /+pl+~
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The classical Heisenberg model results when we approxi-
mate the bracketed term by unity

(Gg. . G~,+ Q G,„G,'„Q G,«.)=1. (43)
~l rg j/+~'

We can generate an iterative approximation scheme for

s(P) as follows:

(44a)

where

is expressed in terms of continuous spin variables which
satisfy classical equations.

We can use (36) to avoid an explicit computation of
p„. Since (36) holds for any operator A, we can apply
it to the operator BD where D is the density matrix

TrDB= (2s.) ~ da, da~D„GB„.

We note that D„ is rot equal to p„. In fact, D„must
satisfy an equation analogous to (29):

& (p) &
PHsr— (44b)

—D.(&) = $H—.GD. (t) D„(—t)GI1.$
dt It

(4g)

snq1 Ife 6ns+Glc' ' 'GNc
Thus, we have two possible methods for computing

+ P G,.„,G, „g G,„,)z„(P). (44c) expected values —Eqs. (27) and (47).
~l/g j/+ j

IV. DISCUSSION
Equations (44) can be used to determine the accuracy

of classical approximations as for example in Ref. 2.
Beyond these results this method can be used to deter-
mine the fluctuations in spin variables. For example, to
determine the neutron, magnetic, scattering cross sec-
tion, we must determine'4

(t) =Z—' Tre &~S„S„(t).— (45)

Using (36) we have

dQ, de~s(P)G

It should be a rather straightforward matter to
extend these results to larger spins. This is accomplished
by expanding the spin operators in terms of the trace
orthogonal invariant tensors and using the spherical
harmonics V~ as the coefficients in the signer dis-
tribution and Wigner equivalents. These results for
higher spins will be important in descriptions of the
effects of higher multipole moments. However, for
simple systems such as the Heisenberg model the results
presented here should be sufficient to determine the
accuracy of quasiclassical methods.

The evaluation of (46) is rather more complicated than
the example which we have presented. However, (46)

"L Van Ho.ve, Phys. Rev. 95, 1374 (1954).
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