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Phase Transitions in a Uniaxial Ferromagnet
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The phase transitions occurring in a uniaxial ferromagnet are studied for all temperatures up to the
Curie temperature. The stability limits are obtained in the molecular-field approximation, and the critical
dynamic behavior is discussed for a simple model taking spin-lattice relaxation effects into account. For
fields applied in the easy direction and temperatures below some characteristic temperature Ti &Tz, and
for fields applied in the hard direction and all temperatures T &Tz, the instability occurs with respect to
angular deviations of the magnetization from its equilibrium direction, the associated soft mode is a ferro-
magnetic resonance (or perpendicular relaxation) mode, and one obtains critical fluctuations of magnetiza-
tion direction. The same holds approximately true for fields applied at an arbitrary angle and tempera-
tures T&Ti. For fields applied in the easy direction and temperatures in the interval Ti&T&T&, the
instability occurs with respect to deviations of magnetization magnitude, the associated soft mode is a
parallel relaxation mode, and one obtains critical fiuctuations of magnetization magnitude. The type of
singularity of the static susceptibility and the behavior of the soft-mode frequencies at the stability limits
are given for the different cases.

I. INTRODUCTION
' +HASE transitions occurring in anisotropic ferro-

magnets as a function of the applied field at tem-
peratures small compared to the Curie temperature are
well understood in principle. In this temperature region,
it is a good approximation to consider the magnitude M
of the magnetization vector M as constant, such that
the magnetic state is characterized by the magnetization
direction alone.

For simplicity, we shall disregard the long-range
effects of the dipolar interactions between the magnetic
moments, and take only states of uniform magnetization
into account, both for thermodynamic equilibrium and
for deviations from equilibrium. Usually, these mag-
netostatic effects require special attention. Thus, in

samples of arbitrary shape in uniform external field, the
magnetization direction at thermal equilibrium is non-
uniform. Even in ellipsoidal samples, instabilities occur
in general with respect to nonuniform deviations from
the uniform equilibrium state, e.g., with respect to
curling or buckling modes in the case of an infinite
cylinder (see Ref. 1 for a discussion of these problems
and further references). Therefore, the discussion of the
present paper applies strictly only to the case of a thin
film with the easy direction in the film plane, for which
the instabilities do occur with respect to uniform rota-
tion. However, in very hard magnetic materials, mag-
netostatic effects are less important, and the properties
will be approximately shape-independent. It will turn
out that our results are especially significant for such
hard magnetic materials, which may serve as partial
justification of the simplifying assumption. We further
assume an ideal material and neglect local nucleation
of magnetization reversal at imperfections, etc., which
would reduce the stability limits.

We consider a ferromagnet with uniaxial anisotropy
energy of second order with an easy axis along the s

~ W. F. Brown, Jr., 3IIicromagnetics (Wiley-Interscience, Inc. ,
New York, 1963).

2/3+H 2/3 —H 2/3 (2)

which is shown in Fig. 1. It is these stability limits
rather than the thermodynamic phase boundary which
are of dynamical significance.

It is useful to visualize the H, -H, plane as a topo-
logical surface which has a cut between the points
H, = &H~, H, = 0, and which inside of the critical curve
consists of two sheets, corresponding to the two phases
3E,&0 and 3E,(0, respectively. The stability limits
determine the edges of the two sheets: The 3I,&0 sheet
has its edge at the lower section, the 3E,&0 sheet at the
upper section of the critical curve.

The points H =AH~, H, =O are critical points of
the phase transition: One may pass from a state 3f,&0
to a state M, (0 either discontinuously by crossing the
edge of the SI,&0 sheet and changing to the other, or
continuously along a path bypassing the critical points.
For a path passing through the critical points, and
especially for fields in the hard direction, the magnetiza-
tion is continuous, i.e., the phase transition is of second
order.

Since the magnitude of the magnetization is taken as
constant, the instability occurs with respect to angular
deviations of the magnetization. The susceptibility

~L. D. Landau and E. M. Lifshitz, L~'lectrodynamics of Con-
tinuous 3IIedia (Pergamon Press Ltd. , London, 1960), Sec. 37.' This is a special case of a first-order phase transition, because
only one of the first derivatives, BIi iBH, = —M„of the Gibbs free
energy F(H, T) has a discontinuity. The entropy S= —BF/r/T is
continuous at the thermodynamic phase boundary, i.e., there is
no latent heat.

direction, for applied fields in the x-s plane. At low

temperatures, the behavior of this system is well

known. ' It has a first-order phase transition' with the
thermodynamic phase boundary along the line segment

—Hlr&H, &+Hlr, H, =O, (1)

where H~ is the anisotropy field. At both sides of the
phase boundary (1) there exist regions of metastability;
the stability limits are given by the critical curve'
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tensor has principal axes parallel and perpendicular
to M, and it is the perpendicular susceptibility X,
(corresponding to the axis perpendicular to M in the
x-s plane) which becomes singular at the stability limit. ;

the parallel sus(.-.ept;ibilit:y &, l is 7ei.o in the approxisna-
t1011M = const. ( onscqucntlv tllc soft (l) 11all'11cal 'Biodc,
the frequency of which becomes zero at the stability
limit, is the ferromagnetic resonance mode. Such soft-
mode behavior of ferromagnetic resonance is in fact
observed experimentally in thin magnetic films. 4' If
magnetostatic interactions are taken into account, one
finds that instabilities with respect to nonuniform
deviations from equilibrium are associated with a
softening of the corresponding nonuniform magneto-
static spin-wave modes (see Chap. 7 of Ref. 1).

In the following, we drop the assumption M = const,
and study the behavior of a uniaxial ferromagnet at all
temperatures in the molecular field approximation. In
Sec. II, we derive an expression for the free energy of
the system. The stability limits are obtained in Sec. III
from the second variation of the free energy. Of particu-
lar interest is the result that for fields in the easy
direction and temperatures close to the Curie tempera-
ture, the instability occurs with respect to a parallel
mode. ' In Sec. IV, we discuss the dynamic behavior at
the stability limits for a system with spin-lattice relaxa-
tion with the help of a modified Bloch equation.

II. FREE ENERGY

The behavior of the system at given temperature and
field is determined by the density matrix p which
minimizes the free energy

(3)

i (easy)

-H

(bord)
I

HK Hx

-H
K

I'iG. 1. Critical curve for T=0.

anisotropic exchange and crystal-field —type anisotropy'.

~anis L ~ +.,5.z5.z
2

—V- Z L(5'")'—3~(5'+1)j (g)

(10)

The last term in Eq. (6) represents the Zeeman energy
in the applied field H:

3(cZeeman

where H is measured in units of gp~.
We calculate the free energy in molecular-field

approximation (MFA) for a trial density matrix of the
form

where

is the energy, and

f= (3('.)= tr(pX)

with A. as a variational parameter. We take the same
value of A. for all spins, because we are interested only
in states of uniform magnetization. Then, the Z; are all
equal and are given by

g= —k~(lnp) = —kg tr(p lnp) (5)
where

Z;= tr; exp(PA. S,) =Zs(PSA.),

is the entropy of the system.
We consider a uniaxial ferromagnet consisting of E

equivalent spins S;,which is described by a Hamiltonian
of the form

25+1 ) x
Zs(x) =sinh —x

~

sinh —.
2S J 2S

(12)

With the density matrix (10), the average spin moment
(6) (S) can be calculated as a function of A.. For the average

magnetization e defined by

g(& —g(&exchp~aniepg(&Zeeman

The first term is the isotropic exchange energy
(13)(s)=so,

o = (A/A) Bs(PSA), .

~exch — 1 Q J.,S, .S,
one obtains

The anisotropy energy may consist of a combination of where

4 R. H. Kingston and P. E. Tannenwald, J. Appl. Phys. 29,
232 (1958).' P. Wolf, Z. Physik 160, 310 (1960).

These results were presented at the Meeting of the Arbeits-
gemeinschaf t Magnetismus, Amsterdam, 1969 (unpublished).

1 dZs 25+1 25+1 1 x
8s(x) =— = ——coth —x——coth—(15)

Zs dx 25 25 25 25

is the Brillouin function. The free energy (3) is most
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Hz n

HK

variational parameter to be determined by minimizing
the free energy (16). The equilibrium condition

BF/Bo = 0 (22)

0
0 Ti Tp

I

TG T

in connection with Eq. (18) shows that, at equilibrium,
A. is equal to the molecular Geld defined by

TrTG= 0~
0.

~6

~ ~A%
I I

HK Hz

) ')

H "=—(1/1VS)(O(X)/Bo) .

III. STABILITY LIMITS

(23)

8'If
b'F =—'be ——be

OO'Og
(24)

A solution e of Eq. (22) represents a stable equi-
librium state if the free energy increases for all small
deviations be, i.e., if the quadratic form

(b)

~&G. 2. Magnetization reversal in the easy direction for the
case S=1,E/7=0. 2. (a) Stability limits in the (H„T) plane.
(b) Magnetization curves for various temperatures with stability
limits against perpendicular (0) and parallel (0) mode.

is positive definite, or, in other words, if both eigen-
values of the matrix O' F/(BaBe) are positive. The
stability limits are thus determined by the condition
that the smallest eigenvalue X;„(H,T) becomes zero.
Since the matrix of second derivatives of the free energy
is related to the reciprocal static susceptibility tensor by

easily expressed in terms of e,' we find 5'T„'= O' F/BrrOe, (25)
F= F/1V = ——',5'[J—-', L (o-)7o'

',5'[E+L(o—)]-o.' SH rr kg. T—rl(rr) . (—16)

tl(o) = lnZs{Bs '(o) }—oBs '(&),
whence

Further,
dr)(o)/drr= as '(o)=—P51t——

J'=Q J... E=Q E;;

(18)

(19)

are the constants of isotrop ic and anisotropic exchange,
respectively, and L (o.) is an effective magnetization-
dependent crystal-field anisotropy constant, which can
be obtained from the results given by Wolf. ' It is related
to the function p(o.) of Ref. 7 by

L(o) =LP(o)/(5'o') (20)

and varies between the limits

1 25+3
L(0) =-,r(1—

25 25+2

I.(1)=L(1—1/25) .
(21)

We assume E+L(o))0 for all o., which guarantees
that the s axis is an easy axis of magnetization at all
temperatures.

Since we have eliminated the parameter A. in favor of
the relative magnetization e, we can now consider cr as

r W. P. Wolf, Phys. Rev. 108, 1152 (1957).

Here, k~q(o.) is the single spin entropy in MFA. It is
given in terms of the inverse Brillouin function &s '(o)
by

(17)

this condition simply means that one principal value of
the static susceptibility tensor becomes singular at the
stability limit. The nature of the instability is deter-
Inined by the eigenvector be belonging to X; If be J o,
the instability occurs with respect to angular variations
(perpendicular or "rot'ational" mode); if he

~~
e, it occurs

with respect to deviations in magnitude (parallel or
"shrinking" mode); in all other cases, it occurs with
respect to a mixed mode.

Although the presence of the magnetization-
dependent crystal-field anisotropy constant L(o) in the
free-energy expression (16) causes no difhculties in

principle, it does lead to lengthy expressions for the
derivatives of the free energy. For simplicity, we there-
fore restrict the following discussion to the case where
the anisotropy is produced by anisotropic exchange
alone. The effects of the two types of anisotropy are
expected to be qualitatively very similar and we shall
indicate in limiting cases (T= 0 and T= To) how the
results change when both types are present.

For L,= 0, the equilibrium condition (22) can be
written in the form

Here, K~ is the reciprocal static free-spin susceptibility
tensor

7ff —Xf[[ ss+Xfr (1—ss) (28)

5'(Jos+Eo,()+SH'= kjrTBs '(o)s=SA, (26)

where ( and s are unit vectors in the z direction and in
the direction of e, respectively. For the tensor of second
derivatives of the free energy, we obtain

(1/5') '
O/FeBBoK

—'= K ' —(Jl+E(() . (27)
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with principal values

ksT dBs '(~)—1 dA

5' do- 5 do.

ksT Bs '(o) 1A
(29)

Hx 0

H„

0
0

(a)

I

TG T

The Curie temperature is determined as the stability
limit of the paramagnetic phase ~=0 in zero field.
Because of

Kf '$3ksT/S(S+ 1)]1 for o.—& 0, (30)

ksTc ——-',S(S+1)(J+E). (32)

At this temperature, the paramagnetic phase becomes
unstable with respect to spontaneous magnetization in
the s direction. In the presence of crystal-field aniso-
tropy, Kq. (32) takes the form

ksTc= siS(S+1)LJ+E+szl.(0)] (33)

Next, we discuss the stability limits occurring for
fields in the easy and the hard direction at temperatures
below Tg. Figures 2 and 3 show the magnetization
curves and the critical 6elds for these two cases.

For fields H= {O,O,H, ) in the easy direction, the
state

s= (, S'(J+E)(r+SH, =ksTBs '(rr) (34)—

is stable for all H, &0. We are interested in the stability
limit of the metastable state

s= —(, S'(J+K)o SH, = ksTBs '(o—). (35-)—
At low temperature, the two smallest eigenvalues are

Kq. (27) becomes independent of s, and we find the
eigenvalues

x„-i=P/S(sy1)]k T—(J+K),
X„—'= X„„—'= L3/S(S+1)]ksT—J.

The smallest eigenvalue is X„';it becomes zero for

temperature, the eigenvalue

x '—=X,—'= x, —' —(J+E) (39)

which becomes zero for a critical value o.= o.,"(T),must
determine the transition. The corresponding critical
field H (T) determined by Eq. (35) is at T=0 equal
to the sum of exchange and anisotropy field:

H,"(0)=S(J+K)=Hg+Hrr. —(40)

It becomes equal to JI,"at a temperature T1 somewhat
below To and goes to zero at the Curie temperature, as
shown in Fig. 2. Therefore, in the temperature region
T&(T&Tz, the instability occurs with respect to the
parallel mode.

For fields I= {H„O,O) in the hard direction, the
instability occurs always with respect to the perpen-
dicular mode. For suKciently large values of H„ the
stable state is given by

s= g, S'Ja+SH, =ksTBs '(o). (41)

(b)

Fro. 3. Magnetization reversal in 'the hard direction for the
case S=1,IC/J=0. 2. (a) Second-order phase boundaries in the
II;T plane. (b) Magnetization curves for various temperatures.

X '=X —'=—X —'=X ~
—' —J.vu —~ f~ 36

The smallest eigenvalue
they become zero for a critical value o = o,"(T).At the
corresponding critical field H (T) determined by
Kq. (35), the state (35) becomes unstable with respect
to a perpendicular mode, and a first-order phase
transition occurs to the state (34). At T=O, this Geld
is equal to the anisotropy Geld:

H."(0)=SE=Hir. —(37)

Its temperature dependence is that of a Weiss-Brillouin
curve which goes to zero at a temperature

ksTo= isS(5+1)J&ksTc, (38)

as shown in Fig. 2, At temperatures close to the Curie

x„'=Xfi ' —(J+E) (42)

becomes zero for a value O. =a.,' which determines the
critical Geld H;(T) by Eq. (41). At T=O, this field is
again equal to the anisotropy field:

H;(0) =SE=Hrr, —(43)

and its temperature dependence is that of a Weiss-
grillouin curve going to zero at the Curie temperature,
as shown in Fig. 3.At H =H;(T), there occurs a second-
order phase transition, and for fields H, &H '(T) the
stable state is determined by

o,=H /Hir, Ss(J+K)rr=ksTBq '(o). (44)
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H, ~~ (easy) of the plane; however, the stability limit is always
determined by one of the other two eigenvalues. The
components of g ' in the x-s plane in a system of axes
parallel and perpendicular to the magnetization
direction s are found to be

(hard)

H„

(X ')~, , »=Xr~& '—(/+K cos'y),
(X

—'), ,=Xr,—' —(I+K sin'7),
(X ) ~t, i= Ksl—n'r cos'y.

(50)

In this region, only the magnetization direction depends
on the Geld; its magnitude is a function of temperature
alone.

In the presence of crystal-Geld anisotropy, the zero-
temperature anisotropy field in Eqs. (37), (40), and (43)
is given by

Hrr =SLK+L(1)7. (45)

The type of singularity of the static susceptibility at
the stability limits H,"' and H ' is obtained easily by
observing that the eigenvalues given in Eqs. (36), (39),
and (42) go to zero like o —o'. One finds for the three
cases

H ={O,O,H,}:
(46)

(47)

H ={H„O,O}:

with temperature-dependent coeflicients yi, (T) and
n(T). As stated in the Introduction, the discussion in

this paper is restricted to the spatially uniform case.
We note in passing that for the static response to non-
uniform fields with a small but finite wave number q,
the denominators of Eqs. (46)—(48) increase by terms
of order q'.

Finally, we discuss the case of fields H= {H„O,H', }
applied at an arbitrary angle. The magnetization
direction s is coplanar with the anisotropy axis ( and
the field H, as may be seen from Eq. (26), and can
therefore be described by its angle with respect to the
2' axis:

s= {sing, 0, cosy).

One eigenvalue is X» ', corresponding to rotations out

-HK-

FIG. 4. Critical curves for various temperatures. S=1, E/1 =0.2.

The presence of the nondiagonal term (X ')~~, l sllows

that, for p&0, —,'vr, the instability occurs always with
respect to a mixed mode. We have calculated numeri-
cally the set of critical values of (o,y) for which the
smallest eigenvalue of (50) becomes zero. The critical
curve is obtained by substituting this set into Eq. (26)
and solving for H. Figure 4 shows the critical curves for
various temperatures for the case S=1,K/J=0. 2.

''
For low temperatures, the mode is still approximately

perpendicular, because (X ')„,„becomes very large,
and we recover the behavior discussed in the Introduc-
tion. In the temperature region T~(T(T~, on the
other hand, we find a gradual transition from a perpen-
dicular mode at H= {H;(T),0,0} to a, parallel mode at
H= {O,O,H (T)}, and the critical curves no longer
show a cusp in the easy direction. Close to the Curie
temperature, we find for the critical curves the analytic
expression

(H /H ')'+ (H /H ")'"= 1 (51)

We have calculated the stability limits by using the
MFA. Because of the limited validity of this approxi-
mation, the quantitative results have to be considered
with the usual reservation. It is, for instance, well

known that for short-range interactions the Curie tem-
perature is considerably smaller than the value obtained
in Eq. (32). Consequently, the temperature dependence
of the critical Gelds will be different from that shown in

Figs. 2 and 3. We believe, nevertheless, that the
qualitative picture is correct, and that especially for
high temperatures the instability in the easy direction
does occur with respect to a parallel mode.

Moreover, Shtrikman and Callen' have shown that
relations between single spin properties, from which the
molecular field parameter PA has been eliminated, have
a wider validity than the MFA itself. We therefore
expect the form of the critical curves in Fig. 4 to be
essentially correct. The same argument applies to the
values of the critical fields H,"~ and H, ', if they are
represented as functions of the zero-field magnetization
0.0 instead of the temperature. These functions are
shown in Fig. 5.

IV. DYNAMIC BEHAVIOR

The results obtained suggest the following dynamic
properties at the stability limits of the system. For

SH. B. Callen and S. Shtrikman, Solid State Commun. 3, 5
(1965).



P HASE TRANS I TIONS I N UNIAXIAL FERROMAGNET

fields applied in the easy direction at temperatures
T(Ti and for fields applied in the hard direction at all
temperatures T(Tz, the soft dynamical mode associ-
ated with the transition is the ferromagnetic resonance
(or perpendicular relaxation) mode, and one obtains
critical fluctuations of m.agnetization direction. "I'he

same will hold approximately true for fields applied at
an arbitrary angle at temperatures T(T&. In the tem-
perature interval T~(T(T~ for fields applied in the
easy direction, on the other hand, the ferromagnetic
resonance frequency remains finite at the stability
limit II,",and we expect a soft parallel mode and critical
fluctuations of magnetization magnitude.

For the Heisenberg Hamiltonian given in Eqs. (6)—(9)
with the field applied in the s direction, the total spin

component in the s direction is a constant of the motion,
and the parallel mode will be a spin-diffusion mode
with purely imaginary frequency

0= —iaq2 (52)

for small wave numbers q. The diffusion constant D is
related to the reciprocal parallel susceptibility by

j9=IX»-i, (53)

do'—=oXH '——(o„—o„)—o„
. dt &1 &2

(54)

' K. Kawasaki, J. Phys. Chem. Solids 28, 1277 (1967)."H. S. Bennett and P. C. Martin, Phys. Rev. 138, A608 (1965).
K. Kawasaki, Progr. Theoret. Phys. (Kyoto) 39, 285 (1968).

~' We disregard complications arising from a resonant coupling
to acoustic phonons.

where L is the Onsager kinetic coefficient. ' If L stayed
finite at the stability limit, the diffusion constant would

go to zero proportional to X» ', and the frequency given
by Eq. (52) would indeed show the expected soft-mode
behavior. For an isotropic Heisenberg ferromagnet in
zero applied field above the Curie temperature, this

argument has been shown to be invalid, and the diffu-
sion constant is found to go to zero more slowly
(~X„-'"), because I. becomes singular at the tran-
sition. ' "For an anisotropic ferromagnet, however, L is
expected to remain finite, " and the above argument
should describe the softening of the spin-diffusion mode
correctly.

For a more realistic model containing spin-phonon
interactions, on the other hand, also the q=0 parallel
component of the magnetization can relax, and one
expects a soft parallel relaxation mode associated with
the stability limit H,".In order to obtain a qualitative
understanding of the dynamic behavior of such a
system, we study here a simple model in which the
effects of the spin-phonon interaction are approximated
by Bloch-type relaxation termsi2 supplementing the
RPA equation of motion of the Heisenberg Hamiltonian
given in Eqs. (6)—(9).The equation of motion then tak.es
the form of a modified Bloch equation:

C

0
0 0.5 0

I'zG. 5. Critical 6elds as function of the zero-field magnetization 0 '.

where we have assumed an isotropic g factor and put
5=1. The first term describes the precession of the
magnetization around the instantaneous molecular field
defined by Eq. (23), and the two last terms describe the
relaxation of the magnetization e towards the time-
dependent equilibrium value e,q=o-,qs,q belonging to
the instantaneous molecular field II ":

—ge(pg+mol) s —Hmol/+mol (55)

Different relaxation times 7'y and r2 have been assumed
for the components el l and o~ parallel and perpendicular
to a,q. We introduce the projection operators

Pl I Seqseq p Pl —I—
Seqs&q

such that
(56)

Equation (54) is the straightforward generalization of
the form given byWangsness" to the ferromagnetic case.

We calculate the dynamic susceptibility tensor g(ip)
for this model in two steps: In the first step, we obtain
the dynamic response of the magnetization to a pertur-
bation of the molecular field, which is equal to the
dynamic response of a free spin in an external field equal
to H '. In the second step, we relate the change of the
molecular field to the change of the external field.

We consider small dynamic deviations from
equilibrium:

Hmol(t) A + +/mole

iota-

o(t)=op+poe ' ' (58)

a„(t)=op+ho„e—*' ',

where eo and%. O are the static equilibrium values of the
magnetization and of the molecular field, respectively,
which are related by Eq. (14). From now on, we drop
the subscript 0 for the equilibrium properties. Ke obtain
the linearized equation of motion

—i'&a= &oXA.+oXSH "
—(7i 'P„+rp 'P,) (8o—8o„). (59)

According to Eq. (55), the change in o,o is related to the

' R. K. Wangsness, Phys. Rev. 98, 927 (1955).
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change in H "by
S~.,= (1/S)X, SH-[,

the form

(60)
and

x+ ((u) =xio+ /(Q~ —cu) (71)

where Ky is the static free-spin susceptibility tensor
given by Eqs. (28) and (29). We express the vector
products in Eq. (59) in tensorial form with the help of
the totally antisymmetric tensor a of third rank, and
solve for ba. The result can be written in the form

[[[r= (1/S)Xr(~) BH ", (61)

where K~(co) is the dynamic free-spin susceptibility
tensor

with

gi' ((jL[)= Xf[[ ([[[)P [[+Xfl ( )[d' P[. (62)

Kg= 8'8 (64)

We now have to relate the change of the molecular
field to the change 8H of the external field. We write

&H-[=S& s~+ &H, (65)

where the first term represents the contribution induced

by the change [[o of the magnetization. From Eq. (23)
defining the molecular field, we find by using Eqs. (18),
(25), and (29)

(66)

x~„((u)=xg„(1—z(v r i) ',
X~,((a) = xg, j(1—i(ur2)1 —r2Asij ' (I—r2Ae, ) . (63)

Here, ~& is the totally antisymmetric tensor of second
rank in the J subspace defined by

x[[(Gr) =x[[0[[/(0[[—M) . (72)

( (xuu —x-)' '"
W~ A' —4g,

—'

Equation (71) describes the dynamic response to
perpendicular fields of left- and right-handed circular
polarization (ferromagnetic resonance). The norrnal-
mode frequencies are given by

Q+ = (xg,/x, )(ah.—ir,—') . (73)

According to Eq. (46) they go to zero as (H —H, ) at
the stability limit H,".The dynamic response to parallel
fields described by Eq. (72) has a purely imaginary
eigenfrequency

0„=—i(xg[[/x[[) ri '

corresponding to a parallel relaxation mode. According
to Eq. (47) it goes to zero as (H —H, )'~' at the
stability limit H,". From the Quctuation-dissipation
theorem it can be seen that the stability limits H,"
and H," are associated with critical Quctuation of the
perpendicular and parallel components of the mag-
netization, respectively.

For fields applied in the hard direction which are
larger than H, ', the static susceptibility has principal
values X,/X»@X„. In this case, the perpendicular
normal modes are elliptically polarized oscillations with
eigenfrequencies

By combining Eqs. (65) and (61), we obtain for the
dynamic susceptibility tensor g(~) defined by

~ =(1/S)~() ~H (67) (X-X-)'"-

X„y+X„——Z7-2 '
2

~ (75)

dety,
—

'(cu) = 0. (70)

The soft-mode behavior at a stability limit follows quite
generally from the structure of Eq. (69): Whenever an
eigenvalue of y.

' becomes zero, one of the eigen-
frequencies goes to zero.

We apply these results to the case that the external
field is in the easy direction, and the magnetization is
antiparallel to the field. Then, the static susceptibility
tensor has principal values X =X»=X~ and X„=X«
given by Eqs. (36) and (39).From Eq. (69), we find the
principal values of the dynamic susceptibility tensor of

the interesting relation

K '(&o) —K '=K —'((u) —Kg
—' (68)

With the help of Eqs. (62) and (63) it can be written
in the form

x '(~) =x '
'i[[[)(&1/xf[[)P[[+(&2/xfl)(1 r2Aei) ' Pij. (69)

The eigenfrequencies can be found as solutions of

As the field approaches the stability limit H ', these
frequencies become purely imaginary at a certain Geld
H &H, ', and only one of them goes to zero at the
stability limit. Thus, in this case, the soft mode is a
perpendicular relaxation mode rather than a resonance
mode. The parallel mode has an eigenfrequency

fl„=—j(x~„/X.,)~,— (76)

which stays finite for all H &B .
For fields applied at an arbitrary angle, the o6-

diagonal elements X»,~ of the static susceptibility couple
the motions of the parallel and perpendicular com-
ponents of the magnetization, and one obtains dynamic
modes of a mixed character. In all cases, one mode
becomes soft at the critical curve.

V. CONCLUDING REMARKS

We have obtained the stability limits of a uniaxial
ferromagnet in the H -H, plane for all temperatures up
to the Curie temperature using the MFA, and we have
discussed the critical dynamic behavior for a simple
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model taking spin-lattice relaxation sects approxi-
mately into account. Of particular interest is the result
that for fields applied in the easy direction in a tern-

perature interval T&&T&T&, the instability occurs
with respect to a change of magnetization magnitude.
Associated with this transition are a soft parallel
relaxation mode and critical fluctuations of magnetiza-
tion magnitude.

For experimental observation of such behavior a very
hard ferromagnet is required, because the temperature
interval Tc Tt is of —order (E/J)Tc. It has further to
be noticed that the transition is of first order, and the
ideal stability limit usually cannot be reached because
of local nucleation of the reversed phase at imperfec-
tions, etc. It will, therefore, be necessary to infer the

type of transition by an extrapolation procedure. If a
suitable system can be found, it should be possible to
study also the dynamic properties, because all relevant
frequencies are in the microwave range or below.

The isotropic ferromagnet represents a singular case
because T1—& T~ for E—& 0, and both the perpendicular
and the parallel mode become soft at T= Tz. This may
be the origin for some of the difficulties encountered in
theoretical treatments of the phase transition of this
system.
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We present conclusive evidence that the magnetic-spin reorientation occurring in ErFe03 at about
95'K proceeds by spin rotation.

' N a number of the weak ferromagnetic rare-earth
~ ~ orthoferrites (formula EFeas, where R is a rare

earth), the direction of the magnetically ordered iron

spins changes from the c to the a crystal axis on

heating. ' 5 We report, in this article, a direct obser-

vation of the spin reorientation occurring in ErFe03
using the Mossbauer effect. In agreement with previous

studies4 ' our data provide conclusive evidence that the

spins rotate continuously from the c to the a axis on

heating.
Microscopic' and macroscopic' descriptions of the
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FIG. 1. Relative Mossbauer transmission of Fe" in ErFe03 as
a function of temperature. The source-absorber velocity was kept
constant at the value corresponding to the peak of the Am=0
absorption line. Below about 90'K, the spins lie along the c axis.
On heating, the spins rotate towards the a axis. For T~95'K,
the spins lie approximately parallel to the y-ray direction, and
the intensity of the Am =0 line is reduced. A relative transmission
of 1.000 corresponds to the transmission oQ resonance.

spin reorientation have indicated the possibility of two
types of reorientation process:

(a) The spin magnetic moment rotates continuously
from the c axis to the a axis, the rotation beginning at
T=T1, and ending at T=T2, say.


