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Anomalous Ultrasonic Attenuation above the Magnetic Critical Point*t

GEORGE E. LARAMORE$ AND LEO P. KADANOrr)

Department of Physics& Unieersity of Illinois, Urbana, Illinois 61801
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The mode-mode coupling theory of Kadano6 and Swift is used to describe the rise in the ultrasonic
attenuation as a material approaches its magnetic transition. Near the transition, dynamic Quctuations
in the magnetic order cause increased absorption of the sound. Predictions are made of the increased at-
tenuation in various models of magnetic systems. A comparison with experiment is carried out.

I. I5'TRODUCTION

" 'N several experiments' ' involving the propagation
& ~ of sound waves through magnetic materials near
their critical point, an anomaly was observed in the
attenuation coefFicient. For longitudinal sound waves
above the magnetic transition, this anomaly was ob-
served to have the form

Acct (tf) e) = Bti'e

where 8 is a constant, q is the wave vector of the sound
wave, e—= (T T,)/T„an—d the critical index y was
found to vary quite widely from material to material.
It was found to vary from zero for EuO (no divergence
as T~ T,) to 1.37 for Dy.

Many attempts have been made to explain this
phenomenon theoretically, but these have only met with
limited success. These calculations have generally
either been based on the continued-fraction method of
Mori' 7 or on a Green's-function approach. s The
principal source of difhculty has been the determination
of the temperature dependence of the four-spin cor-
relation function that arises during the calculation. The
employment of a factorization approximation for this
four-spin correlation function apparently overestimates
the effect of correlations and thus leads to too large a
value for y. In this work we estimate the four-spin
correlation function by the use of the mode-mode
coupling theory of KadanoH and Swift. ~ We obtain
qualitative agreement with a calculation of Kawasaki"
in which the four-spin correlation function is estimated
by the continued-fraction method. In Kawasaki's work,
only. the isotropic Heisenberg ferromagnet and anti-

*Work supported in part by the National Science Foundation,
under Grant No. NSF GP-7765, and the Advanced Research
Projects Agency, under Contract No. ARPA SD-131.

t Based on part oi the Ph. D. thesis oi G. E. Laramore, Univer-
sity of Illinios.

$ National Science Foundation Predoctoral Fellow during this
research.

$ Present address: Department of Physics, Brown University,
Providence, R. I.' B.Luthi and R. Pollina, Phys. Rev. 167, 488 (1968).' R. J. Pollina and B.Luthi, Phys. Rev. 171, 841 (1969).' B. Golding, Phys. Rev. Letters 20, 5 (1968).' B.Luthi and R. J. Pollina, Phys. Rev. Letters 22, 717 (1969).

5 K. Tani and H. Mori, Phys. Letters 19, 627 (1966).' H. Okamoto, Progr. Theoret. Phys. (Kyoto) 37, 1348 (196/).' K. Kawasaki, Solid State Commun. 6, 57 (1968).
"H. S. Bennett and E. Pytte, Phys. Rev. 155, &53 (1967).
9 L. P. Kadanoff and J. Swift, Phys. Rev. 166, 89 (1968)."K. Kawasaki, Phys. Letters 26A, 543 (1968).

ferromagnet are considered, but his calculation could be
extended to the systems we discuss here. His work gives
only the q' dependence and the exponent y in Eq. (1);
it does not provide for an estimate of the coefhcient B.

The important elements in the Kadanoff-Swift
theory are the operators that correspond to conserved
quantities and to other quantities that exhibit a
"slowing down" as the critical point is approached.
These are the number density operator ,tt(or), the
energy density operator h,o(r), and the momentum
density operator g(r), which were used in Ref. 9. In
addition to these, in either an isotropic system or a
uniaxial system we also have a spin density operator
o;o(r), which corresponds to the local magnetization
density. In a ferromagnetic system, a. (or) corresponds
to the magnetic order parameter and exhibits critical
behavior near the magnetic transition. For an anti-
ferromagnetic system the order parameter is the sub-
lattice magnetization which is proportional to the
operator a, (or). Although o., (or) does not correspond
to a conserved quantity, it exhibits critical behavior
near T„and it will turn out to be the important opera-
tor in an antiferromagnetic system. For convenience in
what follows, we shall refer to the set of conserved
quantities and those exhibiting a critical slowing down
as "conserved. "

According to the theory, the most important modes
damping the sound are in the hydrodynamic regime.
The modes are then described by local equilibrium
states in which the equilibrium parameters of the system
are slowly varying functions of space and time. These
states are formed from linear combinations of the opera-
tors corresponding to "conserved" quantities acting
upon a, typical equilibrium state l). We use these
operators in the form of their Fourier transforms

a, (q) = (dr)e '&'a, (r), -

where the a;(r) represent the density of the "conserved"
quantities. These operators are chosen such that the
local equilibrium states

li,q) =a'(q) I ), (3a)

(i,ql = &la'( —q) (3b)

are orthonormal, i.e.,

(i,ql j,q') =h, , (2')eb(q —q').
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Following Ref. 9, we have the following linearly
independent operators:

o'(q) = (L&spc. (q) 3'"2'(C)) '

XI:h"(q) —(&h+P &/&~&)~" (q)j
=—~"(q)/L&spc. (q)j'",

(pP)'"
«(q) = ~(q)~" (q)

&n)

pares with our calculations. Finally, in Sec. VI we
summarize our results.

II. DERIVATION OF ANOMALOUS SOUND
ATTENUATION COEFFICIENT

For a longitudinal sound wave directed along the x
axis of the system and having a damping rate small
compared to the sound-wave frequency, the sound
attenuation coefficient is given by'

~"(q),
-u.p c.(q) c.(q)—

o3(q) = (Plp)'"g; (q),

«(q) = (8/p)'"g""(q),

«(q) = (8/p)'"g"'(q),
I'= l —2 ~;(q) I && I a;(q)where p is the density of the material, P= I/ksT, C~

—and
Cy are the specific heats at constant pressure and
volume, 5,„is the entropy density operator, and c(q) is
the longitudinal sound velocity. In addition to these we
have for the ferromagnetic system

is the projection operator which rejects the local
equilibrium states, and the factor 8.69/c(q) is used to
convert the attenuation coeflicient to dB/cm in order to
facilitate comparison with experiment. We next make
use of the fact thato6(q) =~"(q)/LX(q)/Ppo'3'", (Sf)

(gb) ni(q, s) = L8.69/2c(q)]

(Sc) +(l~3(—q)~~(s —~~~) '&«3(q)
I &) (&)

(gd) where we are to take the real part of the right-hand side
of Eq. (7). In Eq. (7), 2 is the I.iouville operator for the
systein,

where goo. (r) is the magnetic moment associated with
o(r), and X(q) is the qth Fourier component of the
susceptibility X(r—r ) determined by the variation of
o (r) due to the change in the applied field H (r') parallel
to the direction of o.(r).

For the antiferromagnetic system, the normalized
operator corresponding to a fluctuation in the order
parameter is

«'(q) = ..'(q)/LX. (q)/PV o'j'", (6)

where X,(q) is the qth Fourier component of the stag-
gered susceptibility. For an antiferromagnet,

o6'(q) =«(q+Ko),
where Ko is the reciprocal-lattice vector that defines the
superlattice structure. However, we shall find it con-
venient to use the special operator a6' for an antiferro-
magnetic system. Note that only above T, do the
operators a6 and a6' correspond to Quctuations in the
magnetic order parameter, and also only above T, are
they automatically orthogonal to a~ and a~.

In Sec. II we calculate the anomalous attenuation
coefficient. We shall show that its temperature diverg-
ence is determined essentially by the relaxation rate of
a fluctuation in the magnetic order parameter. In Sec.
III we point out that this relaxation rate can be deter-
mined experimentally, directly from neutron scattering
data or indirectly from the nuclear-magnetic-resonance
(NMR) linewidth. In Sec. IV we give the calculated
order-parameter relaxation rates for various model
systems. This will give us predictions for the exponent

y for these models. In Sec. V we discuss the experimental
picture for various real materials and see how it com-

L&, (q)3= vi (q), (9a)

L~, (q)j= VW )"' **(q), (9b)

where j2 is the current corresponding to the conserved
quantity a&, and v. '~' is the usual stress tensor. In the
first term on the right-hand side of Eq. (8), the current
in j&* corresponding to particle flow is removed by the
projection operators. This is because the particle Bow is
proportional to the momentum density. The erst term
is hence proportional to the thermal conductivity of the
system. In particular, we And that

&IL&, ~2(—q) j&(&&&—s) '&L&,o (q) jl &

=C'l (q,s)p '&L~~(q) j ' —K'.(q)j '), (I0)

where A. is the thermal conductivity. Scaling-law argu-
ments"" show that the thermal conductivity is non-
divergent at the magnetic critical point. If this is the
case, then the quantity in Eq. (10) can have at best a
constant part and hence could not contribute to a
divergent sound attenuation coefficient. However,

"K.Kawasaki, Progr. Theoret. Phys. (Kyoto) 40, 706 (1968)."D.L. Huber, Solid State Commun. 6, 685 (1968}.

~l) =
&I ~=0

to write the sound attenuation coeKcient as

o.i (q,s) =
I 8.69/2c (q) $
&& {&ILg, a, (—q) jP(PEP—s) 'Pl z,a2(q)gl &

+&II ~, "(- )»(~~~- )-
&&~i&,~3(q)j I &) (8)

From the de6nitions of the conserved quantities' we
have
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Wagner" claims that the part of the thermal conduc-
tivity corresponding to energy transport through the
spin system, while nondivergent for the isotropic ferro-
magnet, is divergent for the isotropic antiferromagnet.
In particular, he Ands that ), e 'i' for this system. If
such is the case, then near T, when C~ becomes signih-
cantly larger than Cv, the quantity in Eq. (10) would
exhibit a divergence for the isotropic antiferromagnet.
Wagner finds this result by the application of the dyna-
mic scaling techniques used by Ferrell et al." in their
calculation of the thermal conductivity in liquid helium.
We regard the direct application of this procedure to the
antiferromagnet as questionable and also point out that
experimental work" '~ gives no indication of a divergent
part to the thermal conductivity for antiferromagnetic
systems.

We also have

& I I &, as(—«)jP (P&P—s) 'PI &,as(«) jl )
=Pq'p '(I r**( q)P(PZ—P s) 'Pr*—*(q) I ). (11)

It is possible in some systems for r**(q) to be propor-
tional to the energy density. In this case the action of
the projection operators in Eq. (11) would be to give a
result of zero. For such a system there would be no
anomalous sound attenuation as T~ T,+. In any event
the projection operator will eliminate the part of r**(q)
that is proportional to the energy density. We will not
take this into account at the present, but will discuss it
in more detail in Sec. V.

We can represent

in terms of states involving multiple transport processes.
From Ref. 9 the part of Xwith wave vector g is given by

X,=—g
2! ~, v' (27r)'

a.(q') a"(»—q')
I )& I

a.(—q')a" (q' —q)
X

s (q)+s" (q —«)
1 (dq') (dq")

+—Z
3 f v, v rvir (2s-) 6

a"(q') a -(q")a.(q —q' —q")
I )

X
s.(»—q' —q")+s"(q )+s"'(q )

x (I a„(—q') a„(—q")a„(q'+q"—q)+, (12)

where s„(q) is the eigenvalue of the state I v, q& Li.e.,
Z

I v,q& =s„(q) I u, q&j.In what follows we shall ignore the
terms in Xq involving more than two transport pro-
cesses.

» H. Wagner (unpubHshed report).
'4R. A. Ferrell, N. Menyhard, H. Schmidt, F. Schwabl, and

P. Szepfaluzy, Phys. Rev. Letters 18, 891 (1967).
'5 G. A. Slack, Phys. Rev. 122, 1451 (1961).
'6 G. A. Slack and R. Newman, Phys. Rev. Letters 1, 359 (1958).
'7 R. H. Donaldson and D. T. Edmonds, Phys. Letters 2, 130

(1962).

where
s.(q')+s, (q—q') —s I, -t-r=2s.*,

s.*—=s.(«) I 6.-t-'
The next step in our estimate is to evaluate

l~. ,.l'—= I&l.**(—«)P«(«')«(» —«') I) I' (16)

in the q, q' ~ 0 limit.
The diagonal component of the stress tensor is

essentially the pressure p, and so we can write

l~s, s I'= »m I&lp( —q)L1 —Zas(q)I)~,q'-C q-+0, q'-4 J

X&I a;(—q) jas(q')as(q —q') I) I'

lim I&I p( —q)a, (q) I &~,q'-+0

x&1 a, (—q)«(q')«(q —«')
I & I', (17)

where the last step in Kq. (17) follows, since only the
'8 L. P. KadanoG, W. Gatze, D. Hamblen, R. Hecht, E. A. S.

Lewis, V. V. Palciauskas, M. Rayl, and J. Swift, Rev. Mod. Phys.
39, 395 (1967).

Most of the possible intermediate states will con-
tribute to the "background" attenuation. We shall
concern ourselves only with those states that contribute
a diverging term as the magnetic critical point is
approached. The dominant term leading to the anoma-
lous sound attenuation as T—+ T,+ arises from the
intermediate state involving two fluctuations in the
magnetic order parameter. Physically, this corresponds
to the absorption of a phonon of wave vector q and the
creation of two "spin fluctuations. "This gives us

2.17/
Ani(q, s) =

c(q)pkg2'

d~' I(l r* (—«)P«(q')«(q —q')
I
&I'

x (13)
(2s )' s.(q')+s. (q —q') —s

for a ferromagnetic system. For an antiferromagnetic
system the a6 operators would be replaced by a6'
operators and s would be interpreted as the relaxation
rate of a Quctuation in the magnetic order parameter 0-'.

We now turn to estimating the various quantities on
the right-hand side of Eq. (13).We shall evaluate Kq.
(13) in the region where the sound-wave frequency I

s
I

is much smaller than the frequency associated with a
typical spin fluctuation. We also take q((t ', where & is
the characteristic length" describing fluctuations in the
magnetic order parameter. The dominant contribution
to the integral then comes from the region where q'( &'.
This means that we can take

dg ~ +3
(2s.)'

At the relevant wave vector g' g', the frequency
denominator is
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term in the projection operator involving the state
a~(») I ) gives rise to a divergence in the matrix element.
In the zero wave-vector limit, the operators in Eq. (17)
can be replaced by thermodynamic derivatives. ' In
particular, '

c(q) 8
a2(q ~ 0) = (pkiiT)'"—

(~) &p s(iv

(kBT '" 8
a6(q~0) =I

k&(g) BH p

(18a)

(18b)

Hence, in Eq. (17) what we basically have to evaluate is

gx C„jx
)

t9p, g]~ Cp Bp, y

(19)

where C~ is the specific heat at constant susceptibility
and C„ is the speci6c heat at constant chemical poten-
tial. Use of the Gibbs-Duheim relationship" then gives
us

Similarly,

We thus find that

gX QX

~p T ~p r

Bp C„=—S
~p spa

(20)

(21)

At this point we substitute Eqs. (14), (15), and (23)
into Eq. (13) and obtain for T near T,

O'C' 1 dT '$ 'e '
Dn&(q) =1.09q'p'c'pk&T — — —. (24)

C„' T dp s~

Relatively far from the magnetic critical point we expect
the specific heats in Eq. (24) to be essentially the same
(since they will be dominated by the nonmagnetic
lattice contribution). In this region, C„'C„'/C„4 will be
of order unity. But very near T„provided that the
coupling between the spins and the lattice is sufficiently
weak that the specific heats may be considered as the
sum of a magnetic part and a nonmagnetic part, we

expect
2C 2/C 4~ ~2a

where o. is the critical index that describes the divergence

'9 See, e.g. , L. D. Landau and F.. M. Lifshitz, Statis/ical Physics
I'Addison-%esley Publishing Co., Inc. , Reading, Mass. , 1960).

~ See, e.g., H. B. Callen, Ther~~zodynanzics (John Wiley R Sons,
Inc., New York, 1966).

O'C' 18&
lim IM'~ e'

I
= (pkiiT)'c'

q~p, q —+p C„' & cjp rl

Taking X=Xoe ~, we can rewrite Eq. (22) as

C„'Cx' 1 dT, '
jjln IM'q q I

= (pkiiTp) c — E (23)
q~p, q'~O { C

of the magnetic portion of C„ in zero applied field. We
will assume that we are in the region where Eq. (2&)
holds. We also write $= jp6 "and make use of the scaling
relationship' 3s =2—a to obtain

q'c'pkaT. v'( 1 dT.)'
+'

~«(v)-
kT, dp s,*

(26)

2.57/
DQ'i (g,M)

c(q)pkg T (2~)'

I ~&,~ I'L'(»')+~. (»—»') 3
X

P.(»')+~-(»—»')3'+ ' (27)

For co&s,*, we can no longer ignore the co' in the de-
nominator of the integrand. Also, if q))( ', then the
magnetic coherence length no longer sets the only scale
of lengths in the problem. When either of these situ-
ations occur, we can no longer estimate the integral in
the manner we did before, and Eq. (26) will not hold.

Because of the importance of the relaxation rate s *
in Eq. (26) and because of the difFiculty of determining
it for realistic physical models, we shall point out two
experimental methods of determining it before we go on
to the results of model calculations.

III. EXPERIMENTAL DETERMINATION OF s,*

It is well known" that if the scattering vector K is not
parallel to the direction of magnetic order, there is a
peak in the inelastic scattering cross section when

neutrons are scattered from magnetic materials. This
peak corresponds to the scattering of neutrons from
dynamic spin fluctuations. For K&) ', s * determines
the width of this scattering peak, and so a measurement
of the peak width as T —+ T, gives a direct measurement
of the temperature dependence of s *. This conclusion
is equally valid for both ferromagnetic and antiferro-
magnetic systems.

"A review of the theory of the critical magnetic scattering of
neutrons has been given by P.-G. de Gennes, in 3Eagneti sm, edited
by G. T. Rado and H. Suhl (Academic Press Inc. , New York,
1964).

Equation (26) is our basic result. Note that the domi-
nant temperature dependence of Ant is determined by
the characteristic frequency s *.

The same considerations hold for an antiferromag-
netic system for which we also obtain Eq. (26), with s,*
being interpreted as the relaxation rate of 0'($ ').

From Eq. (26) we see that our calculation gives
An&(q) proportional to q'. This is a consequence of our
taking

IsI =~=cq((s.*

in our evaluation of Eq. (13). Actually s= ice, a—nd
taking the real part of the right-hand side of Eq. (13),
we obtain
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X;„t,——A1 S, (29)

Also, Heller" has shown that in magnetic systems
»ear T„., the NMR linewidth can be attributed to Auctu-
ations in the local hyperfine fields seen by the nuclei,
The result for the NMR linewidth can be expressed as

t'&IS (q)S.(—q) I &El-
7rV3 h s k s'(q)

1 &IS-(q)S.(—q) I & 1 &IS"(q)S"(—«) I &'l

+ + —-
,

—
I

(28)
2 s (q) 2 s"(q)

where the interaction between the nucleus and the
electron spin is taken as

where the E;; and the J;,; are such that it is energetically
favorable for neighboring spins to be aligned. %e
distinguish among three different cases:

Case /: E=J. This case corresponds to an isotropic
system, and the anomalous spin Auctuation relaxes via
a diffusive mechanism, i.e.,

s.(q) =De'. (33)

S its ~ ~5/2+1l /2~ &5/2v —vq/2
0' ) (34)

According to Kawa, saki" and to Halperin and Hohen-
berg, s4 D $ '"+&t', where rt is the parameter measuring
the deviation of the spin-spin correlation function from
the Ornstein-Zernike form. Kadano6 et al." give
q=0.07+0.07. Ke thus take

and the average local field seen by the nucleus is taken
to lie along the c axis. If the c axis corresponds to the
direction of the order parameter in space, then

and so we would predict

g~ ~ @
—5/3+lla/G+g/Q —aq/6 (35)

&Is.(q)s. (—q) I
&- (q),

which diverges like e ~ as q
—+0 and T —+ T,. The

dominant contribution to Eq. (28) as T~ '1, occurs for
q& $ ', and so, estimating the sum over wave vectors in
the same manner as before, we obtain

L—3/2~ 63/2v (36)

for this system.
Case Z: E&J. This corresponds to a planar model

where the order parameter lies in the xy plane. For this
case Kawasaki" has shown that

(30)
which mea, ns that we expect

Hence, if s * e for a given material, then we expect
the following to hold as T~ T,+: AQ~~ 6 + (37)

(a) The anomalous longitudinal sound attenuation
coefficient should behave like

Ao!~~ 6+ (31a)

2—y—a—x (31c)

Equations (31) provide for relations between experi-
mentally measurable quantities, and hence give a check
of the mode-mode coupling procedure that does not
depend upon the model used to evaluate s,*.

IV. PREDICTED RESULTS FOR VARIOUS
MODEL SYSTEMS

A. Heisenberg Ferromagnets

The Hamiltonian for the Heisenberg ferromagnet
may be written as

50 = —Q EE~y(S~"Si*+ScoSsr)+J "S'*S '*3 (32)
&ij)

~ P. Heller, in ProceeCsngs of the Cogferertce ort the Phertoraersa
near the Critical Point, 8"ash~ngton, D. C., 1965, edited by M. S.
Green and J. V. Sengers (U. S. Government Printing Once,
Washington, D. C. 20025, 1966).

(b) The width of the neutron scattering peak in the
limit of zero momentum transfer should behave like

peak width

provided that the momentum transfer vector is not
parallel to the direction of the order parameter.

(c) The NMR linewidth should behave like

s.*-1/X- e&. (38)

A specific model in which the uniaxial anisotropy arises
from spin-orbit coupling is considered in Sec. IV C. The
result is in accord with Eq. (38). Studies have also been
made on a particularly anisotropic system —the kinetic
Ising model. The results are somewhat ambiguous.
Kawasaki and Yamada" '8 find that in the local equi-
librium approximation, Eq. (38) holds for the relaxation
rate for fluctuation in the order parameter. However,
Suzuki et a/. 29 find that the relaxa, tion rate approaches
zero like

s,* ea (tk= 2.00+0.05) (39)
"K. Kawasaki, Progr. Theoret. Phys. (Kyoto) 39, 1133 (1968).
'48. I. Halperin and P. C. Hohenberg, Phys. Rev. Letters 19.

700 (1967); Phys. Rev. 1?7, 953 (1969)."K.Kawasaki, Progr. Theoret. Phys. (Kyoto) 40, 706 (1968)."L.Van Hove, Phys. Rev. 95, 249 (1954); 95, 13'14 (1954).
"H. Mori and K. Kawasaki, Progr. Theoret. Phys. (Kyoto)

25, 723 (1962)."K.Kawasaki and T. Yamada, Progr. Theoret. Phys. (Kyoto)
39, 1 (1968).

'9 M. Suzuki, H. Ikari, and R. Kubo, J. Phys. Soc. Japan Suppl.
26, 1969.

for this system.
Case 3:J&E.This corresponds to a model exhibiting

uniaxial anisotropy. No completely satisfactory theory
exists that gives s, (q) for this particular case. However,
if J&)K, there are no compelling reasons for doubting
the validity of the conventional theory26'~ for the
critical slowing down of the system. The conventional
theory predicts that
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TAsr, z I. Expected critical behavior of anomalous ultrasonic attenuation, width of neutron
scattering peak, and NMR linewidth for some idealized model systems.

Model system

Isotropic Heisenberg ferromagnet
Planar Heisenberg ferromagnet
Uniaxial Heisenberg ferromagnet
Isotropic Heisenberg ferromagnet
Planar Heisenberg ferromagnet
Uniaxial Heisenberg ferromagnet
Spin-orbit coupling model

~&-5/3+lla /6+q1 /3-aq//6

~~-1+3a/2
~~-V+a
~~-1+3a/2
~e—1+3a/2

V+a

~q V+a

Peak width

~~5 /3-5a /6- r//3+at//6

~~1-a/2
~teV

1-a l2

~~1—a/2

~QV
~gV

XMR linewidth

~~1/3-V-a /6+q1 /3 —at//6

~&1-V-a /2

~g2 2V a
1-V-a /2

~(l—V
—a /2

~~2 2V a
~e2 2V a

' We expect Aa1 to be proportional to q2 for a11 of these model systems.

for a two-dimensional Ising system. This is an indication
that the critical index describing the relaxation of a spin
fluctuation may be different from that of the static
susceptibility, which is 7/4 for a two-dimensional Ising
system. "

We shall take Eq. (38) to hold for a uniaxial material,
and thus we expect that for such systems

60!~~6 ~+ (40)

and so we expect
g 4~ ~3/2~ ~3/2v

g~ ~~ i+3+/2

(41)

(42)

Case Z: ( E ( ) ~
J j. For this system the order param-

eter lies in the xy plane. Kawasaki3 claims that the
result for this case is the same as in case 1, i.e;,

qv~$ —S/S~ eq/2v

If this is the case, we would expect

~ g
—1+3~x/2

(43)

(44)

Case 3: ( J()~E(. Like the uniaxial ferromagnet,
there is no completely satisfactory theory for this case.
However, for very strong anisotropy it is reasonable to
expect the conventional theory' 3' to hold. This gives us

s,* 1/x, eq',

and so we expect

for the single-axis antiferromagnet.

C. System with Weak Spin-Orbit CoujpHng

We next consider a system in which the spin-orbit
coupling is suKciently weak that the orbital angular

'0 K. Kawasaki (private communication)."T.Moriyav Progr. Theoret. Phys. (Kyoto) 28, 371 (1962).

B. Heisenberg Antiferromagnets

The Hamiltonian for the Heisenberg antiferromagnet
is given by Eq. (32), except that the IC;; and the J,; are
such that it is energetically favorable for neighboring
spins to be aligned antiparallel. We again distinguish
among three different cases:

Case 1:E=J. This case corresponds to the isotropic
Heisenberg antiferromagnet. A fluctuation in the sub-
lattice magnetization relaxes according to ' '4

momentum and the spin angular momentum are in-
dividually good quantum numbers, but in which this
interaction is the dominant mechanism through which
a Quctuation in the order parameter relaxes.

In the mode-mode coupling formalism' this relaxation
rate may be written as

s, (tl,s) = —(jas(—tl)ZP(PZP —s) 'PZas(tl)
~ ) (47)

for a ferromagnetic system (for an antiferromagnetic
system we replace the as operators with as' operators).
We write the spin-orbit coupling term as

x,.=A+ L(R) S(R),

where L is the orbital angular rnornentum of the ion and
the sum is over all the magnetic ions. In terms of this
Harniltonian we can rewrite Eq. (4/) as

s, (q,s) = ev'q R—~q R'

h &(tl)/P„s R,R

X(i fo.(R),x„]P(PZP—s)
—'PLo (R'),x,.7i )

A.2

eiq R v'q R'(~ g. ,
—
(R) yS(R) j

X(e)/P/ s' R R'

&&P(P&P—) 'PLL(R') XS(R')3*l) (4~)

which gives us
s.(V)—1/&(V),

s.* 1/X ev

(So)

for this system.
The sound attenuation coefficient will then behave

like
(52)

where we have taken the z component of S to correspond
to the order parameter 0-.

L(R) is a highly localized function of position, and
this eliminates any long-range coupling between the
spins in the matrix element that could give rise to
critical behavior as T —+ T,. We also expect that
(PZP s) ' will essentia—lly be a time characterizing the
orbital electronic relaxation. This also should not
exhibit critical behavior. The entire matrix element will

be noncritical as T-+ T', . Hence, as far as its critical
behavior is concerned,
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TABLE II. Experimental results for anomalous ultrasonic attenuation in some magnetic insulators.

Material

EuO
RbMnF3

MnFq

CoO

Anisotropy
factor

4X10 4

5X10 '

3X10 ~

Apparent classi6cation

Isotropic ferromagnet
Isotropic anti-

ferromagnet
Borderline between

isotropic and single-
axis antiferromagnet

See text for discussion of structure

q3

behavior e range

Yes
?

No
Yes
Yes

?
No
No

No anomalous attenuation above T,
0.32 2X10 ~4X10 ~

O.T -1. 4X10-~ ?
0.14 10-~4X10-'
0.2 3X10 ~6X10 '
0.4 -0.5 3X10 ~3X10 '
1.6~ 6X10 '—
0.35 2X10 4—2X10 '
2.6 2 X10-3- 10-2

Ref.

4, 33
3, 34

33, 34
35'
32
36, 37
34
38
38

' These exponents are very uncertain because of the small values of the anomalous attenuation involved.

D. Sum. mary

In this section we have given the theoretical order-
parameter relaxation rates for various models of mag-
netic systems. Ke note that except for the spin-orbit
coupling model, any interaction between the spin
system and the lattice system was neglected in deter-
mining the order-parameter relaxation rate. Once the
relaxation rate s, is determined, we have predictions
as to the critical behavior of the anomalous ultrasonic
attenuation coeKcient, the width of the neutron scat-
tering peak in the E—+ 0 limit, and the NMR line-
width. We summarize these results in Table I.

V. DISCUSSION OF SPECIFIC MATEMALS

In this section we shall compare our theory with
experimental measurements. As calculations of s,*have
been made only for localized spin models, we shall
restrict ourselves to materials for which this is a good
approximation. In particular, we shall discuss several
insulators and rare-earth metals.

A. Insulating Magnetic Materials

A common feature of the magnetic insulators is the
presence of nonmagnetic anions as well as the magnetic
cations. Interaction between these two systems can give
rise to other relaxation processes besides these discussed
in Sec. IV. In Eq. (26), s,* is the actual relaxation rate
of a typical spin fluctuation. If there are various inde-
pendent relaxation processes, s * is the sum of the rates
from all relaxation processes. These processes are
governed by different dynamics and are affected differ-
ently by the onset of the phase transition, i.e., they will
be characterized by different powers of e. If one term in
s * is much larger than all the others, then its behavior
as T —+ T, will essentially determine the exponent y in
Eq. (1). As the critical point is approached, if this
particular term in s * is going to zero at a faster rate
than other terms, it may be that at some value of e

another term will begin to dominate s *, and we will see
a region where a different value of y appears. We thus
have the possibility of the exponent y changing to
smaller values as the critical point is approached. It is
interesting to note that in the magnetic insulators dis-

cussed below, where anomalous sound attenuation is
present, there is some experimental evidence that more
than one region of behavior exists for hu~(g).

In Table II" ' we give the experimental results for
An~(q) for Euo, RbMnFs, MnFs, and CoO. The
anisotropy factor is defined as

~ = Ll~(tl=0) I
—l&(a=0) I)/I J(a=o) I, (~3)

where J' and E are defined through Eq. (32). The
values" of A given in Table II are meant to give the
reader a qualitative feeling for how anisotropic a
material is.

1. EuroPium Oxide

EuO is a ferromagnetic insulator with Eu+' ions
forming an fcc lattice. The low anisotropic factor
indicates that it is probably well represented as an
isotropic Heisenberg ferromagnet. Experiments4" in
which longitudinal sound waves are propagated along
the

I 110) and L100) axes indicate that there is no
anomalous attenuation above T„but that there is a
very sharp rise in the sound attenuation as we pass
below T,.

In an isotropic system the diagonal component of the
stress tensor is given by

r"=—(~X/SV).

In the limit of weak coupling between the spin system
and the lattice system the magnetic portions of the
operators are what enter in Eq. (11).Luthi and Pollina'
have pointed out that for an isotropic Heisenberg
system in which the exchange coupling is of a strictly
nearest-neighbor type, the magnetic portion of the
stress tensor and the magnetic portion of the energy
density will both be proportional to the same linear
combination of nearest-neighbor operators. Hence, for

"B.Liithi, P. Papon, and R. J. Pollina, in Proceedings of the
Fourteenth Annual Conference on Magnetism (unpublished)."B.Luthi and R. J. Pollina, Bull. Am. Phys. Soc. 14, 418
(1968).

'4 B.Luthi (private communication).
3~ A. Ikushima Phys. Letters 29A, 364 (1969)."J.R. Neighbors and R. W. Moss, Phys. Rev. 173, 542 (1968).' R. G. Evans, Phys. Letters 27A, 451 (1968).
3&A. Ikushima, Bull. Am. Phys. Soc. 14, 418 (1969); Phys.

Letters 29A, 417 (1969).



626 G. E. I ARAMORE AND I. . P. KADANOFF

such a system,
~ ~

(55)

and the projection operators in Eq. (11) act to give a
zero result, and we would expect no anomalous sound
attenuation. From Eqs. (7) and (10), any magnetic
contribution to the sound attenuation would be due to
the magnetic contribution to the thermal conductivity
and would be nondivergent. This has also been noted in
Ref. 4. This is believed to be the explanation for the
lack of anomalous attenuation above T, in EuO. There
is also additional experimental evidence to support this.

In EuO it is observed" that the magnetic specific heat
C and the magnetic part of the differential thermal
expansion coeKcient P are strictly proportional to each
other at temperatures above T,. Since

and

8
C = (sc)

BT

8 8
P = ——',K U (X ),

BU BT

(56a)

(56b)

Z. Eubidhum Manganese Fluoride

RbMnF3 is an insulating antiferromagnetic having
the perovskite structure with the Mn+' ions lying on a
simple cubic lattice. The extremely small anisotropy
factor indicates that the material should be well repre-
sented as an isotropic Heisenberg antiferromagnet. We
would then expect the sound attenuation coe%cient to
behave like

2~—I+3%/2 f2~
—1 (57)

where the last follows because measurements" indicate
o.=0 for RbMnF3. Experimentally, ""there appear to
be two regions of behavior, with the region further. away
from T, roughly agreeing with Eq. (57) and the region
nearer T, having a weaker divergence. The change-over
occurs at a=4)&10 '. If this change in behavior is
attributable to the behavior of s,*, then it should be
observed in other phenomena as indicated in Sec. III.

The E —+ 0 neutron scattering peak has been deter-
mined for this material. 4' 4' In Ref. 41 there is an indica-

'9 B.E. Argyle, N. Miyata, and T. D. Schultz, Phys. Rev. 160,
413 (1967).

0 D. T. Teaney, V. L. Moruzzi, and B.E.Argyle, J. Appl. Phys.
37, 1122 (1968).' R. Nathans, I'. Menzinger, and S. J. Pickart, J. Appl. Phys.
39, 1237 (1968).

4g J. M. Hastins (private communication).

where ET is the isothermal compressibility of the
system, we can take this observation to imply

a(x )
(x )~

BU

Hence, independent of any specific model of the mag-
netic Hamiltonian for EuO, the experimental work
indicates that we should expect no anomalous sound
attenuation in this material.

tion that the peak width departs from an e' behavior as
T~ T,.+. In the temperature range studied by Gol&l-

ing, ' where 60.~ q'e '.", the behavior of the E~O
scattering peak can be approximately taken as

peak. width eo 4. (58)

This is in better agreement with the sound attenuation
work in this temperature region. However, there are
problems in taking the E—+0 limit particularly very
near T„and so this observation is by no means con-
clusive. More recent measurements of the peak width4'

give
peak width- e' (59)

for e&2.4&&10 ', and the width seems to extrapolate to
zero at T, if this power law is maintained. It would be
useful if precise measurements could be made of the
peak width for e in the range 10 '—10 4, for these would
clearly resolve the matter. I.et us consider possible
relaxation mechanisms in RbMnF3. In the "linear"
region, s is dominated by a process in which the order
in the sublat tice magnetization relaxes by the spin-
exchange process described in Sec. IV S. We can esti-
mate the relaxation rate in this region as (krrT, /h)e'
As T—+ T„ the contribution of this decay process
becomes less important.

We next note that the F"nucleus has a large nuclear
moment and has a 100% isotopic abundance in nature.
When the spin fluctuation region relaxes so slowly by
the spin-exchange process that it would exist for times
comparable to the precession time of the F" nucleus in
the effective field set up by the ordered moments, there
can be effective coupling between these two systems.
We would expect the relaxation rate due to this coupling
to be proportional to the precessional frequency of the
F"nucleus. Below T„4'

vrg(T) = vtg(0)M (T)/M (0)= vrg(0)eS. (60)

In the scaling idea" there is a symmetry in the order of
magnitude of fluctuations under the interchange
T, T + —(T, T—), and so—we—take Eq. (60) to hold
above T, as well when the effective field seen by the F"
is due to a fluctuation of the magnetic order parameter.
Near T, we thus expect a region where s,* et', and in
this region

(61)

which gives the right temperature dependence. How-
ever, estimates of vrg(0) clearly indicate that this effect
is much too small to account for the position of the
change-over at &=4&(10 '. We are unable to find a
relaxation mechanism that correctly describes the
behavior of RbMnF~.

We also note that if the contribution given in Eq. (10)
is divergent, as suggested by Wagner, " this could also
account for the changing of y to a smaller value as
T —+ T,+. In RbMnF3 most of the spin-system energy

4' P. Heller and G. B.Benedek, Phys. Rev. Letters 8, 428 (1962).
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TAsr, E III. Experimental results of anomalous ultrasonic attenuation in some rare-earth metals.

Material

Gd
Ho
Tb
Dy

Anisotropy
factor

5 X10-5
—7 X10 '
—0.4—0.3

1.2
2.0a
1.24.
2.37'

e range

20 '-10 '
3 X20-~20-'
7X20-3-20-&
3X10 3-10 '

Theoret.

7.6X20 '
3.4X10 9

4.7X20 '
3 OX10 '

Expt.

6.6X10-9
5.2 X20~
1.2X10 '
1.2X10 '

Ref.

1, 2 32
2 32
2', 32
2 32

' These experimental measurements are for the transition from the paramagnetic state to the spiral spin structure.

is due to nearest-neighbor exchange, and if the exchange
constants do not vary drastically with small changes in
the lattice parameter, the projection operators in Eq.
(11) could drastically reduce the calculated value of 8
given in Eq. (26). This could still be the dominant effect
relatively far from T, where 1/CT —1/C„=O, and this
would give y= 1.However, nearer T, when 1/C~ —1/C~
=~ l»~I/Cv' (taking C„=C~+A llncl)~ the contri-
bution of Eq. (10) could dominate, thus giving rise to a
smaller value of y.

3. MamgarIese IiLNoride

MnF~ is an insulating antiferromagnet having the
rutile structure. The Mn+' ions form a body-centered
tetragonal unit cell. The direction of easy magnetization
is along the c axis. Its anisotropy factor is such that it is
borderline as to whether it should be compared with an
isotropic or a single-axis antiferromagnet. It seems to us
that because of its structure it is more likely that the
single-axis model is a better representation. This choice
is consistent with the NMR linewidth measurements on
this material, "which give the NMR linewidth diverging
like ~e ".This gives s,* ~" ", depending on our
choice of u and y. (For MnF2, "y -', and +&0.16.) The
%MR linewidth measurements are in the region
2)&10 2& e& 5/10 4. In this same temperature
region, ""' dng appears to diverge at a much slower
rate than we would expect from s *~a" ".It may be
that this low value of y is due to another relaxation
process taking over, but it is strange that it would not
show up in the NMR work. There a,re indications'4 tha, t
for e&6X10 ', Do. ~ diverges a,t a faster rate than it does
closer to T,. Proba, bly the sa,me mechanism giving rise
to the odd behavior of y for RbMnF3 is in operation
here, and so the remarks made in Sec. V A Z may be
relevant for this material also. Ikushima" indicates that
the q' behavior may not hold either for this material.
He finds he~ going like g" '8. If we are out of the region
where the q' behavior is found, then we no longer expect
our theory to hold.

4. CobaLt Oxide

CoO is an insulating antiferromagnet with the Co+'
ions forming an fcc lattice. Below T, the ordered struc-
ture consists of the spin sites in (111) planes being
ferromagnetically ordered with the moments in ad-
jacent planes being oppositely directed. The actual

direction~ of the magnetic moments lies close to the
t 117) direction. We hesitate to characterize this struc-
ture by any of the models in Sec. IV.

For longitudinal sound waves propagating in the
L100$ direction there were found to be two distinct
regions" of behavior for 60.~. The wave-vector de-
pendence was observed to go as q' rather than as q'.
There was also found to be strong attenuation of shear
waves propagating in this material, and the anomalous
behavior for the shear waves was similar to that of the
longitudinal waves. The presence of the q' behavior
indicates that this material lies outside the region of
validity for our theory.

B. Rare-Earth Metals

The rare-earth metals crystallize in a hcp form. Their
magnetic properties are due to the deep-lying 4f elec-
trons on the ion cores. The ions are in a +3 valence
state and interact with each other through the conduc-
tion electrons by means of a Ruderman-Kittel4' type of
interaction. This gives rise to effective exchange con-
stants that are long-ranged and have an oscillatory
nature, and hence is why these materials exhibit such
intricate magnetic structures. 4' '" Strong spin-orbit
coupling is present in these materials, and the ion spin
and orbital angular momentum are tightly coupled to
form a state of definite total angular momentum. In
general, besides the kinds of anisotropy described by
Eq. (32) there is also anisotropy within the basal planes
of these materials. It is not completely clear how this
anisotropy will affect the relaxation ra, te s, . If it is
strong enough to pin the spin system and prevent a
uniform precessional mode from existing, it is reasonable
to suppose that the conventional theory' '3 of spin
relaxation will hold, which means that

s,* 1/x- e&. (62)

Because of the long-range nature of the exchange inter-
action in the rare-earth metals, the projection operators
in Eq. (11) will not greatly reduce the value of 8 given
in Eq. (26). Hence, even if the contribution of Eq. (10)

'4 W. L. Roth, Phys. Rev. 110, 1333 (1958); 111, 772 (1958).
4' M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954).
46 D., H. Martin, 3fagnetzsnz in Solids (The MIT Press, Cam-

bridge, Mass. , 1967).
4' B. R. Cooper, in Solid State P/zysics, edited by I'. Seitz, D.

Turnbull, and H. Khrenreich (Academic Press Inc. , New York,
1968).
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is divergent, it will not be observed, and Eq. (26) will

give a good estimate for he~.
In Table III we give the experimental results for 60.~

for Gd, Ho, Tb, and Dy. The attenuation coefficient is
for sound propagating along the c axis of these materials.
In all cases ha& is proportional to q'. The anisotropy
factor is defined through Eq. (53). In these materials
only one region of behavior of the critical exponent y is
observed. Ke can thus assume that the dominant
contribution to s * scales like an energy characterizing
the magnetic transition, i.e.,

s.*i,=i=ks 7,/h. (63)

Usjng Eq. (63) in Eq. (26), we can estimate the tem-
perature-independent coeS.cient 8 as

c'pAyt' 1 dT.)'
t,a (r, dp

1. Gadolinium

At T,=292'K, Gd orders into a ferromagnetic state
with the net moment lying along the c axis. The aniso-

tropy factor in Table III corresponds to the region near
1'„and because of its low value it appears that Gd
should be considered as an isotropic ferromagnet. As the
temperature lowers, the anisotropy factor passes
through zero and changes sign. The material remains a
ferromagnet, but the orientation of the net moment
migrates from the c axis to an easy direction in the basal
plane. 4' "

For an isotropic ferromagnet we expect

~2~
—5/8+ii+/6+g/8 —Nq/6

and experimentally' for Gd

~F6 1 2~ 1

(65)

(66)

It is doubtful that Eqs. (65) and (66) can be reconciled.
In measuring the magnetic susceptibility of single-

crystal Gd, Graham" found a significant difference
between the cases when the applied Geld was parallel to
the c axis and when it was perpendicular to it. His

D. B.McWhan and A. L. Stevens, Phys. Rev. 154, 438 (1967).
49 Q. D, Graham, J. Appl. Phys. 36, 1135 (1965).

In Table III we compare our predicted coefficient in
Eq. (64) with the coefficients determined in Ref. 2 at
&=0.01 and i =50 MHz. In evaluating Eq. (64) we use
experimental measurements of d2', /dp from Ref. 48 and
the sound velocity measurements from Ref. 2. YVe also
use the result of a mean-field-theory calculation for a
hcp structure having only a nearest-neighbor inter-
action to estimate $i;=a/g6, where a is the nearest-
neighbor distance. There is a good order-of-magnitude
agreement between theory and experiment, which is all
we can hope for due to the crudeness of our estimate of
B. This is still very encouraging, since it indicates that
the correct attenuation mechanism has been considered.

results indicate more uniaxial anisotropy than given by
the factor in Table III. If we were to consider Gd as a
uniaxial system, we would obtain

Q~ ~(2~—y+a (67)

Qo ~~26 1+Su/2
7 (68)

exactly the same as for the isotropic Heisenberg anti-
ferromagnet. If +=0, then

~n)-q'e ')

which is what is observed for Ho.

3. Terbium

(69)

At T~=228'K, Tb orders into the spiral spin struc-
ture described in Sec. V 8 Z. Then at T,=222'K, the
spiral ordering changes into a ferromagnetic ordering in
which the net magnetization is along one of the easy
directions in the basal plane. An increase in the sound
attenuation is observed as each critical temperature is
approached. The relatively high critical temperature
for the transition to the ferromagnetic state seems to
indicate a rather strong anisotropy within the basal
plane. Assuming that this is strong enough to pin the

which is in better agreement with Eq. (66) (Graham4'
gives y=-', and Kadanoff et al."give a&0 16).

Although a free Gd+' ion is an 5-state ion, in a crystal
the ground state may have some admixing of higher
momentum states. The weak spin-orbit coupling model
described in Sec. IV C may hence have some relevance
for Gd. It is difFicult to know how to classify this
material.

Z. Holmium

At T~= 132'K, Ho orders into a spiral spin structure.
In this structure the spins lie in planes perpendicular to
the c axis with the spins in a given plane being ferro-
magnetically aligned. The alignment direction within
the basal plane changes by a fixed angle between ad-
jacent planes, and so the spin direction spirals in a circle
as we move along the c axis. The turn angle between
layers varies with temperature. At T,=19' the spin
direction tips out of the basal plane and has components
both parallel and perpendicular to the c axis. ' The
component perpendicular to the c axis continues to
rotate as in the spiral spin structure but now there is a
net moment along the c axis.

The anisotropy factor in Table III is such that it is
not clear whether Ho should be considered as an iso-
tropic antiferromagnet —especially in view of the diffi-

culty with Gd that appears to arise from a smaller
anisotropy factor. Also, the spiral spin structure of Ho
is nothing like the "normal" structure of an isotropic
Heisenberg antiferromagnet (the magnetic structure of
RbMnFq). The anisotropy in Ho is planar, so perhaps a
good representation of the system is the planar model
in Sec. IV A. This gives



ANOMALOUS U LTRASO N I C ATTE N UAT I ON 629

spin system, Eq. (62) indicates that

Da.~~q2e ~+~ (70)

where 8 is essentially temperature-independent, and
the relaxation rate of a typical spin fIuctuation is taken
as

which closely agrees with the experimental result' of (75)

for typical values of y and o..

4. Dysprosium

At TED=177'K, Dy orders into the spiral spin struc-
ture described in Sec. V 8 Z. Then at T,=85'K, the
ordering becomes ferromagnetic with the direction of
magnetization lying along one of the easy directions in
the basal plane (just as for Tb). The sizes of the two
critical temperatures seem to indicate that the relative
strength of the anisotropy within the basal plane is not
as great for Dy as it is for Tb. Agreement with the
experimental result' of

(72)

can be obtained if this anisotropy is large enough to pin
the spins such that Eq. (62) holds.

We also note that there is significant attenuation of
shear waves in this materiaP with

(73)

This would have to arise from terms in the Hamiltonian
other than the volume magnetostriction term which our
calculation uses in a phenomenological way.

VI. SVMMARY

In this paper we have presented a calculation of the
anomalous attenuation of long-wavelength longitudinal
sound waves as the magnetic critical point is ap-
proached. In this calculation we assumed a homogen-
eous model in which the specific details of the lattice
were ignored. There were found to be two contributions
to the anomalous sound attenuation. The first involves
a coupling of the phonons to the energy density of the
spin system, and it gives a contribution going as the
thermal conductivity. This is nondivergent for a ferro-
magnetic system, but its status for an antiferromagnetic
system is unclear. The other attenuation mechanism is
the absorption of a phonon and the emission of two spin
Quctuations. We found that its contribution to the
anomalous attenuation coeKcient could be written as

as T~ T,+. We then pointed out two ways of deter-
mining x experimentally, but unfortunately no given
material has been adequately studied by neutron scat-
tering or NMR in the temperature region where the
sound attenuation measurements were made. Such a
study would check the critical exponents given in
Sec. III C.

%'e also gave the results of calculations of s * for
various model systems and indicated how we expected
the anomalous attenuation to behave for these systems.
In making comparison between our theory and experi-
mental measurements on real systems, we ran into
de.culty because of the complexity of real materials.
Except in one instance (i.e., CoO), the qs behavior in
Eq. (74) was observed to hold. Materials in which non-

magnetic ions as well as magnetic ions were present were
observed to have different values for x in diferent
temperature regions. This may be due to more than one
relaxation mechanism contributing to s . However, if
the thermal conductivity contains a divergent part for
antiferromagnetic systems, then this could also account
for the observed behavior. More work will be necessary
in order to clarify this point. For the rare-earth metals
we were able to estimate the size of the coeKcient 8 and
obtain reasonable agreement with the experimental
results. The one material in which there was no anomal-
ous attenuation above T, could be explained within the
framework of our theory.

We conclude that our calculation appears to have
some validity for most of the materials considered in
this work, but we note that there is still much work to
be done in order to explain the existing experimental
results completely.

Note added irI proof Luthi et al.."have discovered that
the Gd sample discussed in Refs. 1, 2, and 32 was
unusually anisotropic. Hence, it is reasonable to treat
this particular specimen as a single-axis anisotropic
material. Attenuation measurements were then made
on an isotropic specimen of Gd with a critical exponent
y=1.6 being found. This is in excellent agreement with
Eq. (65).

AQ)= Bg Q (74)
"B.Liithi, T. J. Moran, and R. J. Pollina, J. Phys. Chem.

Solids (to be published).


