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The recent observation of two-, three-, four-, and five-magnon bound states in the linear chains of
CoC12 2H20 has prompted a theoretical examination of such states in an anisotropic linear ferromagnetic
chain with S= &. A new method called the Ising-basis-function (IBF) method is developed. This method
treats the conventional, localized Ising wave functions as Wannier functions, from which a complete,
orthonormal set of Bloch functions (IBF's) is formed, Using these IBF's as basis functions, we obtain the
expression for the energy of the two-magnon bound state originally found by Orbach for general longi-
tudinal exchange anisotropy. Furthermore, we can calculate the energy of the (n&2)-magnon bound
states for the case of strong longitudinal anisotropy. The method is also applied to describe the effect of
transverse exchange anisotropy. It is shov n that this anisotropy causes an interaction between bound
states, particularly important near zero field, and gives rise to a finite probability of exciting the bound
states by photon absorption. The generalization of this method to treat bound states in two and three
dimensions and for 5&—, is also discussed. The method is simple and has a direct physical interpretation.
As an example, a physical description of the two-magnon bound state in a general system is given. Since
the IBF method automatically contains some of the magnon-magnon interactions in zero order, it should
be useful in other problems where these interactions are important.

INTRODUCTION

A SIMPLE starting point for a discussion of
magnon bound states is the Ising model. Ke

consider a general spin system where each spin S is
coupled to its p nearest neighbors by a ferromagnetic
exchange interaction J. According to the Ising model,
the appropriate Hamiltonian is given by

aC= —P JS,'S+s' —P giitstsIIvS'*,

where S may take on the values' 5, S—1, . . . ,
—S.

The external magnetic field IIO is along the axis of
magnetization s, and the corresponding spectroscopic
splitting factor is gil. The elementary excitations of
this system are conveniently described in terms of
spin clusters: an e-fold spin cluster is defined as e
izeighborieg spin deviations. The excitation energy E„
of such an rt-fold cluster may be calculated' from (1):

e-fold cluster from the energy of m unclustered exci-
tations. For the special case of a nonoverlapping string
of e spin deviations, e'= e—1. Examples of the energies
of such clusters, ~rt), are plotted versus the applied
field in Fig. 1. In this figure the energy and field scales
have been normalized so that the onefold cluster
energies E1 are the same.

The dependence of spin clusters on p and S is con-
tained in (2). The energy E of an rt-fold cluster is lower
than the energy eE& of e independent spin deviations
by the binding energy 2e'J. For any particular cluster
configuration, this binding energy depends only on J.
However, if p and/or S were larger, both E„and rtEt
would be larger, while the binding energy would remain
the same. Thus, the relative binding energy is smaller
for larger pS, as is illustrated in Fig. 1.

In the presence of transverse components of the
exchange interaction, the first excited state is a (non-

with
E„(rt')= n E,—rt'2J

Ei——2PS 7+giitsttIiv,

E

where E& is the energy necessary to excite a single spin
deviation and e' is the number of bonds between
neighboring spin deviations. This result may be inter-
preted as showing that there is a binding energy 2J
for each such bond, which lowers the energy of the
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' Strictly speaking, the Ising model refers to this Hamiltonian
with S=-,', so that only two states are possible at a given site.
We shall, in fact, concentrate on that case, but some general
points can be illustrated by first considering a more general
model in which S is unrestricted.

' J. B. Torrance, Jr., Ph. D. thesis, Harvard University, 1968
(unpublished); Harvard University, DEAP, Technical Report

o. 1, 1969 (unpublished).
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I'io. 1. The Ising energy spectrum for n-fold clusters
for (a) pS=6 and (b) pS=1. (Here e'=n —1.) For ease of com-
parison, the energy scales are in units of 2pSJ and the magnetic
6eld scales have been normalized by similar factors so that the
one fold cluster energies are the same in (a) and (b).

~
1,1) and

~ 1,1,1) represent two and three onefold clusters, respectively.
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localized) magnon or spin wave. The spectrum of the
higher-excited states is more complicated than the
simple Ising result (Fig. 1). Nevertheless, excitations
which resemble e-fold clusters may exist, i.e., there may
exist n-spin excitations whose energy is less than the
energy of e spin waves; these are called magnon bound
states. In this case the binding energy, trivially ob-
tained with the simple Ising model, is viewed as arising
from the (attractive) interactions between rnagnons.
From either viewpoint, however, the interactions giving
rise to bound states are most important in the case of
the linear chain with S=-„where PS has its minimum
value 1. For this reason, and because of its relevance to
our experimental results on CoC12 ~ 2H20, ' 4 we shall
henceforth restrict our attention to this case.

Although the exchange interaction is often nearly
isotropic, the anisotropy of the exchange is crucial for
the existence and observation of magnon bound states.
It is convenient to decompose the general exchange
Hamiltonian (4) as follows:

where
X=X'+X'+X,

X'= —g (2J"5'5„+i'+g psHpS')

X'= —P j'(5~+5;~t +5, 5;~i+), (7)

X'= —Q J (5,+5;pi++5, S,pi ),

with
5,+=5 &pS y J'=—-'(J**+jyy)

ja—1(jyy Jyy)

X is the Ising part of the Hamiltonian, while X'
contains the effects due to the mean transverse com-
ponent J' of the exchange. The amount of longitudinal
exchange anisotropy is measured by J"—J', and J
is a measure of the transverse anisotropy.

This problem has been solved for several special
cases. For example, the solution for a pure Ising
exchange interaction, i.e., J'= J =0, is described in
the Introduction. The eigenfunctions are e-fold clusters:
an e-fold cluster in an 5= ~ linear chain is de6ned as m

' J. B. Torrance, Jr., and M. Tinkham, J. Appl. Phys. 39, 822
(1968); Bull. Am. Phys. Soc. 13, 390 (1968).

4 J. B. Torrance, Jr., and M. Tinkham, following paper, Phys.
I&ev. 187, 595 (1969).

LINEAR FERROMAGNETIC CHAIN WITH S=
~

The general exchange Hamiltonian describing the
5= —,

' linear chain is given by

2+(jzzS,zS, z+jxxS,zS. g+jyyS, yS. y)

—2 giv aHpS, ' (4)

adjacent spins which are reversed with respect to the
majority of the spins on the chain. ' These clusters
correspond to e-magnon bound states and their energy
is )from (2) and (3) with n'=rp 1)—given by

Physically, Zeeman energy is associated with each spin
in the cluster, while exchange energy (2J") is lost only
at the ends of the cluster, giving a contribution in-
dependent of the size of the cluster.

In the case of pure Heisenberg, or isotropic, exchange,
i.e., J"=J' and J =0, Bethe' found that e-magnon
bound states exist in the 5= —,

' linear chain and that
their energy is given by

E„(K)= (2j"/n) (1 cosKa—)+pig„lj,sH p (11)

where E is the total momentum.
For arbitrary j'=—j'/ j'*, conventional spin-wave

theory~ gives the energy for one-magnon excitations:

Et(K) =2J"(1—j' cosKa)+g»IJ&H p.

Note that the energy at E=O, measured in ferro-
magnetic resonance experiments, is decreased from the
Ising value linearly in j'. The energy for the two-
magnon bound state for arbitrary j' has been obtained
by Orbach':

Ep(K) = 2j"[1—(j')' coss ,'Ka j+2g„-ljsH p. (13)

Note that (12) and (13) agree with (10) for j'=0 and
with (11) for j'=1.

Wortis' and Hanus' have used Green's functions to
calculate the energy of the two-magnon bound state in
one, two, and three dimensions for arbitrary spin S.
Their results are qualitatively similar to the discussion
of the Ising model in the Introduction.

Recently, magnon bound states with up to 6ve
magnons have been observed in far infrared measure-
ments' ' on CoC12 2H~O. These experiments also
reveal important effects due to transverse exchange
anisotropy, Eq. (8). It appears difficult to extend the
exact solutions of Bethe, Orbach, Wortis, or Hanus to
include this anisotropy or to describe bound states for
&~) 2. For this reason, a new approach was developed.
This approach is based on the Ising model and has the
advantage that it is simple and that some of the magnon-
magnon interactions are automatically included. We
start with the Ising solution and consider the effects
on this solution caused by X', (7), and X, (8).

'M. Date and M. Motokawa, Phys. Rev. Letters 16, 1111
(1966); J. Phys. Soc. Japan 24, 41 (1968).' H. A. Bethe, Z. Physik 71, 205 (1931).'F. Keffer, in Handblch der I'hyszk, edited by S. I'lugge
(Springer-Verlag, Berlin, 1966), Vol. 18 (1966).' R. Orbach, Phys. Rev. 112, 309 (1958).

9 M. Wortis, Phys. Rev. 132, 85 (1963); N. Fukuda and M.
Wortis, J. Phys. Chem. Solids 24, 1675 (1963)."J.Hsnus, Phys. Rev. Letters 11, 336 (1963); J. G. Hsnus,
MIT Solid State and Molecular Theory Group, Quarterly Progress
Report, Nos. 43, 44, 46 (unpublishedl.
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ISING BASIS FUNCTIONS

In order to progress from the Ising results, we
abandon the traditional localized Ising wave functions
in favor of Bloch functions, which are known to be
appropriate for any periodic Hamiltonian. (We imagine
the linear chain looped to form a circle of 1V spins. )
For example, the Bloch function corresponding to a
onefold cluster S; ~0), localized at R;, is the ordinary
spin wave given by

reduces to (1/), the expression for the twofold cluster;
this case must be treated separately because it has a
different Ising energy.

Just as the Ising excitation with deviations at Rq
and R2 is equivalent to the one with deviations at
E2 and R», the IBF with p is equivalent to the one
with —p, and also to the one p+/V (since we consider
a circular chain of /V spins). For these reasons, we
consider the following values of p.

1/JV &&2 P e'xtt;S —
) ())

2&t&&-',X, (even X)
2&p&-', (E—1) (odd N) .

(19)

(P; E)=1/1Pt' g e'x~~P; ~t0). (15)

Physically, (15) represents a normalized linear combina-
tion of localized functions centered at all possible
sites 8; with the familiar e'~~& phase factor. These
functions are called Ising basis functions, Ising Bloch
functions, or simply IBF s. Since the Hamiltonian is
periodic, the total momentum E is always a good
quantum number and is used to label the Ising Basis
Functions. The center of "mass" 8;, conjugate to the
total momentum, is determined as follows: If a localized
excitation centered at 8, contains e spins deviated at
Rt„(v=1, 2, . . . , n), 8; is given by

1 n

I/; = Pzt„. -
g, v=1

The Ising basis functions are best described by
giving a few more examples:

as first shown by Bloch."
Ke now generalize this result to more elaborate

excitations by considering an operator I';. When this
operator acts on the ground state, it generates a particu-
lar localized Ising excitation Pt~0), centered at 8;.
Treating this as a Wannier function, " we form the
Bloch function corresponding to P;

~
0) as follows:

For BC=Xt, (6), the two-onefold-cluster level is Q-fold
degenerate, where Q is the number of possible values of t&

determined by (19).For odd 1V there are Q=-', (cV—1)—1
values of p. Including the twofold cluster, there are
Q+1 IBF's to describe the possible states with two
spin reversals for each of the E values of E. The total
number of functions (for odd 1V) is then given by

Zr (Q+1) =-', N (X—1)=
~

//V q

E2)
' (20)

XS; S;~o St.+o+t 10) ~ (21)
where 2&p&E—3.

(4) For the three onefold cluster

St St+or St+oe I0)~

as required. There are also -', 1V(tV—1) functions for the
case of even E, but the counting is more subtle. Other
IBF's containing two clusters are also characterized
by a parameter p. For example:

(3) For the onefold-plus-twofold cluster

S; S,po St+o+r I0))
the IBF is

~
1,p, 2 Z) = (1/QX)Q e'xi~t+t'o+'&'t'&

(1) For the twofold cluster S; St+& )0) the IBF is the IBF is

~2; E)=(1/gE)p e' &"t+'t'&S, S+, )0); (17) ~1 p&1 p21; E)=(1/gE)p e'xi~'+t"+"'t"

(2) For two onefold clusters S; S,+, ~
0), the IBF is

t 1,p, 1;E)= (1/gtV)g e' &~t+oe"&S, S;+, ~
0). (18)

As seen. in (18), this IBF is characterized. by a parameter
p, in addition to E. Physically, pa is the separation
between the two spin reversals which form the onefold
clusters. For $=2, the two spin reversals may not be
on the same site, and hence p may not take on the value
zero. For p= 1 (neighboring spin deviations), (18)

XSr St+.i St+.u Io), (22)

where there are complicated restrictions on p» and p~.

Ising basis functions corresponding to other local Ising
ex'.tations may be similarly defined.

Since the localized eigenfunctions P;~0) of the Ising
Hamiltonian form a complete orthonormal set, the
Ising basis functions also do (as in the case of Wannier
functions"). This fact enables us to 6nd the solution to
a general, time-independent magnetic problem,

"F.Bloch, Z. Phyeik 61, 206 (1930); 74, 295 (1932). (23)
"G. H. Wannier, Etemertts of SoM State Theory (Cambridge

University Press, London, 1960). by expressing the eigenfunctions
~
tt) as linear combina-
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tions of the Ising basis functions ln):

I~&=Z c.,.l~) (24)

EFFECTS OF K'
Ke temporarily neglect any effects due to X' and

consider the Hamiltonian X=XI+X'. Since the
5,'5;+y' and 5;+5,+~ terms of X leave the total number
m of spin reversals unchanged, the problem for each m
value may be solved separately. The m=0 subspace
contains only the ground state, where all of the spins
in the chain are up. The ground-state energy is defined
as zero. The subspace with one spin reversal (m=1)
is spanned by the onefold cluster IBF or spin-wave
sta, tes. In addition to the Ising energy Er, Eq. (10),
of the onefold cluster IBF, there is a diagonal matrix
element of BC', so that the energy of the spin wave is
given by

Z, (E)=Z,+(1;E IX'l1; E)
=2(J"—J' cosEa)+giipsHo,

which is the familiar expression of spin-wave theory,
Eq. (12).

Two-Magnon Bound State

For given E, the Ising basis functions for the case of
two spin reversals in a linear chain are the twofold
cluster IBF,

I
2; E), and Q two-onefold-cluster IBF's,

I I,p, 1;E). For Xr, these IBF's are eigenfunctions with
energies E2 and E~ ~=2Ej, respectively. The effect of
including X' is to cause a coupling among these Q+1
different IBF's. For example, the 5;+5,+~ terms in X'
will couple the twofold IBF to the two onefold IBF
which has p=2. Similarly, the state with p will be
coupled to the states with p+1 and p —1. If we use the
expressions (17) and (18) for the IBF's to calculate
these matrix elements, we find'

The solution to (23) is then given by

«tL(PI XI~)—&.~-,sj=0 (»)
If one takes cV terms in the expansion (24), the secula, r
determinant will be E )&iV .

zero and single IBF's are not eigenfunctions. Rather,
the two-magnon bound state, for example, will contain
not only the twofold cluster IBF but also an admixture
(via et) of the p=2 state, which in turn is coupled
(by e2) to p= 3, etc. Thus the two-magnon bound state
generally contains a superposition of p= 1, 2, 3, 4, . . . ,
and the two spin reversals have some mean separation
pu)u. The energies of all the states are calculated in
the Appendix using the IBF method, and they are
plotted in Fig. 2 versus the coupling between the
IBF's, lel =2J'cos2Ea. A qualitative description of
this calculation is given in the following paragraphs.

Temporarily neglecting the effects of et, the Q ( —,'iV)
degenerate I1,p, 1;E) states are coupled by e2. This
coupling causes the levels to repel one another and form
a continuous band of energies, whose width 4I e~l is

proportional to the coupling strength (Fig. 2). Accord-
ing to the IBF method, this band is formed by states
with differing values of p, the separation between spin
reversals. The simple spin-wave theory predicts an
identical band, which is formed by the states of two
noninteracting spin waves with diff erent relative
momenta. ' From either point of view, the unbound
magnons form an energy band or "continuum" of
states, centered at the Ising energy E~,~= 2E~.

The coupling of these states to the twofold cluster
IBF caused by et is shared by all of the Q coupled
states, so that e& alters the energy of the band only to
order 1/Q ( 2/cV). The energy of the two-magnon
bound state is lowered due to t. ~ as if this state were
coupled to (and hence repelled from) a single level at the
center of the band. This is illustrated in the expression
for the bound-state energy, Eq. (13), which is just
what would be expected from second-order perturbatlon
theory, with an interaction et, Eq. (26). For larger
values of e, the continuum is broader, while the bound-
state energy falls. Although the width of the continuum
increases linearly in e and the bound-state energy falls
only quadratically, the latter lies outside the continuum
for all &(1, i.e., in the S=-,' linear chain the two-
magnon bound state exists for all cases except when

e, : (2; E IX'I 1~p, 1;E)= —2J' cos-', Ea bp, ~=—er|'p»
e, : (I,p, 1; EIX~I I,p', I; E)

2J cosgEG(8p pi+r+ 5p pi r)

= e2(~p p'+t+~p, p' t)~—(26)

4J

For J'=0 or E=&~/a, et= e~=0. In this case the
two-magnon bound state corresponds exactly to the
twofold-cluster IBF and contains only two neighboring
spin reversals. The Q unbound magnon states corre-
spond to the two-onefold-cluster IBF's with energy
E~ «=2E~. These two results are exact. On the other
hand, if J'&0 and L is away from the Brillouin zone
boundary, the off-diagonal matrix elements are not

2J

je I/2 J"
FiG. 2. The energy of the two-magnon bound state (lower

curve) and the continuum (shaded area) are plotted as a function
of the coupling p between them, where

~

p (
=27~ cos(~E'ol.
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j'=1. and' E=O. The energy expression for the two-
magnon bound state obtained using the IBF method
(see Appendix) is the same as that found by Orbach, '
Eq. (13); we have derived it in a different manner as
an example of the IBF method and in order to show the
physical interpretation of the results.

p JZZ PJZZ

n-Magnon Bound States for n)2 JO—=0
JZZ

JO—= 0, 10JZZ

Bethe' has found an expression, Eq. (11), for the
energy of the e-magnon bound sta, te for the special
case of isotropic exchange (j'=1). Also, in the Ising
limit (j'=0), one may calculate the II-magnon bound-
state energy, (10). In general, however, the problem
of e spin deviations, like the e-body problem, cannot be
solved exactly without additional constants of the
motion. We now indicate how the IBFmethod provides
a convenient approximation scheme for the general
case.

If we start from the Ising solution, the 5;+5,+~
terms in X', Eq. (7), couple the e-fold cluster IBF
directly to the onefold-plus-(Ii —1)-fold cluster and
indirectly to the other clusters in the m=e subspace.
In the case of strong longitudinal anisotropy in the
exchange [(J')'(((J*')'], these couplings due to X' are
small and, for the purpose of calculating the energy
of the e-magnon bound state, theindirect couplings may
be neglected. ' That is, for large longitudinal anisotropy,
the e-magnon bound state consists mainly of the
Ii-fold cluster IBF and the onefold-plus-(II —1)-fold
cluster IBF's. This reduces the problem to one similar
to that of the two-magnon bound state, in that the
state is approximately spanned by a single IBF and a
set of Q deg'enerate other IBF's. Using these IBF's,
we may calculate the matrix elements of 3C' connecting
these states:

(~; @~X'~1,p, (~—1);X)
Ji(& iI&n/n// + e—iKn/ng )

(27)
ei. (1,p, (n —1);EiX'j l,p', (I—1);E)

Ji(e iICn/ng, —+SiIrn/ng, )

It is possible to use these matrix elements and carry
out the detailed solution' in much the same way as
for the two-magnon bound state (Appendix), but, as in
that case, it is much easier simply to use perturbation
theory. From (27), the Ii-fold cluster is coupled by e3

to two states, both with energy 2J" relative to the
cluster; hence

Z„(Z)=Z.—2~ ~, ~2/2J-
=2J"(1—

2 (j')'$+egii/iaHO,

valid for e) 2 and (j')'((1. In Fig. 3(a) the spin-wave

energy, Eq. (12), and the bound-state energies, Eqs.
(13) and (28), are plotted versus Ho at IC=O and
for jl 1

(0)

Ho

FIG. 3. The effects of BCL and K on the n-magnon bound-state
energies at E=0 for j~=—J~/J"= -': (a) j"=0; (b) j =0.10, wherej =J /J". Compare with Fig. 1(b), in which j~=j =0. The
level 2J"on the ordinate here corresponds to unity on the ordinate
of Fig. 1(b).

From (28), note that there is no dispersion in the
bound-state energy for m&2, i.e., the slight downward
shift from the Ising energy, (10), is independent of E.
Mathematically, the difference in the form of the
two-magnon bound-state energy, Eq. (13) (which ha, s

dispersion), and the energy for Ii)2, Eq. (28), arises
from the different form of the matrix elements, (26)
and (27), of X'. The source of this difference is the fact
that the state of two onefold clusters separated by pa
is equivalent to the state where they are separa, ted by—pa, but this is not true for the onefold-plus-(/I —1)-fold
cluster states for e&2.

For X=XI+X', the energy of the Ii-magnon bound
state (Ii)2) for j'=1 is given by (11), while for
(j')'((1 it is given by (28). Although it appears difFicult
to obtain an analytical expression for the energy for
arbitrary j', we can predict the qualitative behavior
of the solution between the two above limits. Ke are
interested in the bound-state energy as a function of
K for Ho= 0, as we imagine j' to be increased from 0
to 1. For j'=0, the energy is equal to the Ising energy
2J",which is independent of e aed E.As j' is increased,
the energy initially remains approximately independent
of e and E, but is decreased quadratically in j~, Eq.
(28). This decrease may be pictured as arising from the
coupling with the onefold-plus-(Ii —1)-fold cluster state.
As j' is further increased, the coupling to higher cluster
levels causes the energy to depend on both e and E.
Since there are more interacting levels for larger e,
these decreases are larger for larger n. The energy also
falls more rapidly for small E than large E, giving rise
to dispersion. In the limit of j'= 1, the exact result (11)
shows that the E=O energy is decreased to zero (for
HO=0) and the zone-boundary energy is 4J**/e, which
is less for larger e, consistent with our discussion. This
picture would indicate that e-magnon bound states
exist for all e and all E)0 for arbitrary j'.

In CoC12 2H20, j'=0.15 and the decrease predicted
from (28) is 0.3 cm '. This decrease is too small to
permit experimental confirmation of (28) with certainty,
but the data appear consistent with the predictions. 4
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EFFECTS OF K

X, Eq. (8), is caused by a transverse anisotropy in
the exchange interaction, i.e., an inequivalence of the
x and y directions. This anisotropy greatly complicates
the problem of the linear chain, but is found to be
extremely important in the experimental measurements4
on CoC12. 2H~O. X contains S. 5+~ and S.+5;+~+
terms, which create or destroy two spin deviations.
This is, therefore, a Anz= &2 term which can cause a
coupling between states with different m values. For
example, the e-fold cluster IBF is coupled to the
(v+2)-fold and the (e—2)-fold cluster IBF's. This
coupling may be calculated2 using the appropriate
IBF's, giving

The presence of BC, therefore, alters the ground
state. Mathematically, this problem is quite similar to
the antiferrornagnetic ground-state problem~ (but there
the complications are caused by J'). As in that case,
the problem is particularly difficult when examined in
terms of the elementary excitations from the fully
aligned ground state. From that point of view, there is a
~m=2 coupling between the twofold cluster and the
ground state which admixes even-fold clusters into the
ground state, decreasing the magnetization. As in the
antiferromagnetic problem, we assume that the energy
required to create an e-magnon bound state from this
new ground state is negligibly different from the energy
required in the case of the fully aligned ground state.

e; E
I
X'I (m+2); It )=—2J' c'ossa. (29) CONCLUSION AND GENERAL DISCUSSION

We now consider the effects of X on the solution to
X=Xr+X'

l Fig. 3(a)g. The interaction (29) between
levels caused by X is largest when the levels are closest
together, i.e., at low fields. At Hp=0, the Ising model,
Eq. (10), predicts that all the levels are degenerate.
The addition of X' causes the spin wave and two-
magnon bound state to be shifted relative to the other
1V—2 levels LFig. 3 (a)7. These X—2 degenerate levels
are coupled in the presence of J' and mutually repel to
form a band whose width is given by SJ cosEa,
following the arguments used above and in the Appendix
in connection with X'. For Hp&0, the levels in Fig.
3(a) are slightly separated and the interaction caused
by X is less. This interaction is illustrated in Fig. 3(b),
where the E=0 energies of a few of the e-fold clusters
are plotted versus Ba for j'—=J'/J**=0.10. Clearly, J'
gives rise to curvature in the bound-state spectrum,
especially at low 6elds. Note that at Hp=0 the three-
fold cluster level is shifted down by 4J cosEu from its
value in the absence of J, so that the effects on the
energies may be quite large.

In addition to the curvature of the levels, the
Am=&2 nature of X allows the admixture of IBF's
with different m values. This admixture makes it
possible effectively to relax the Am= &1 selection rule
on the transition probability, so that a hm= &e
transition may be made to excite the e-magnon bound
state by photon absorption. These transition proba-
bilities are discussed in greater detail and compared to
experimental observation in the following paper. 4

Certain effects of X may be understood by a crude
model: Consider a spin precessing about the external
magnetic field and an internal 6eld due to its neighbors.
Normally, the precession is circular and the z com-
ponent S' of the spin is constant and equal to its
maximum value S. This is the ground state. However,
if the x and y directions are inequivalent (J %0),
the spin mill tend to deviate further out in one direction
than the other, i.e., the precession will become elliptical.
In this case S' will oscillate below S, resulting in a time-
average decrease in the saturation magnetization.

Magnon bound states are obtained using conventional
spin-wave theory only if nonlinear interaction terms
between magnons are included. The Ising basis function
(IBF) method, developed here, has the advantage that
some of these interactions are automatically included,
so that bound states exist from the start. We then
consider the deviations from the Ising solution caused
by the non-Ising terms in the Hamiltonian. The IBF
approach is particularly powerful when the non-Ising
terms are small, but it is still useful even when they are
quite large. Furthermore, the method is simple and
allows a direct physical interpretation of the results at
each step.

As an example of this method, we have treated the
S=—,

' linear ferromagnetic chain. The energy expression
for the two-magnon bound state, originally found by
Orbach, s is rederived. In addition, the energy of the
e-magnon bound state for e& 2 is obtained for the case
of large longitudinal anisotropy. The effects of trans-
verse anisotropy in the exchange interaction are also
examined. The coupling between bound states caused

by this anisotropy gives rise to curvature in the field

dependence of the bound-state energy, especially near
IIp= 0. This anisotropy is also responsible for the
ability to excite the bound states spectroscopically.
These theoretical results are in excellent agreement with
the experimental observations' on CoC12 2H20. It is
straightforward to generalize the IBF method to two
and three dimensions, arbitrary spin, more exchange
interactions, impurity spins, more complex terms in

the Hamiltonian, etc. The method may also be applied
to antiferromagnets, but that problem is more
complicated.

Finally, we shall recapitulate how the IBF method
can simply reproduce the qualitative features of the
two-magnon bound-state energy spectrum in a general
spin system. (For simplicity, we consider only IIO=O. )
For a cubic spin system with j'= 1 (Heisenberg
exchange) and 5=-', , for example, the spectrum ob-
tained by Wortis for IC along the (1,1,1) direction is
shown in Fig. 4(a). In Fig. 4(b), the two-magnon
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FIG. 4. The energy of the two-Inagnon bound state and the
continuum are plotted versus E: (a) for K along (1,1,1) in a
cubic crystal with jr=1; (b) for a linear chain with jr=i. S=2
and H0 0(sch——ematic).

bound state and continuum are shown for the S=~
linear chain with j'=sr. (These parameters are ap-
propriate for CoCls 2HsO). 4 For ease of comparison,
the energies are normalized to 4pSJ".

The energy of the coetieglm is obtained from
simple spin-wave theory: the band lies between
(1+j' cosrrK/Ks) and (1—j' cosxK/K&), where K= ',Ks-
at the zone corner. The band has zero width at the zone
corner and maximum width 2j' at E=0. In the case of
large longitudinal anisotropy, the band is quite narrow
LFig. 4(b)j because J'&(J".

In beginning the discussion of the holed states, it is
important to recognize that the two-magnon bound-
state energy at the zone corner is given Az ge~eraL by
the Ising energy, i.e.,

Es/4pS J**= 1—1/2pS, (30)

obtained from Eq. (2), with e'=1 and v=2. For a K
value less than the zone-corner value, the 5+S terms
give rise to a coupling between the bound state and the
continuum. Due to this interaction, the bound-state
energy is lowered approximately quadratically in the
coupling, but the width of the continuum increases
linearly. Hence, at some critical value of E, the con-
tinuum will generally engulf the bound state. If we use
(30) to give the bound-state energy at the zone corner,
we may qualitatively sketch the bound-state energy
and continuum versus K, as in Figs. 4(a) and (b). In
three dimensions LFig. 4(a)), the exact solution is
complicated by the fact that there are three bound
states. At the zone corner these states are degenerate
and correspond to three pairs of spin reversals, which
are neighboring along x, y, and s. For E values away
from the zone corner, these states are no longer de-
generate and we must rely on the exact calculations of
Wortis. ' From (30), the bound state lies closer to the
continuum in cases where p and/or 5 are larger. In these
cases, the threshold value of E is larger and the bound
state exists in a smaller volume of E space. On the other
hand, for pS=1 the two-magnon bound state exists
for all E&0.

Physically, the two-magnon bound state at the zone
corner contains two rseighboring spin deviations (two-
fold cluster IBF), as was recognized by Fukuda and
%'ortis. ' For E values away from the zone corner,

however, the S+S—terms cause the bound state to
contain admixtures of eon-neighboring deviations, so
that the state may be described as two spin deviations
separated by a mean distance pa. For E values farther
from the zone corner, the mean separation is larger
and the deviations are less strongly bound. Near the
threshold value of IC, Fukuda and Wortis' have shown
that the wavefunction is quite spread out.

For E less than the threshold value, the holed state
does not exist. Within the continuum, however, there
are still effects of the magnon-magnon interactions.
These sects are evidenced in the resonant states,
which have been described by Boyd and Callaway"
and Silberglitt and Harris. '4 Similar states have been
experimentally observed in certain antiferromagnets,
where it is possible to excite two spin reversals
(magnons) by far-infrared absorption or by Raman
scattering. " Furthermore, these spin reversals are
created in close proximity, " with total momentum
K= 0. The line shape and (bros, d) line width are charac-
teristic of two independent magnons, but the energy
of the observed band is slightly less than the energy of
the band formed by two noninteracting magnons. "'~
The magnon-magnon interaction thus modi6es the
energy of the observed magnons, but they still behave
much like two nearly independent magnons. In
CoClp 2H&O) on the other hand, this interaction is so
strong that it binds the two magnons together to form
a single bound state, whose energy lies below the
bottom of the band formed by two unbound magnons.
These two types of excitations (scattering, or resonant,
states and bound states) illustrate complimentary
e8ects of magnon-magnon interactions.
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APPENDIX: DETAILED SOLUTION OF
TWO-MAGNON BOUND STATE

AND CONTINUUM

Let us erst examine the properties of the solutions
to the following problem: Q degenerate states with an
energy 2E& are each labelled by an index p, which may
be pictured as the position along a chain, with 1&p&Q
and Q E 10s. Now let a perturbation X' couple
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and obtain

ei I{ap
'Q, p tb

X„=2E,+2
I e2I cos(k+P),

(A3)

(A4)

where e2 ——
I e2I e'&. There are Q values of k, which corre-

spond to the Q solutions. For large Q, k is virtually
continuous and the X„ form a continuous band of
energies centered at 2E~ and having width 4I e~l.

We expect similar results, to order 1/Q, for the
problem without periodic boundary conditions, since
only the end sites are directly affected. This problem
can be formulated mathematically as finding the eigen-
values Aa such that the determinant IIV'(Xq) I

=0,
where Mq is a Q&&Q ma. trix whose diagonal elements
are (2E~—X) and whose o8-diagonal elements are those
of K', quoted in (A1). (For the problem with periodic
boundary conditions, similar off-diagonal matrix ele-
ments are also introduced between states p=Q and
p=1.) Although we shall not solve the problem ex-
plicitly, we note that we can set up a difference equation
for I3EIq(X)l by expanding I3fq(»l in minors. This
yields

I~a(» I
= (2E'—~) I ~~-'(» I

—
I e'I'I ~a-'(» I (A')

This diff erence equation may be solved by a con-
ventional technique, " leading to the iterative result

' B. Friedman, Pri nciples and Teclsni gles of Applied Mathe-
$1Mtics (John Wiley R Sons, Inc. , New York, 1961).

each state p to its neighbors at p+1 and p —1, such that.

(pl&'lp —1)= e2

&plx'lpy1)= *.
If we assume a solution of the form IN) =P, c,, I p),
we obtain

(2E' X—«)c«,+, e~*c«, ~+e~c«,+&, 0—— . (A2)

In order to obtain an explicit solution to (A2), it is
convenient to introduce cyclic or periodic boundary
conditions, i.e., c„p= c„,p+g. These conditions imply
that we should imagine the chain as forming a loop,
so that p+Q is the same position as p. We then assume
a solution of the form

E2—X

2Eg—X

det 2Eg—X e2 =0 )

2E']—A 62

2Eg—X

(A7)

where only nonzero values are indicated. Expanding in
minors, we obtain

(E —') I~oP) I
—

I
I'I~a- P) I

=0, (AS)

where 3Io(» is the matrix described above. There are
Q+1 solutions to (AS), Q of which are essentially the
band of width 4le~I =SJ'cos(—',Ea) centered at 2E~
found a,bove in (A4). The remaining one, which gives
the two-magnon bound-state energy, can be found by
equating the values of IMMI/IMo &I found from (A6)
and (AS), which is valid provided this value of X lies
outside the band. This gives

I
e y I

'/Ep —X = -', (2E&—X)+—;L(2E&—»' —4
I

eg I

Solving for X, with e~= e~= e= —2J' cos(—,Ea) and
Ej——E =2J" we 6nd

X=E2(E)=E2+e'/(Eg 2Eg)—
=2J"L1—(j')' cos'(2~Isa)], (A9)

which agrees exactly with the result (13) of Orbach'
and is valid for E~(E) outside the continuum band of
A.@. Since we noted above that the continuum extends
onlydown to 4J"—4J'cos(~2Ea) =4J"L1—j'cos(2~X'aj,
this condition for validity is satisfied, and the state is
truly bound, except when j'cos(2%a)=1, i.e., for
completely isotropic exchange aed E=0.

I ~,(~) I/I v, , (~) I

= —,'(2Eg —X)+I-(2Eg —X) —4I e2
I
'j'", (A6)

provided that (2E~—»'&4l e2I'.
We now use this result to work out the energy of the

two-magnon bound state. From (25) and (26), the
desired eigenvalues for the m= 2 subspace of the
Hamiltonian are the values of X satisfying


