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A method is given for solving the Bogoliubov equations for quasiparticle excitations in superconductors
in the WEBJ approximation. It is applied to calculate the excitation spectrum and the scattering states of
an isolated vortex line in a type-II superconductor. The pair potential and magnetic field in the vicinity of
the core are determined by a variational method. For values of the Ginzburg-Landau parameter a near 1,
the energy so calculated is about 10'Pz too high and the critical a for type-II superconductivity about 25/o
too high, indicating that the variational functions used are only approximately of the correct form. The
energy of the bound states depends on the magnetic quantum number like a Landau energy; the effective
magnetic 6eld is of the order of the upper critical Geld H, 2 for all values of ~.

I. INTRODUCTION

HERE is considerable interest in the theory of
superconductors in which the pair potential D(r)

and the magnetic field h(r) vary in space or time or both.
These problems include vortex lines in type-II super-
conductors, surface superconductivity, the intermediate
state in type-I superconductors, and various problems
associated with Quctuations. Considerable progress has
been made in treating such problems for temperatures
near T„or in type-II superconductors for magnetic
fields near H, ~, where 6 is small and can be used as an
expansion parameter. ' Gor'kov' showed in this way that
the phenomenological Ginzburg-Landau (GL) equa-
tions follow from microscopic theory and are valid near
T,. Extensions of these equations to include higher-
order terms and time dependence have been given. '
However, it has been necessary in these derivations to
assume that quantities such as A(r) vary slowly over
a coherence distance &. This limits the validity to tem-
peratures near T, or to 6elds near H,~.
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' For a review of the theory of type-II superconductors, see A.

L. Fetter and P. C. Hohenberg, in A Treatise on Superconductivity,
edited by R. D. Parks (Marcel Dekker, Inc. , New York, 1969),
Chap. 15.

2L. P. Gor'kov, Zh. Eksperim. i Teor. Fiz. B6, 1918 (1959)
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' For a review of the GL theory and its extensions, see N. R.
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In this paper we show how the WKIl I approximation
can be adapted to the Bogoliubov equations for quasi-
particle excitations, and we apply it to derive the exci-
tation spectrum and the scattering states of an isolated
vortex line in a pure superconductor. By a variational
method, we derive an approximately self-consistent
solution for D(r) and h(r) and the energy of the line.
This allows a calculation of the lower critical held H, 1

for all values of the GL parameter ~ and for all tem-
peratures. It is believed that the method used here will
be useful in other problems.

The most complete calculation of the structure of a
vortex line based on a generalized GL theory is that of
Neumann and Tewordt, 4 who used a free-energy func-
tional which includes terms to the fourth order in D.
They calculated D(r), h(r), and H, i as functions of the
GL parameter tt and the temperature T Lto first order
in (T,—T)/T, ] both for pure superconductors and for
z zrious values of the mean free path.

Various calculations making use of Green's-function
techniques have been made to extend the GL theory of
vortex structure for fields near H, ~ to arbitrary tem-
peratures. An expression for ter(T)=—Isr.s/%2K, was first
derived by Gor'kov' by a variational method. More
complete calculations for I~. & have been given by Mali
and Tsuzuki, ' Helfand and Kerthamer, 7 and Kilen-

' L. Neumann and L. Tewordt, Z. Physik 189, 55 (1966).
'L. P. Gor'kov, Zh. Eksperim. i Teor. Fiz. 34, 735 (1958)

LEnglish transl. : Soviet Phys. —JETP 7, 505 (1958)j.' K. Maki and T. Tsuzuki, Phys. Rev. 139, A868 (1965).
7 E. Hejfand and N. R. Werthamer, Phys. Rev. Letters 13, 686

(1964); Phys. Rev. 147, 288 (1966).
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berger. ' The latter has also given calculations of the
GL parameter ter(T} (relating to the magnetization near
H, s) for both pure superconductors and for arbitrary
values of a scattering mean free path. Leadon and Suhl'
have made an approximate calculation of the density of
states for vortex lines in pure superconductors that is
valid when eRects of the magnetic field are small, corre-
sponding to large values of ~. The space average of the
density of states in the vortex state has been calculated
by Brandt, Pesch, and Tewordt. "This theory avoids
an expansion in powers of 6 and therefore can be used
for all energies and the whole range of fields between
II,~ and II,i. Brandt" has used this method to improve
the calculation of ~~ in the pure superconductor near
T=O K.

An alternative to the Green's-function methods for
treating nonhomogeneous superconductors is the gen-
eralized pairing scheme introduced by Bogoliubov. ""
The latter method can be used, and is equivalent to the
Green's-function method, when eRects associated with
the 6nite quasiparticle lifetime can be neglected. In the
nonhomogeneous case, the Green's functions G(r, r') de-

pend on two space points, r and r', and this often makes
the equations very difficult to solve. On the other hand,
since the Bogoliubov functions st„(r) and n (r) in the
general pairing scheme depend on a single space point,
they are easier to deal with.

The equations for u„and e„are difficult to solve ex-
actly, but they can be simplified considerably by use of
the WKBJ approximation. This approximation requires
that A(r) and h(r) vary slowly over atomic distances,
which should be nearly always true. Slow variation over
a coherence distance is not required. The method is an
extension of one used by Mathews" for application to
the normal-superconducting boundary in the inter-
mediate state.

The WKBJ approximation has been used in past work
to get information about vortex lines. Caroli, de Gennes,
and Matricon" calculated the spectrum of bound states
with E(h„ in the vortex core. We follow their pro-
cedure, in which the functions e„and e„are described in
cylindrical coordinates ( r,s)0with the s axis along the
axis of the vortex line. For a vortex line with one quan-
tum of Qux, the magnetic quantum numbers of the

' G. Eilenberger, Z. Physik 190, 142 (1966); Phys. Rev. 153,
584 (&967).' R. Leadon and H. Suhl, Phys. Rev. 165, 596 (1968).

"U. Brandt, W. Pesch, and L. Tewordt, Z. Physik 201, 209
(1967); U. Brandt, Phys. Letters 27A, 645 (1968).

"U. Brandt (unpublished).
"N. N. Bogoliubov, V. V. Tolmachev, and D. V. Shirkov,

A New Method in the Theory of Superconductivity (Consultants
Bureau Enterprises, Inc. , New York, 1959).

"The Bogoliubov equations have been used extensively by de
Gennes and collaborators. See P.-G. de Gennes, Superconductivity
iu lrl etals arid Alloys (W. A. Benjami'n, Inc. , New York, 1966).

'4W. N. Mathews, Jr. , Ph.D. thesis, University of Illinois,
Urbana, Ill. , 1966 {unpublished)."C. Caroli, P.-G. de Gennes, and J. Matricon, Phys. Letters
9, 307 (1964); C. Caroli and J. Matricon, Phvsik Kondensienten
Materie 3, 380 (1965).

paired states are (tt —~s)t, (—tt —s)t, where tt is half an
odd integer. There is generally only a single bound state
for each tt, and the quasiparticle energy E(ts) is positive
for p positive and negative for p negative. We show that
this implies that at T=O K, orbitals of positive p are
unoccupied, those of negative p occupied. This gives
a circulation in the core in the same direction as that of
the paired states outside of the core. We also consider
the scattering states with E&A„, and show that they
are superpositions of a particlelike and a holelike exci-
tation of the same energy K

In their calculations, Caroli et ul. omitted eRects of
the magnetic field except as a cutoff in the limit where
the penetration depth X is large compared with the core
radius, of the order of the coherence distance $. This im-
plies that the GL parameter a)&1. The magnetic field
has a large eRect on the bound-state energy when ~

As pointed out by Hansen" and by Tewordt, "the eRect
of the magnetic field can be interpreted as giving a
Landau energy of order ttetth(0)/2mc, where h(0) is the
field in the core. This Landau energy is also positive for p,

positive, the same sign as arising from the pair potential.
We show that when eRects of both pair potential and

magnetic field are included, the bound-state energy for
tt small is of order ttettH, &/2srtc. This result, may account
for diRerent predictions in regard to the Hall eRect in
pure type-II superconductors between Bardeen and
Stephen' on the one hand and Nozieres and Vinen' on
the other. On the basis of general considerations and
analogy- with vortex lines in a Quid, the latter two sug-
gested that in the absence of scattering, a vortex line in
a type-II superconductor should drift with the electron
Quid, which would imply a Hall angle equal to that in
the normal metal for a field II=H, .2. The local model
used by Bardeen and Stephen might well give a similar
result if the eRective field for the Hall eRect includes the
eRect of the pair potential on the bound-state energies.

In previous work, Cleary" has extended the calcula-
tion of Caroli et al. to determine the phase shifts of the
scattering states with E)6„.From these, he could cal-
culate the scattering of quasiparticles by vortex lines
and thus the ultrasonic attenuation in a pure type-II
superconductor. Ultrasonic attenuation in type-II alloys
has been considered by Galaiko and Fal'ko. "

In all of these earlier calculations, the dependence of
D(r) on the radial distance r from the axis was assumed
or estimated from the GL theory rather than derived

"E.B. Hansen, Phys. Letters 27A, 576 (1968).
"L.Tewordt, in Proceedings of the Adoauced Summer Irtstitule

on Superconductivity, Montreal, 1068 (Gordon and Breach, Science
Publishers, Inc. , New York, 1969).The explicit calculation will
be given in Ref. 27."J. Bardeen and M. J. Stephen, Phys. Rev. 140, AI197 (1965).

P. Nozieres and W. F. Vinen, Phil. Mag. 14, 667 (1966); W.
F. Vinen and A. C. Warren, Proc. Phys. Soc. (London) 91, 409
(1967).

"R. M. Cleary, Phys. Rev. 175, 587 (1968); and to be pub-
lished.

"V.P. Galaiko and I. I. Fal'ko, Zh. Eksperim. i Teor. Fiz. 52,
976 (1967) LEnglish transl. :Soviet Phys. —JETP 25, 646 (1967)g.



BARDEEN, KUMMEL, JACOBS, AND TEWORDT 187

self-consistently. This is also true of the magnetic field
variation. Our calculation is the 6rst attempt to derive
D(r) and h(r) self-consistently from the solution of the
Bogoliubov equations. Actually, we do not do this
directly, but make use of a variational expression for
the free energy. This expression, derived from one of
Eilenberger, " involves the eigenvalues E„of the
Bogoliubov equations, but not the functions u„and v„.
If the E„are calculated for given variational func-
tions A(r) and h(r), the free energy is a minimum for
the A(r) and h(r) that satisfy the correct self-consistent
equations.

An estimate of H, ~ as a function of ~ in pure supercon-
ductors at T=0 K can be made from exact calculations
for limiting cases and the results of the GL theory. Our
variational solution lies above this estimated curve,
indicating some improvement is possible in the varia-
tional functions used.

In Sec. II we give an outline of the Bogoliubov equa-
tions and some properties of their solutions. We also give
the variational expression for the free energy based on
the eigenvalues of these equations. Section III describes
a convenient method for solution by the WKBJ ap-
proximation, a method that can be used in other prob-
lems as well as that of the vortex line. The application to
the vortex line is given in Sec. IV with the basic equa-
tions to be solved for bound states and scattering states.
To illustrate the method and to show qualitatively
what the solutions are like, we apply it to the simple case
of a step pair potential, with A(r) =0 for r(r, and A(r)
=5„for r& r, . Sound states are discussed in Sec. V and
scattering states in Sec. VI. These results are applied to
a discussion of the current density in Sec. VII. In Sec.
VIII we return to the problem of calculating the free
energy of a vortex line from the eigenvalues for the
bound states and the phase shifts for the scattering
states. Numerical calculations made with use of digital
computers are described in Sec. IX. One-parameter
families of trial functions were used for A(r) and for

h(r), and the values chosen to make the energy a rnini-

mum. Conclusions and possible extensions of the theory
are described brieRy in Sec. IX.

II. VARIATIONAL METHOD

In this section we give a brief outline of the Hogoliu-
bov equations" '3 and derive a variational expression
for the free energy in terms of the eigenvalues of these
equations. Expressed in the Nambu spinor notation, "
the wave field operators are given in terms of the quasi-
particle operators p„t and p„4, by

!

t'Pg(r, t)

Eggt(r, t)

where E &0 is the energy of a quasiparticle excitation
relative to the Fermi energy EI;. In this and the follow-

ing section, we take units such that A=1. The ground
state 4p is the vacuum for quasiparticle excitations:

y„g%'p =y„g%'p ——0. (2.2)

t
u„*(r)u (r)+v„*(r)v (r)7d'r=b, (2.3c)

Lu„(r)v (r) —v„(r)u (r)7d'r=0 (2.3cl)

and the completeness relations

P Lu„(r)u„*(r')+v„*(r)v„(r')7 =5(r —r'), (2.4a)

P (u (r)„v *(r„) 'v.*(r—)u.(r')7=0 (2.4b)

The quasiparticle operators given explicitly in terms of
the wave field operators are

I Pt (r)u„*(r)+Pg t(r) v „*(r)7d'r, (2.5a)

Pg(r)v (—r)+Pq~(r)u„(r)7d'r (2.5b).

There are solutions of the Bogoliubov equations corre-
sponding to both positive and negative values of E„.If
u, v„corresponds to E„)0, another solution is ~„*,
—u„* with eigenvalue —E„.An operator which gives
a negative energy should be regarded as a destruction
operator for an excitation. Thus (2.5a) is a destruction
operator obtained from the creation operator (2.5b) by
the transformation (u„,v„) ~ (v„*, —u„*).A complete
set of functions is obtained from the set (u„,v„) going
with positive eigenvalues, E„&0.

The pair potential A(r) and the vector potential A(r)
describing the magnetic field are to be determined self-

consistently. The pair potential is given by

The functions u„(r) and v„(r) are to be determined from
the solutions of the Bogoliubov equations:

E„u„(r)= t (1/2m)( —iV —(e/c)A(r))' —Er+ U(r) 7u„(r)
+A(r)v„(r), (2.3a)

E„v„(r)= —(1/2m) (iV —(e/c) A(r))' —E~+U(r) 7v„(r)
+A*(r)u„(r) . (2.3b)

The functions u„and e„satisfy the orthogonality
relations

2' G. Eilenberger, Z. Physik 184, 427 (j.965); 190, I42 (1966).
"Y.Nambu, Phys. Rev. 117, 648 (1960l.

where V is the attractive interaction constant defined

by BCS. The vector potential can be obtained from
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Maxwell's equations with the current density given by

J(r) =(eA/2mi)Q (f(E )zt *[V (ze—/hc)AJzt. ,

where co=zro/p and v is an odd integer.
Eilenberger" has shown that the problem of getting

a self-consistent solution can be avoided. by use of a
variational principal for the free energy. He showed that
if the thermal Green's function G„(r,r') is determined for
a given A(r) and A(r) from the solution of the Gor'kov
equations, the free energy in an external field H„

QO—I&(r) I'+p-' 2
V y=—00

cc sgnco

dQ) T„

1
&&(irzG„(r,r)$+—[h(r) H, jz ~d'r, (2.9)—

Sm-

is a minimum when A(r) and A(r) satisfy the proper
self-consistent equations. Here p '= keT.

By use of (2.8), one can express Gs simply in terms of
the eigenvalues of the Bogoliubov equations:

Gs= —2P 'Q ln(2 cosh-,'PE.)

(I &(r) I

'
+ ~

+—Lh(r) —H,j' ~d'r. (2.10)
V 8

The factor of 2 accounts for the two spin states for each
E.

The expression (2.10) is a generalization of that used

by BCS" for the case of A=const. The sum over e is
just what would be obtained for the free energy for an
assembly of independent fermions with energies

As in the Hartree-Fock approximation, this
counts the interaction energy twice. The next term

J (~A(r) ~'/V jd'r, the negative of the interaction en-

'4 See, e.g., I. R. Schrieffer, Theory of Szcpercoedttctivity (W. A.
Benjamin, Inc. , New York, 1964), Chap. 7."J.Bardeen, L. N. Cooper, and J. R. SchrieRer, Phys. Rev.
108, 1175 (1957).

+(1—f(E„)jv„t V—(ie/Ac)A7z. *—c.c.) . (2.7)

A straightforward solution of the Bogoliubov equa-
tions would involve choosing tentative forms for D(r)
and A(r), solving the equations, recalculating A(r) and
A(r) with use of (2.6) and (2.7), and then repeating the
procedure until a self-consistent solution is obtained.
This would be prohibitively dificult.

The thermal Green's functions G„(r,r') may be ex-

pressed in the quasiparticle approximation in terms of
the solutions of the Bogoliubov equations"

G zz(r, r') =G„zz*(r,r')

N„r u„* r' v„r v„* r'
+ . I, (2 8)

i oo—E ice+E„)~ ~
~

ergy, corrects for this double counting. The last term is
the magnetic energy.

One may choose variational forms for A(r) and h(r)
involving some parameters, and solve the Bogoliubov
equations to get the eigenvalues. The best values for the
parameters are those that make Gq a minimum. Note
that only the eigenvalues occur in (2.10): the functions
N„and ~„are not required.

In order to get rapid convergence for E„ large it is
best to calculate the difference in free energy between
superconducting and normal states, or between super-
conducting states with and without a vortex line pres-
ent. The states involved are then close to the Fermi
surface, since it is only these that are affected by the
normal-superconducting transition.

~iS
kz „2 ke

—*~t')
(3 1)

where it is assumed that q is slowly varying over atomic
distances and V'S is a wave vector close to the Fermi
surface. We keep terms of order (VS)' or VS A and
V'S Vrt, but neglect terms in (Vzt)' and (V'A)'. For sim-

plicity, we choose the gauge such that A(r) is real.
Substitution of (3.1) into the Bogoliubov equations then
gives

E„=(1/2m)P iV S+(—VS)'+(e'/c')A'+VS Vrt

—(2e/c)VS Aj Et +tz (r)—e '&, (3.2a)

E„=—(1/2m) t iV'S+—(VS)'+ (e'/c') A' VS V—zt

+(2%)VS Aj+Er+A(r)e'". (3.2b)

These equations are satisfied if VS and g are solutions of

(1 2/m) VSVzt+A(r) cosrt=E +(e/mc)A V'S, (3.3a)

(1/2m) P
—iV'S+ (V'S) '+ (e'/e') A') —E»

=id(r) sing. (3.3b)

In (3.3a), to a sufficient approximation we may take
VS to be a wave vector in the direction of VS but on the
Fermi surface. The departure from the Fermi surface is

then given by the second equation. In general, both S
and g are complex.

It is usually possible to choose a gauge such that the
. term in A' is negligible. For the isotropic case we may
write S in the form

$(r) =kt, r+g(r), (3.4)

where g is small and Vz) and (V$)' may be neglected.
Equation (3.3b) then becomes

m '(kp V$) =id(r) sing. (3.5)

IIL SOLUTION OF BOGOLIUBOV EQUATIONS
BY WKBJ METHOD

An approximate solution corresponding to the WKBJ
method may be obtained by writing the solution in the
form
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(u (u(r))= (2 COSr/)'/2l leiS
4v„Ev(r)1 (3.6)

By a change in normalization, one may regard the
WKBJ solutions as corresponding to slowly varying
u(r) and v(r):

The paired states I, v„* have angular momenta p, —-'„
—p —~, with a net of —1 per pair. With use of the Pauli
matrices o. , o, , and o, the equation for /may be written
in the form

A' — dgf 1df o er )2 f+ /i — Ag
l

—k,—'f
2m dr' rdr Ac i r'

Here u(r) and v(r) are defined in the usual way, but in
terms of a slowly varying energy E(r) and complex
g(r) and Z(r):

+o,h(r)f=Ej, (4.4)

where k.'+k, '=k&2. Here Ag is defined by (4.1).
When Ag(r)= 0and —A(r)—=6„, one finds the exact

solutions
u(r)'=1 —v(r) 2=-'(1+g/E, ). (3.7)

This solution is identical with (3.1) with the following
deflnltlons: const I 1&(E'—6 ')i/2/E$'"

(3.8) ~2 I-1~(E2
f= X

(3.9)

(3.10)

(3.11)

E=E(A2e/mc)A VS,
I

E/6 =cos'g,
( 2m

xH/ &'i'&2i
l

kg2& (E—6')—'/'
l
r, (4.5)8= —;i ln(2 c—osr/)+5,

~=iB tang.
Note that

E2—g2++2 (3.12)

This method was used by Mathews" for a discussion
of the normal-superconducting boundary in the inter-
mediate state. It is useful in that it gives a physical
interpretation of the variable g. However, the functions
in the form (3.1) are somewhat simpler and we shall use
them in the subsequent discussion.

H &'& &" expl +i P(r')dr'
l

(r' rg2)'" —(46)(

where II„&'& &') are the Hankel functions of the first and
second kind. For E&A„, there are two independent ex-
ponentially decaying solutions; for E&A, there are
four independent solutions. An asymptotic form for the
Handsel functions corresponding to the WEBJ approxi-
mation is

IV. BOGOLIUBOV EQUATIONS FOR VORTEX LINE

We consider a vortex line of unit strength along the z
axis of cylindrical coordinates r, 0, and z. Our notation
is similar to that used by de Gennes. "In a gauge for
which h(r) is a real, the magnetic field is described by
a vector potential

where r& /i/k, ——is' the radial distance to the turning
point, and where we have

P(r) = (k/r) (r' —rP)'/' (4.7)

Another limiting case which applies at the core of the
vortex line is 3e'=0 and 6=0, for which the appropri-
ate solutions are the Bessel functions Jz+i/2(kr):

A g(r) =Ac/2er+A g'(r), (4.1) I+=A+~ +2/2L(k. ~e)rj (4.8)

where Ae' —+ 0 as r goes to zero. For e positive and r
small compared with the penetration depth ),

~e'= —-', rho (4.2)

~ ~ ~

gezgzzeiZge —zzzg /2

v.t
(4.3)

where 2p is an odd integer and

(f+()).
where hp= —h, (0) is the magnetic field in the —s direc-
tion on the axis of the vortex line. When r&)X, so that
h, —+ 0, A g(r) —+ 0.

The solutions of the Bogoliubov equations in the
gauge, where A(r)= lA(r)le g may be expressed in
spinor notation as

where g= Em/A k,2. The energy is above the Fermi sur-

face for q positive, below for q negative.
Following Caroli et al. ,"we express the solutions of

(4.4) in the form

f(r) =g(r)& '"(k.r)+c c (4.9)

where g(r) is a slowly varying function.
One may neglect terms in d'g/dr' in comparison with

those of order k,dg/dr. These terms are of order ($k,)
or 6/Er, where & is the coherence distance. To the same
order, we may neglect terms in Ae'. The equation for

j then becomes

( iA'/m) o.P—,(r) (dg/d. r)+h(r) o,g
=/tE+(peA/mcr)Ag jg, (4.10)

where/3, (r) is P(r) for k=k, .
In order that the solutions be well behaved at the

origin, g(r) must be real at the turning point, r=rz, so
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that the Handsel functions add to become ordinary
Bessel functions.

It is convenient to divide by A(~) =h„and change
variable from r to x, de6ned by

x=(2m' /A'k )(r' —r~')'~' (4.11)

Note that there are two solutions that differ in the sign
of g2. These correspond to the two signs in the solutions
(4.5). When g2 changes sign, tq also changes sign but gq

and f2 remain the same. These two degenerate solutions
may be written in the form

we also dehne
h. =8/6„, (4.12)

exp(2ini~lln~l~ih+t2) )
(4.23)

exp( —',iggw-,'
I g2 I ai(g+ b))

F(x) = (peA/mcrh„)Ag(r),

b(x) =h(r)/6„. (4.13)

The equation for j(x) then becomes

2io,—(dg/dx)+b(x)r, g= I hyF(x) .jg. (4.14)

To solve this equation, we express g in the form

When x is large, we have q2 —+ g2„, such that coshg2„
=F/6„, and. qq

—+ 0. It is also convenient to normalize
so that f2 ~ 0 as x ~&x&,

The solutions that satisfy the boundary condition
that g be real at @=0,are appropriate linear combina-
tions of g+ and g . Let us take g=g++Cg:

( eiq/2

g=AI e~~

~
—ig/2

exp(k~v&+2 12+~6)+C exp(2iv& 2 12 ~6)"'" g= -p(—:.—:n.+'~.) g)2

(
dg d$)—+2—le'" '+B(x)e '«'=LA+F(x)ge'&~'
dx dxi

(4.16a)

where A is a normalization factor and q and $ are in gen-
eral complex functions of r. Substituting in (4.14), we
6nd that

+C exp( 2ig—,+-,'g2 i &g)—

(4.24)

The condition that j be real at x=0 is obtained by set-
ting the imaginary parts equal to zero. This gives

L~ (0)+l"(0)3
=C expL —g2(0)j sinLb(0) —~gq(0)$, (4.25a)

(
dg d$)——2—le

,~~2+b(x) —ei'«2
I A+F(x) je

dx dx)
(4.16b)

»nB~(0) —in~(0) 3
=C expLq~(0)$ sinL)~(0)+-', g~(0)]. (4.25b)

2(d]/dx) =ib(x) sing. (4.18)

These equations are to be solved subject to appropri-
ate boundary conditions, which determine the eigen-
values A. As x (or r) -+~, F(x) ~0, B(x)-+ 1, and
g ~ q„, where cosrj„=A=F/6„. Then (4.9),. together
with (4.15), goes over into (4.5). For the bound states in
the core, I F-I (6„, ri is real, and $ a pure imaginary.
The decaying solution for x —+~ requires that p„be
between 0 and x so that sing„ is positive. ln order that
g(x) be real at the turning point, we must have g =0 or
n. (mod2~) at x=0. These conditions determine the
eigenvalue E for given p, and k, .

When E)6„,g and P are complex. They may be ex-
pressed as rj=g~ iq2 and (=—fq —i)2, where gq and $q are
the real parts and g2 and b are the negatives of the
imaginary parts. Separating the real and imaginary
parts, we have

Multiplying by e '&/' and adding and subtracting the
resultirig equations, we find that

(dg/dx)+b(x) cosy=A. +F(x), (4.17)

.L~ '(0)+!~ (0)j ~ —~2(0)

sining+(0) —-,'gg(0))
(4.26)

The two solutions corresponding to C=&1 give the
appropriate linear combinations. These solutions are
equivalent to those used by Cleary. "

It may be noted that the positive signs (g2 positive)
in (4.23) correspond to quasiparticle states with en-
ergies above the Fermi surface and the negative signs
(q~ negative) to holes of a corresponding energy below
the Fermi surface. Note that if A is chosen so that
IN(~) I'+

I
~(~) I'=1, we have

where

IN(c&) I'=A'e»"=-,'(1+Q/g),

I&(~) I'=~'e»"=2(1 e/F), —
(4.27a)

(4.27b)

These equations are consistent if C2= 1 or C=&1.The
values q~(0) and q~(0) are determined from the solutions
of (4.17) that satisfy the boundary conditions p&

—+ 0
and &2 ~ &2„as x —+~. One may regard (4.25) as de-
termining the phase t~+(0) at x=0:

(dpi/dx)+b(x) cosy' coshg2 ——A+F(x), (4.19) e =2&„db/dx =A„sinhg2„ (4.28)

dg2/dx= b(x) sining sinhg, ,

2dg~/dx=b(x) cosy' sinhg, ,

2d$2/dx= b(x) singq coshg—,.

(4 20) is the normal-state energy relative to the Fermi surface.
Positive g2 corresponds to positive e, negative q~ to
negative e. The solutions that satisfy the boundary con-

(4.22) ditions are the linear combinations (4.24).
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V. SOLUTIONS FOR STEP PAIR POTENTIAL:
BOUND STATES

x=b L(r/r )' (p/p )—')"'
Note that the value of x corresponding to r=r, is

(5.1)

In order to indicate the qualitative nature of the solu-
tions without undue mathematical complexity, we shall
discuss the simple case of a step pair potential for the
vortex core with B(r) =0 for r&r, and b(r) = 1 for r& r.,
where r, is the radius of the core of the order. of the co-
herence distance fo Ai)z/——7rA„. We may express x
for a, given p in terms of dimensionless parameters
b, =2mA„r, /A'k„of the order of unity if r, (o, and
p, =k,r„ the value of p which gives the turning point at
r=r, . In terms of b, and p„we have

must be positive. This corresponds with the conclusion
of Caroli et ul. "

To determine the eigenvalue A, we need to match
(5.8) with the solutions for x)x,. Explicit solutions can
be obtained only for certain limiting cases. If P is small
for x)x, so that we may replace sing by P, we have

dP/dx /=A—+F(x), x,&x(x), (5.9)

and for x& x)„we have I"(x)=0 and |t = —A. The solu-
tion of (5.9) sa, tisfying the boundary condition a,t x=x),
1S

e" ")F(x—')dx', x,(x(x), . (5.10)

The condition that the solutions (5.10) and (5.8) join
a,t x=x, determines A:

—m- —tan '~" /xWe may express)a in terms of a parameter b defined by +~ tan ( & x')+Ax'

We then have
b = (~/~.)b'

r = (r,/b, )(x'+b') '".
(5.3)

(5 4) or, for e,=0,

e&" ")F(x')dx', (5.11)

If we omit the term in Ao(r) from the magnetic field
Li.e. , set A t)' in (4.1) equal to zero), we have in reduced
variables

E 1 b
A=—= tan '——

1+x. x,
e'* *'&J'(r.')d&,") . (5.12)

F(x) =b/(x'+b') . (5 5) An expression valid for x),&)x, and b((x, is

We may take the penetration depth X into account in
a rough way by setting F(x) =0 for r& X or x) xz, where
xq is the value of x corresponding to r =P. Although this
is nonphysical, it should give qualitatively correct re-
sults if X&)r, Note t. hat F(x) is an odd function of b and
thus of p.

We shall first discuss the bound states with
~

F.
~
(A„

and then the scattering states for
~
F-~ )A„.

For the bound states, q is real. Following Caroli et al. ,
it is convenient to introduce a new variable P= r)

—2)r,
so that for g between 0 and m. , P lies between —

2m and
~i)r. Eq'uation (4.17) becomes

dP/dx b(x) sing =A+—F(x) . (5.6)

2~pd 2g&c

b'k p'(1+ x,) „x (5.13)

or
@,/dx —))&'i cos'tbp ——F(x), (5.14)

This expression can in fact be obtained" directly by
joining Bessel s-function solutions of (4.4) appropriate
for r&r, with Hankel-function solutions valid for r) r,
at the core boundary r=r, .

More generally, we may write P=fo+tbi, where tt i is

assumed small and A= —sinfo. The equation for Pi for
x&x, is

If there is a solution f, A. for a given b, there is a second
solution of opposite sign, —P, —A., b. We will con-—
sider only those with positive A.. With F(x) given by
(5.5), we have for a step potential

dP/dx=A+F(x), x(x, . (5.7)

Pi(x) =— e( —') o koF(x')dx'

The matching condition at x=x, is

go+Pi(x, ) = —tan '(b/x, ) —x, sin/0.

(5.15)

(5.16)

The solution that satisfies the boundary condition
that p be equal to a multiple of 7f- at x=0 is

1t = —(I+-,')+tan-'(x/b)+-Ax, x&x, (5.8)

where e is an integer.
We may assume that for x=x„~P~ &-', m. Since A&1,

the only possible solution is for e =0 unless x,)7t-. When
m=0, b must be positive unless x,)—,'m-. Thus when

r, (0, so that x, 1, there is normally only a single
bound state for a given p, and for positive energy, p

e~ "'—"') -s»F (x')dx'. (5.17)

"R. Kiimmel, dissertation, Universitat Frankfurt, I968
(unpublished).

This equation for fo is valid only if |bi is indeed small.
This will be the case not only when b/x, is small so that
$0 is small, but also when b) b, and when $0 is close to
—~x. In this latter case, the boundary condition is tha. t
)) =0 at x=0, or P= —~in- at x=0. The equation for Po

is then
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This equation is valid when the integral —Pt(0) is small.
ln the limit where costa is so small that the exponential
is close to unity throughout the range of integration, the
integral can be carried out explicitly to give

P, = ——',~+tan- (x,/b),

E= D„si neo
—~A„E1—-'(x&'/b') j.

(5.18)

(5.19)

These solutions are equivalent to those of Caroli
et al. '~ in the appropriate limits. A qualitative plot of E
as a function of p is given in Fig. 1. As we have men-
tioned, there is normally only one bound state for each

p and spin orientation and for these E is positive for p
positive and negative for p negative. The positive-
energy excita, tions may be regarded as a linear combina-
tion of equal weights of a particle in p —~~ above the
Fermi sea and hole in —(p+~~) below the sea, with p
positive. In the ground-state wave function of the sys-
tern, the bound states of negative p are completely 611ed
and those for positive p empty. As indicated in (2.7), the
occupation at T=O Lcorresponding to f(E„)=0) is
given by v„* with angular momentum —(p+-', ). These
occupied states give a current in the core in the same
direction as that of the general circulation outside of the
core corresponding to the pairing (p —2)t, —(p+2)t.
The bound states are unpaired in the sense that only
the negative angular momentum is occupied in the
ground state. Nevertheless, according to (2.6), they do
contribute to the pair potential. The qualitative nature
of the current distribution from the bound sta, tes is
discussed in Sec. VII.

I I

2 4
p, /kFg

I'zG. I. Energy of bound states as a function of magnetic quantum
number p Lachematic, after Caroli et af. (Ref. 15)].

q2 ~ gg„as x ~~, where

coshg2~ =A. . (6 2)

Since the equation is nonlinear, analytic solutions can
be given only for certain limiting cases. For x&x„we
may integrate immediately to get

VI. SCATTERING STATES FOR
STEP PAIR POTENTIAL

rf = tie+tan —'(x/b)+Ax, x(x.. (6.3)

We next consider the scattering states with E)A.
There are solutions for E positive for both signs of p.
Far from the core where 6=6„,there are two degenerate
states (4.5) with E= (e'+6„)'~' corresponding to posi-
tive and negative values of e, where e is the energy in
the normal state relative to the Fermi surface. One may
regard the quasiparticle states with e positive as pa, r-
ticles above the Fermi surface and those with c negative
as holes below, although it should be remembered that
in a superconductor there is no sharp change in the
character of these states as the Fermi surface is crossed.
As discussed in Sec. IV, the scattering states that satisfy
the appropriate boundary conditions at. the vortex core
are linear combinations of the degenerate states for &e.

We again assume a step pair potential with b(x) =0
for x(x, and b(x) = 1 for x)x„so that the basic equa-
tions are

For x)x„we assume that we may write q in terms of
real and imaginary parts as

rf=tit —&(n2 +y). (6.4)

A limiting case for which analytic solutions are possible
is that of small p& and y. Neglecting terms in p&' and y',
we have

dg, /dx+y sinhg. ,„=F(x),

dy/dx= rj, sinhzp„,

d'y/dx'+ sinh'ri, „y=F(x)sinht) &„.

(6.5)

(6.6)

(6.7)

sinPn(x' —x) jF(x')dx', (6.8)

The solution that satisfies the boundary conditions

y —& 0 and q~ ~ 0 as g ~DO is

d&/dx=A+F (x),

drl/dx+cosri=A+F(x), x)x, .

(6.1a)

(6.1b) cosPu(x' —x) jF(x')dx', (6.9)

Now A) 1 and g =q; —iq~ is complex. For x,
We first want to find the solution such that gq ~ 0 and where o.=sinhg2„. This solution is valid only when y



BARDEEN, KUMMEL, JACOBS, AND TEWORDT 187

and rjq are indeed small. This will be the case if F(x) is
small, which occurs when p is either large or small com-
pared with p„or in the limits b«x, or b&&1.

Matching the solutions at x=x, determines g2'. Note
that q2 is constant for x&x„so that

ng'=v .g+y(~.).
The value of g~' is determined from

gP+tan —'(x,/b)+Ax, =gg(x, ) .

To the same approximation, we have for x&x,

(6.10)

(6.11)

$g= —
gy cothf/g~. (6.13)

Note that $g is independent of the sign of gg„, but does
depend on the sign of p. When y and thus F(x) is posi-
tive, fg is negative, and when p is negative, fg is positive.
Since the amplitude of the pair wave function in the
core is proportional to e&2~*', it is small for p positive,
large for p, negative.

VII. CURRENT DENSITY

The current density can be obtained from the gen-
eral expression (2.7) with use of the WKBI wave func-
tions. We shall discuss here only a qualitative picture
based on the solutions for the step potential. The only
component of current for a stationary vortex is J&, given
for T=O'K by

28PL

Z)A~, all p

E(h~, p&0

e~ g(r)l
l~-I'I -+

r ke

where A g(r) is de6ned by (4.1).The erst sum is over the
continuum of states for E&d„and the second over the
bound states; the factor of 2 in front of the entire ex-
pression accounts for the two spin orientations. The
orbital states may be designated by gg = (k„k&,p) for the
unbound and by gg=(k„p) for the bound. We assume
only one bound state for each p, with k&=k, .

We shall erst discuss the contribution to the current
density from the bound states. The total probability
density for a state k„p, with k, in the interval dk, is

dk, 3'dk,

27r 2m-Lr' —(p/k, )'7'"

Here 3 2 is the normalization factor such that

(7.2)

2ardr

.i~. Lr' (I /k.)'7"'—(7.3)

2d(&/dx = —
g& cosh'&„= —(dy/dx) cothp&„. (6.12)

The integral that gives b -+ 0 as x ~~ is

where r„ is the average extent of the wave function.
This gives

(4n-r„)-'. (7 4)

The contribution of the bound states from summing
over p, and k, is

2ehg 2 k& rk p

27rm

= —eked/mr„,

pdpdk,
(7.5)

rL" (p/k—)'7"'

(7.6)

Jg~ ———(rge'/me)A g(r) . (7.7)

In the neighborhood of the core, Iw I' is changed by
a factor

coshg2
f(~) =

coshg2~
(7.8)

resulting from changes in gg and $g from their values
deep in the superconductor. This expression neglects
some relatively small terms from interference effects
between the two solutions in (4.24). If we assume that
y=g2 —g2„ is small, the factor may be written

f(p) =exp(ln coshgg —ln coshr12„+2(g)
= expL —y(cothg2„—tanhg2„) 7. (7.9)

This factor depends on the sign of p, being & 1 when p is
negative and &1 when p is positive. The effect is to
give a positive contribution to Jg from the terms

—(2ek/mr) Q I
g ~ 'p. (7.10)

This contribution tends to compensate the negative
contributions from (7.7) and from the bound states in

the region of the core.
When the GL constant a is of the order of unity, most

of the current circulating about the axis of the vortex
line comes from the bound states in the core. When ~))1,
most of the current circulates outside of the core, and
the density is given by the London value (7.7).

It is of interest to note that the energies of the bound
states in the core are qua. lita, tively like those of electrons
in circular orbits centered on the axis in a magnetic held
parallel with the axis. The pair potential acts like an
effective magnetic field of the order of H, 2. Neglecting
the true magnetic 5.eld, the t:nergies for small p ma, y be

where gg=kgg/3m' is the density of electrons. Since r
may be expected to be of the order of the coherence dis-
tance $, we ind that age is of the same order as the
critical current density for depairing, J,=ceo„where ~,
is given by p&~, A„——.

In the bulk of the superconductor, where F(x) =0
and q=rl„, l~„l' is independent of the sign of p. The
current density JzI from the paired states is given by
the London value:
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expressed in the form

&=pk, (cA/2mc), (7.11)

where h„depends on k, and is of the order of H, ~.
The magnetic field contributes an additional energy
pk„„(cA/2mc), where k„„is the magnetic field in the
core, of the order of H q. The total effective Geld
would then be k,« ——k~+5„„,again of the order of H, Q.

Some estimates of dE/dlJ, for the bound states are given
in Table II.

VIII. FREE ENERGY OF VORTEX LINE

The free-energy difference AG between the state with
a single vortex line and the Meissner state in the same
applied Geld, H„ is calculated from the general expres-
sion in Eq. (2.10). AG is divided into five contributions.

The term involving the space integral of ~A(r) ~'
=5'(r) yields the contribution

The quantity 1V(0)= kzm/2~'A' is the density of states,
&=A'k&/&rmA„ is the temperature-dependent coherence
length, and A(b, n)=E„/6„ is the eigenvalue of Eq.
(4.17).

The insertion of the vortex line into the homogeneous
superconductor also leads to phase shifts in the con-
tinuum states, and in turn to shifts in their energies.
The WEB t solution is given by Eqs. (4.9) and (4.24).
The phase shift of this solution at large r, in comparison
to the solution (4.5) of the reference state with h(r) =6
and A &(r) —=0, is defined by (note that »i ~ 0 as p ~~ )

- b)i&~&+(m/A'k )(F.' 6')'"r—

=pb&+&+-', x sinh»2„. (8.7)

This asymptotic behavior of $i, together with Eq.
(4.21), leads to the following expression for the phase
shift:

5G;=2m-l. V ' d"I ~&(r) ~„'—j, &8.1)

where I.is the length of the vortex line, V is the coupling
constant, and 6„ is the BCS energy gap at tempera-
ture T.

The difference in the magnetic Geld energies can be
split up into two parts. The Grst part is

I 00

AG„=— dr rh'(r) .
4

(8.2)

There is also a term proportional to the applied Geld
H. :

AG, = —I.H,Ac/4e; (8.3)

we have used the fact that the total Qux of the line is
equal to hc/2e.

When the vortex line is introduced into a homogene-
ous superconductor in the Meissner state, the bound
states are pulled down from the level 8=6„;the corre-
sponding change in the free energy is

(cosh(-', PZ„))
aG& = —2P-' g ln~ —

~

. (8.4)
(cosh(-,'Pa„)J

Here e is specified by k, =k&; coso. (0&+&&r) and p.
Instead of p, it is more convenient to use the quantity
b deGned by

)(P(x ) slnh&&2 cosi&i —slnh'ymca) ~ (8.8)

A'kp (E'—6„')'"8$&~+&

5E =—n (8.9)

The total change in the free energy due to the modiGca-
tion of the continuum states by the vortex line is then

AG, = — Q hZ L1—2f(PZ„)j. (8.10)

The function f is the Fermi function. The summation
index m is speciGed by four quantities: k„p, the radial
wave number k given by

The quantity pi&+&(0), where tht& argument refers to
@=0, has to be determined from Eq. (4.26).

The resulting energy shift AZ„can be calculated
most conveniently by enclosing the vortex line in a
finite cylindrical volume of radius R))g and requiring
that the solution vanish at r=R. Comparing this
boundary condition with the corresponding one for the
reference state (4.5), one finds, with the help of Eq.
(8.7), that

b=ph„/Zp sin'n. (8.5) k2 k 2~2mA —2(g2 g 2)1/2 .

Converting the sums over k, and p into integrals over
0. and b, we obtain

AGi, =~Pl.1V(0)h„'-',~' dn sin'n

( cosh( —',pA„)
dbPPA )

—'1n~ ~. (8.6)
0 kcoshP~PA„A(b, n) jl

and finally the sign in 8)i~+&. Recall that the two signs
in the latter quantity correspond to the two possible
linear combinations of the particle like and the holelike
excitations t C=+1 in Eq. (4.24)$.

Instead of the variables k„p, and k (or R where
h„&E&Aevi&), we introduce the dimensionless variables
n, f&, and A=E/6„, and convert the summations into
integrations. Then Eq. (8.10) together with Eq. (8.9)
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yields

AG, =~PL,A((0)A„22~- dn Sin n

The final result for the free-energy difference between
the vortex and the Meissner state is

AG=AG jAG.+AGp+AG„, (8.19)

where the contributions on the right-hand side are given
db dA Z A, b, ~ 1 2f—PA„A . 8.12) b Fqs (8 2) (8 3) (8 6) nd (8 17)

The quantity Z(A, b, (2) is equal to the sum of the four
phase shifts for given A and o ..

Z(A, b, (2) = 8$&(+'(b)+8&,( '(b)

+bi "'( b)+—bE ' '( b) —(8 13)

Inspired by the numerical results (see Sec. IX),
Bergk" has shown, by means of a WKBI solution of
Eqs. (4.19) and (4.20), that for sufficiently large en-
ergies A, the sum of the phase shifts is inversely propor-
tional to A:

(8 14)

From his explicit expression for C(b,c(), one can derive
the relation

d(2 sin'(2 db C(b, (2)

0

IX. NUMERICAL RESULTS AND DISCUSSION

Instead of attempting to solve the Bogoliubov equa-
tions self-consistently, we have employed a variational
method. The method consists simply of guessing forms
(containing adjustable parameters) for the unknown
functions A(r) and h(r) The. free-energy difference AG
between the vortex and Meissner states is then calcu-
lated from Eq. (8.19), etc. , and minimized with respect
to these parameters.

The first function occurring in our differential equa-
tions (4.17)—(4.22) is B(x) =A(x) =A(x)/A„. A form for
b(r) which combines both the exponential approach to
unity at r))P and the linear behavior for r«$ found in
the solution of the GL equations is

b(r) =A(r)/A„= tanh(dr/$), (9.1)

where d is an adjustable parameter expected to be of
order unity. For r greater than the turning point (i.e. ,

x&0), b can be written as

=2(A~)) ' dr rLA„' —A'(r)$. (8.15)

Equation (8.15), together with the BCS relarion"

where
b(x) = tanhL(2(x'+b') '(']

8= zm.d sinn.

(9 2)

(9.3)

A(0) V

@cog) /5e)

L1—2f(PA„A) j, (8.16)
(A.' —1)'"

The second function occurring in Eqs. (4.17) and
(4.19) is P(x) defined by Eq. (4.12); it can be written as

F(x) =bq(x)/(b'+x'), (9.4)

can be used to combine the expression for DG, in Eq.
(8.12) with that for AG, in Eq. (8.1). The result is

where q(r) is the net flux of the line outside a circle of
radius r, measured in units hc/2e. We have chosen

AG„AG.+AG; q(r) = 1/c sho(sr/$}, (9 5)

=2r,"21 iY (0)A„2-'22r do, sin'n db K(b,(2), (8.17)
where s is an adjustable parameter expected to be of
order 1/((. For x&0,

0

where
q(x) = 1/coshPc(x'+b') '"j, (9 6)

Aco D/Ax C(b, (()
K(b, (2) = dA Z(A, b,c()—

(A2 ] ) (/2

&&)1—2f(PA„A)j. (S.1S)

One recognizes with the help of the asymptotic rela-
tion (8.14) that the two terms in large parentheses in
the integrand of Eq. (8.18) ahnost cancel each other for
large A. This ensures convergence of the A integral in
the weak-coupling limit. Note that DG„ is of order
1V(0)U times AG;, or AG, .

"WV. Bergk and I . Tewordt (to be published).

g= zz's sinn.

The field is related to the net Aux q by

(9 7)

(( = 0.96Xr./Pp,

H„.2 = 42rcV (0)A„2. (9 9)

h(r) = —(Ac/2e)r 'dq(r)/dr. (9.8)

The form for q in Eq. (9.5) is such that h(r) exhibits the
same behavior as the GL solution for r))(($ and r((K$.

So far, the free-energy difference AG has been mini-
n1ized only for zero temperature. At T=O'K the GI,
parameter a for a pure superconductor and the thermo-
dynamic critical field H, are given by the relations
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1.2- a minimum, or approximately

1.0-

0.8—

8 6
1.381»'s+— —=0.

&$1+2.6$
(9.19)

0.4-

0,2—

0

FIG. 4. Lower critical field II,~ at T=O'K as a function of K. The
solid line gives the results of the variational calculation; the dashed
line gives an estimate of the correct behavior based on exact solu-
tions for limiting cases. H, g=H, =H, 2 (9.20)

The lower critical field H, i is the value of H, that
makes AG=O. A plot of H, i/H, so calculated is given
in Fig. 4. The critical value of ~ for type-II supercon-
ductivity is that for which H, &

=H, . We find that the
variational calculation gives a„;~=0.74.

An estimate of the correct H, i(») at T=O'K can be
obtained from the extended GL theory for very large ~

and exact calculations for H, (2)». For»= »

the contribution from the scattering states is
and the exact theory" gives at T=O'K

H, 2/v2H, =»i 1.25». —— (9.21)

1V„(c)=—1V(a,c)„;„=1/(1.1+2.1c) . (9.16)

This latter expression is reasonably accurate for c)0.25,
but does not have the correct limi'ing form for c very
small. Use of (9.16) gives very nearly the same results
for the integral over n and for DG as use of (9.14) and
(9.15).

The integration over o, may be regarded as replacing
sinn in c=~ms sinn in the denominator of (9.16) by an
average value nearly independent of s:

(c)= 2~$(sinn) = 1.33s. (9.17)

In this way we find

x/2 6
IV (c) sin'ndn=

1+2.6s
(9.18)

The value of s for a given» is that which makes (9.10)

TABLE II. Results of variational calculation for several values of K.

0.74
1.3
3.0

1.2
0.75
0.35

Hc1/He

1.0 1.4
0.75 1.0
0.48 0.48

K(b) db

= —c '{0.35(c/a)+0.08)+0.11(c/a) . (9.15)

The sum of (9.14) and (9.15) gives IV(a,c). After inte-
grating over n, one can find the value of c/a =d/s that
makes AG a minimum for a given s. The value of s for
minimum free energy can then be determined as a func-
tion of ~.

A simpler procedure has also been used. For each c
one can find the minimum in 1V(a,c) as a function of the
ratio a/c. These minimum values can be approximated
by

This gives»„;& = 1/1.25v2 =0.56. When» is very
large, one may write H, i/H, =ln»8/V2»3 as in the GL
theory, where»3 ——1.15» at T=O'K. Thus, H, i(») at
T=O'K can be estimated by shifting the GL plot by
a factor of 1/1.25 for»=»„;t, and by a factor of 1/1.15
for ~ large. Such an estimate is given by the dotted line
in Fig. 4.

It is interesting that, as the temperature is decreased
from T„ the reduced lower critical field II,i(T)/H, (T)
for a given value of ~ first increases above the GL value
(this follows from the generalized GL theory in Ref. 4)
and then decreases below it.

It can be seen that the values of H, i(») from our varia-
tional calculation are about 10% too large near», z;g

and. about 20% too large for» 3. Since the dependence
of the free energy on d is rather small for rc 1, with
a Rat minimum, it is likely that it is the variational
form for the magnetic field variaton q(r), rather than
that for D(r), that needs improvement. We are now

trying some other forms for q(r) and D(r) in an attempt
to improve the results.

Some of the other quantities that can be estimated
from the theory are given for several values of ~ in Table
II. In addition to H, i(»)/H„ this table gives the ap-
proximate values of s and d for minimum free energy,
the reduced magnetic field (h)0/ Hon .he axis of the
vortex, and (dA/db) q=o The field on th.e axis is obtained
from h(0)/v2H, =0.947»s'. Since for»=»„;t we should
have h(0) =H„ the ratio h(0)/H, is too large near
z=&„;&,and it also seems to be too small near A: 3. This
may reflect an incorrect form from q(r) and the need for
an improved variational function.

As we have mentioned in Sec. VII, the dependence of
the bound-state energy on the magnetic quantum num-
ber p is of the order of that expected for a Landau en-

ergy in a field H =H, &. The latter would give

Z(p) = (eA/2mc) pH. p. (9.22)
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The value of II,2 at T=O K is given by

H, s ——0.66Ac/$p', (9.23)

where $p =Av~/7rh„ is the BCS coherence distance. This
gives

E(P) = (1.636„'/Ep)1i. (9.24)

The dependence of the bound-state energy on p, near
@=0can be expressed in the form

dA db dA.

00

db dp db E~ sin'o,
(9.25)

As discussed in Sec. VII, we may deGne an eRective mag-
netic Geld h,«by writing the bound-state energy near
p=0 in the form

Ep (es/2nt——c)iih,.tt, (9.26)

comparing (9.22) and (9.26), we have

k ff/H, 2 = (dA/db) &=p/1. 63(sin'n) . (9.27)

As can be seen from the values listed in Table II, this
ratio is of the order of unity. Near K=K g most of the
dependence of the energy on p, comes from the magnetic
field. When ~ is large, the field in the core is small and
most of the dependence comes from the pair potential.

It is suggested that h, ~~ is the appropriate field to use
in calculating the motion of a vortex line in the local
model. Bardeen and Stephen' showed that in a local
model a vortex line should move at an angle relative to
the direction transverse to the transport current equal
to the Hall angle in the normal state for a magnetic
field equal to that in the core. This means that near
H, ~, the Hall angle should be equal to that in the norma. 1

metal in a Geld only slightly larger than H, &. On the
other hand, Nozieres and linen" suggested that in a
very pure metal, the velocity of the vortex line in a di-

rection parallel to the transport current should be equal
to the drift velocity of the electrons in the transport
current. This corresponds to a Hall angle in the normal
state in a Geld equal to H,2. Recent experiment. tal evi-
dence ' ' from Hall measurements on pure niobium in
the mixed state is in accord with this view. If h,«deter-
mines the Hall angle, as one might expect, the angle
could indeed be that for a field H, &. The anomalously
large Hall angles found in some alloys might also be ac-
counted for in this way.

The calculations of the free energy are being extended
to finite temperatures by Cleary. From these, one can
determine the specific heat from excitations in the
vortex core. Cleary shows that near T, one can expand
the free energy (2.10) in a series in D(r) and obtain the
GL expression. By changing the boundary conditions,
calculations for a vortex lattice are also possible.

It is hoped that the WEBJ method can be extended
to other problems, including time-dependent problems
such as that involved in vortex motion. In addition to
problems relating to vortices in type-II superconduc-
tors, the methods can be applied to a number of prob-
lems with plane boundaries in type-I superconductors,
such as the calculation of.-the normal-superconducting
boundary energy in the intermediate state and the
proximity eRect.
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