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and experiment was about 30 jo, while for pure niobium
the experimental result was higher by a factor of 40
as compared to the theoretical value. One can, therefore,
conclude that the experimental evidence on intrinsic
type-II superconductors, for samples which show a
constant slope in the mixed state, points to larger values
of dK/dH than expected from theory and to a steeper
variation with temperature.

IV. CONCLUSION

The present study indicates that the mixed-state
properties of the thermal conductivity E, in a niobium
sample of intermediate purity (l/$a 1), are still in
qualitative agreement with the dirty-limit (l/&o((1)
theory of Caroli and Cyrot" inasmuch as E increases
linearly as II approaches II,&. This linear behavior
extends over an appreciable range of the mixed state.
The slope r)K /BH varies with temperature much
faster than predicted by theory, and this behavior
seems characteristic of samples departing from the
extreme dirty limit.

The parameter ai(t) =H.s(t)/V2H, (t) is found, in
agreement with other investigators, to increase with
decreasing temperature much faster than expected from
theory.

The temperature dependence of the minimum in the
mixed state is thought to imply —in addition to the
monotonic decrease of E, with increasing magnetic
field —a nonmonotonic variation of E„,viz. , a decrease
of the electronic conductivity upon entry in the mixed
state followed by an increase as B approaches II,&.

This is strongly supported by the data of Muto et al.4

The scattering mechanism responsible for this behavior
of E, , though it can be conjectured to be scattering
by flux lines, merits further investigation.
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It has been suggested previously by Wong and Sung that the present discrepancies between theory and
experiments on the magnetic properties of some transition metals which are intrinsic type-II supercon-
ductors (e.g., Nb) may be caused by the overlapping-band eRect of s and d bands. We present here the
numerical results of this effect on the magnetic properties. It is shown that the overlapping-band e6ect
in the pure limit can reduce the upper critical 6eld EI.~ about 30—60% at 7' close to temperature 2'„and
thus enhance the over-all temperature dependence of H, 2. The amount of reduction decreases as the super-
conductors become dirtier. Reasonable parameters which characterize the overlapping-band effect are
assumed. We also compute ff:2, which defines the slope of H', 2 when the external Geld is slightly less than H, 2.

It is found that lf:2 becomes smaller in comparison with the present theory as T —+ T„' thus a stronger
temperature dependence is also associated with ~2. The numerical value of this correction in ~2, however,
is very sensitive to the parameters used.

I. INTRODUCTION

HK magnetic properties of type-II supercon-
ductors close to the upper critical 6eld II,2 were

first studied by Abrikosov, using the phenomenological
Ginzberg-Landau equation' near the transition tem-
perature T,. Later, Gorkov derived Abrikosov's theory
in the BCS model throughout the whole temperature
range at the "clean" limit (the mean free path l is much

* Research sponsored in part by the Air Force Ofhce of Scientific
Research, U. S. Air Force, under Grant No. AF-AFOSR-68-1487,
through the Ohio State University Research Foundation.

' A complete review of the theory of type-II superconductors
is given by A. L. Fetter and P. C. Hohenberg, in Superconductivity,
edited by R. D. Parks (M. Decker, Inc. , New York, to be pub-
lished), Chap. 14.

larger than the coherence length $). Actually, this
problem is simpler in the "dirty" limit where it is
unnecessary to solve an integral equation for the order
parameter (the position-dependent energy gap). This
was investigated by Maki and de Gennes, 2 who ob-
tained the temperature dependence of a& and Ks (param-
eters related to H, 2 and the magnetization for the
external field less than H, s) for l«g Helfand an. d
Kerthamers investigated this problem and generalized
the treatment given by Gorkov, Maki, and de Gennes
to all temperature and purity ranges. Thus, a micro-

s K. Maki, Physics 1, 21 (1964); 1, 27 (1964); C. Careli, M.
Cyrot, and P. G. de Gennes, Solid State Commun. 4, 17 (1966);
P. G. de Gennes, Phys. Kondensierten Materie 3, 79 (1964).' E. Helfand and N. R. Werthamer, Phys. Rev. 147, 288 (1966).
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scopic theory of H, s and xs dose to H, s is well estab-
lished within the BCS model. A complete numerical
calculation was carried out on the basis of the theory
of Helfand and Werthamer' (HW) by Eilenberger. 4

Experimentally, however, the theory does not seem
to check quantitatively. " Generally speaking, the
theory predicts temperature dependence and purity
dependence ~~ and I(:2 to be less pronounced than experi-
mental data. For instance, if experimental data are
fitted to the theory at T& T„, then .H, s is 50/o larger
than the theoretical value as T —&0, but this dis-
crepancy is reduced when more impure samples are
used. In other words, the experimental data show more
remarkable purity and temperature dependence for ~&

and J(:2 than does the theoretical calculation. Among
several attempts which have been advanced to remove
this discrepancy by various corrections, Hohenberg
and Werthamer' have succeeded in showing that the
anistropy of the Fermi surface can enhance the tem-
perature dependence of ai(T) and xs(T). We will come
back to compare the results of this paper with those
of HW later.

We notice that most of the pure type-II supercon-
ductors, the intrinsic London superconductors, are
transition metals (Nb, V) which have complicated
electronic structure. It is well known that the transition
superconductors do not follow even isotope law.
Recently, Garland' extended the two-band model given
by Suhl, Matthias, and Walker and attributed the
deviation to the Coulomb interaction of d electrons.
The two-band model, which consists of s and d bands
interacting with each other, was used successfully to
fit the experimental data" of specific heat by Sung and
Shen. "There is no question that the electronic structure
of transition metal is oversimpli6ed by the model where
the only adjustable parameters are the effective masses
of s and d electrons.

However, the essential feature of the metals with
overlapping bands is maintained, namely, the d band
dominates the thermodynamical properties, whereas
the s band determines the transport properties. It is
clear, since II,2 and ~2 are obtained by Maxwell's
equation connecting the electric current with the
magnetic Geld, the contribution from the s band can
be important. This possibility that might lead to the
explanation of the discrepancy in H, 2 was pointed out

4 G. Eilenberger, Phys. Rev. 153, 584 (1967).
~ D. K. Finnemore, T. F. Stromberg, and C. A. Swenson, Phys.

Rev. 149, 231 (1966).' W. A. Fietz and W. W. Webb, Phys. Rev. 161, 423 (1967).
This reference has a detailed comparison of present experimental
data and theoretical work.

' P. C. Hohenberg and N. R. Werthamer, Phys. Rev. 153, 493
(1967).

s J. W. Garland, Phys. Rev. Letters ll, 111 (1963).
' H. Suhl, B.J. Matthias, and L. R. Walker, Phys. Rev. Letters

3, 352 (1959).
'0 L. Y. L. Shen, N. M. Senozen, and N. E. Phillips, Phys. Rev.

Letters 14, 1025 (1965).
"C.C. Sung and L. Y. L. Shen, Phys. Letters 19, 101 (1965).

by Wong and Sung. ' We should mention here that a
detailed study of equilibrium properties of this model
was done by Soda and Wada. "II,& and the mixed state
close to T, were investigated by Tilley and Peschel. "
Recent calculations by Moskalenko" and Chow" in
the model with impurities are not correct.

The purpose of this paper is to investigate the tem-
perature and purity dependence of H, 2 and a2 in the
two-band model. It is found that in the pure limit the
model correction gives rise to larger temperature de-
pendence of H, 2 and I(:2. Roughly speaking, the con-
tribution of the s band is very small except around
T T„where the s band reduces II,2 and f(:2 and,
consequently, the over-all variation of H, & and f(:2 with
respect to temperature is enhanced.

In the Sec. II, the modification due to the two-band
model is introduced on the basis of the theory developed
in Refs. 1 and 3. In Sec. III, we calculate H, 2 and ~2 in
the pure limit. In Sec. IV, we carry out the calculation
with nonmagnetic impurities, assuming the Born
approximation is valid. Finally, we make a detailed
comparison with the experimental data.

II. FORMALISM

The Hamiltonian of a superconductor in the two-
band model under external vector potential A(r) is H,
where"

H =H, +Hs+H;.„

P, t (rt)P, i (rt)P, i (rt)P, t (rt)dr, (2)

H;„,= —J P, t (rt)f, i (rtgsg(rt)/st(rt)dr+H. c. , (3)

P„(rt)g„(rt)1 is the creation (annihilation) operator
of s electron of spin a and m, ie& is the mass of s(d)
electron. Hz in Eq. (1) is similarly defined as H, by
changing the subscript s to d. J is the interband coupling
constant. J, and J~ are the usual pairing interaction
constants in each band. Since in the following discussion
s and d bands appear symmetrically, we sometimes
write down only one equation for the s band in order

"V. K. Wong and C. C. Sung, Phys. Rev. Letters 19, 1236
(1967)."T. Soda and Y. Wada, Progr. Theoret. Phys. (Kyoto) 36,
iiii (1966)."D. R. Tilley, Proc. Phys. Soc. (London) 84, 573 (1964); L
Peschel, Solid State Commun. 4, 495 (1.966)."V. A. Moskalenko, Zh. Eksperim. i Teor. Fiz. 51, 1162 (1966)
LEnglish transl. : Soviet Phys. —JETP 24, 780 (1967)g. The error
of this reference is pointed out in Ref. 12."W. S. Chow, Phys. Rev. 176, 525 (1968).The equation for his
correlation function Eq. (34) cannot be obtained from the equa-
tion of motion as it should be. We cannot think of any justification
of Kq. (34) on which this calculation is based."We have chosen units such that k=c=Eg= l.
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to avoid complicated notations. Furthermore, a sub-
script s(d) always refers t:o the quantities in the s(d)
band

The equation of n&otion for. the Green's function
G(rr' (o„) and the anomalous Green's function F (rr', (o„)
defined by Abrikosov et a/. " remain unchanged in the
two-band model:

Pi(o„+(1/2m, )(~ t'eA—)'+ts, 7G, (.rr', (o„)

+A, (r)F,t(rr', (o ) =i)(r—r'), (4a)

[ t'(—o„+(1/2ms) (p'+ieA)'+t(, 7F,t (rr', (o„)
—A, t (r)G, (rr', (o) =0, (4b)

where A, (o)(r) is the energy gap whose definition is
changed due to the interband interaction H;„~,

~.«)'(r) =T E LJ"F."(d) («,(o.)

+P JF„t...(rr, „)7, (5)

where LLt, , tq~ is the chemical potential and
(o„=(2n+1)srT. Equation (5) is the major equation
in our calculation which difII'ers from the one-band
theory. It can be rewritten as two equations:

shown' that

rlr'g(rr', (o„)g(rr', (—„)6)(r')

dr'g'(rr', (o.)g'(rr', —(o )e'(' "'"')6'(r). (8)

Here II(r) =i'(7 2eA(r—) in Eq. (8) is unclerstood as an

operator acting on iV(r).
The linearized (7b) is solveds by finding the eige»-

value E,((o„') of the eigenequation

dr g 0(rr (o )g 0(rr (o )e((r—r') ii(r)g t (r)

=E,((o„')D,t(r). (())

E.(e) ((o„') is determined as a function of temperature
through the definition of 2(o„'= 2sr (2tt+ 1)T/ V, (eH, s)'t',
where V, (s) is the Fermi velocity of s(d) electrons and
we have

p(oD 1—2(o F (2(o )
T Q E((o„')=IV, ln

sr T . (st+-, )

where pcs& ——1.78)&the Debye temperature, E, (&~ is the
density of the state of the s(d) band, and the function
F is given4 as

Jo 'i1ot(r—) —(1—J'J,—'Jo ') T P Fat(rr (o„)

JJ, 'J„'a„t(r) =—0. — —

We may write Eq. (4) as the integral equations

G, (rr', (o) =g, (rr', (o„)

dstG, (rl, (o„)t(, (I)F,t (lr', (o„), (7a,)

dye ""tan —I.
x)

The extension of the calculation of the magnetization
in the one-band model to the two-band model is
straightforward, since the contribution of s and d
electrons to supercurrent j is additive:

I =Ie+Is ~

where

j (r) =—»)»HI*(r)+II(r')7

F,t(rr', &o„)= dslg, (lr, —(o„)iI(,t(1)G, (lr', (o„). (jb)

Here g, (rr', (o„), which satisfies Eq. (4a) with 6,=0,
is the Green's function for free electrons. Equations
(7a) and (7b) with their corresponding equations for d
are the complete set of equations for our discussion.

In order to find H, &, only linearized Eq. (7b), where
6, is replaced by g„ is needed. XVe write

r

g(rr', (o„)=exp i A(r)dr g'(rr', (o„),

where g'(rr', (o„) is the normal Green's function of free
electrons in the absence of the magnetic 6eld. It is

' A. A. Abrikosov, L. P. Gorkov and I. E. Dryaloshinski,
I(/Iethods of QNaltstm Field Theory irt Statistical Physics (Prentice-
Hall, inc. , Englewood Clips, N. J., 1963}.

r
XI T g d'ldssg, (r's, (o„)g(l s, —(o„)

n

—= (1/4sr)Z, (lls) (D,slit, +11"A,tD,),
where Z(lis) is introduced to denote the product of
these normal Green's functions acting on 6 in Eq. (12).

The magnetic 6eld in a superconductor h(r) is related
to the energy gaps by Maxwell's equation, curl h(r)
=4srj(r). It is shown' that when the energy gaps are
small and the nonlocal effect is neglected, h(r) is
directly related to A, (r) and hs(r) through

ll(i') =Hp —Z (H.s) I
~ '(r)

I

'—Za(H ~) I
~"(r) I' (13)
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where Z. (H, 2) is the value of the Z, (112) from Eq. (12)
with curl A =H, o. Z, (H,2), a function of E, =2m T/
V, (eH, 2)'" has been evaluated. ' 6,'(r) and Aa'(r) are
the values of A, (r) and Da(r) when the external field
Ho is close to II,2.

III. UPPER CRITICAL FIELD AND
MAGNETIZATION

The extension of the calculation of H, 2 is given by
Wong and Sung. " The equations which determined
H, 2 are the coupled Eq. (6) for s and d which become

[J ' —(1—J'J 'Ja ')T Q E (o~ ')7d, t(r)

—JJ, 'Ja 'hat(r)=0, '
(14)

XT Q Ed (o~.') jhdt(r) =0,

after relations (7b) and (9) are used. The condition
that there exists nontrivial solution for h, ~ and A~~

yields

[1 J.(1 J'J—. 'Jd —')T E &.(~-')3

functions in Eq. (16). We recall that in this symbolic
notation, Eq. (14) becomes

X3(H~2) IS,o(r)) —JJ 'Ja 'laao(r)) =0,
(18)

Xd(H~2) I
neo(r)) JJ iJd i

I
mao(r)) 0

When (6,o~ is multiplied to Eq. (17) and the lowest
order in the parameter [h(r) —H, 27 is taken, Eq. (17a)
becomes

(~.o~ X,'(H„)(7i(r) —H„)
~
~;)

+I', (H,o)(h,o~ (6,o)'~A,o)

=JJ 'J '((~"l~') —(~.'l~')) (19)

In Eq. (19), we have expanded X(II') in the neigh-
borhood of H, 2 and made use of Eq. (18).Since (Dao

~

6,)—(6,
~
Ad)40, the unknown term in the right-hand

side of Eq. (19) can only be eliminated by adding its
corresponding d equation, and the Abrikosov second
identity is obtained as

( o H, 2) (X.—'(8,")jXd'(Dao'))+ (Z,Xa'+ZdX, ')

X(A o26„o2)+(Y,+Z,X,')(6 o4)

+(Z„X&'+ I'a)(aI') =0. (20)

The magnetic induction 8 in the superconductor is
given by Eq. (15),

8 =(h(r)), (21)
X[1 Jd(1 J'J—'Jd '—)T Q —Ed((—g ")j

When the external field is below II,2, the magnet-
ization inside the superconductor is given by Eq. (12).
The absolute of ~A,'t(r) ~' and ~hat(r) ~' can be ob-
tained by the Abrikosov second identity as is done in
the one-band model. ' Expanding Eqs. (7a) and (7b)
to the third order in D, ~d~, we obtain

J,~(rr, o& ) = d'lg, (lr, &u„)LV(1)g,(lr, —oo„),

d'l"d'l' O'Ig, (lr,oo„)h'(l)g, (11', —o~„)
(16)

and I', (112) represents the product of four Green's

Xh(l')g, (1"1', —&v„)D'(I"r,oo.) .

Substitution of Eq. (16) into Eq. (6) yields a set of new
eigenequations, which can be written 'as

X,(112)
~
a.t(r))+I', (11&)a,'a,

~
a.t(r))

-JJ;'J.-'l~ ())=0, (» )

Xa(112)
~

Apt(r))+F'a(II')AdtAa~ hat(r))
—JJ 'Ja '~ h,~(r)) =0, (17b)

where X,(112) stands for

J, ' —(1 J'J, 'Ja ') gg, —

which can be expressed in, terms of the parameter rc~

defined by

8 =Ho —[H„—Ho/(2aP —1)Pgf, (22)

1+Pa 'V,n4Vd
2Ko (23)

ZdXa' (1+Z,Za 'n') (1+X,'Xa' 'n')

where n is the ratio A,o/Dao which can be obtained from
Eq. (18) or (14).

Va/Xd'Zd is the value of 2~2' without the correction.
X,', Y„and Z, are functions of the variable E, only,
and have been calculated. 4

IV. LIFETIME AND TRANSPORT TIME IN
TWO-BAND MODEL

In this section, we extend the previous calculation
to the impure samples. For the reasons to be explained
later, we assume that the concentration of impurities
is small and the Horn approximation is valid. In other
words, we always take interaction impurities and elec-
trons only in the lowest order.

Introducing N, ia&(r —r,)f,&a& (r)P, &a&(r) and u(r r,)—
Xf.(d) IPg&, &

as the scattering potential of the s(d)

where P = (d, ao4)/(h„o4)2 1 16
In order to evaluate (h(r)), we need (A,o') and (AP),

whose ratio is given by Eq. (16). Another needed
relation is Eq. (20).

Solving for (A,o') and (hdo2) and substituting the
values into Eq. (23), we obtain Ko.
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electron from the s(d) band to the s(d) band and d(s)
band, respectively, we may write down the Dyson
equation for the Green's function g'(r, r', o&) of free
electrons

g, '(r, r', o&„)=g,'(r, r', o&„)

+P g,'(r, r', o&„)N, (r"—r.)g, (r"r',o&„)rPr"

from the last terms is of the order of z4. The product of

g s(r, r', o&„) and the last term is of the order of t&', but
it is only a self-energy correction to g,s(r, r', o&„).&s As a
result, the definition of E, (o&„') in Eq. (9) should be
changed to

f Yo&r&

T Q Z, (o&„')=X.
l

ln

+P g,'(r, r" o&„)t&(r"—r,)gs(r"—i)t&(r —rs)
a, b

Xg, (r,r', o&„)rPr"d'r, (24)

where r, and r~ are locations of impurities.
The lifetime of s electrons and d electrons can be

computed easily from the Fourier transform of Eq.
(24). After the average is taken over impurities, Eq.
(24) becomes

g «&(p) =g «&'(p)+ g «&'(p) I(+ (p p')I'—
(2~)'

Xg, «l(P')g, «&(P)d'P'+ -g.«l (P)
(2')'

1 2o&z F(2o&~ )
(28)

(n+-,')L1—(I'r 'V 'H s) '&'F(2o& '))

2o&„'=L2s T(2&s+1)+I' )/V, (eH, s)'". (29)

A similar equation holds for T P E~(o&„").It should
be emphasized again that this result is only valid in
the Born approximation and cannot be applied to the
dirty limit. We note that the vertex correction is
associated with I'~, and I'~~, but is independent of F2,
and F~~. If the reasonable assumption is made that
u, n~ ~, I'~,))I'~, and I'~~=I'~ as E,&(Ãg, the vertex
correction is very small in the s band and Eq. (28) can
be written as

I t&(p p') I'g«& (—p')g «& (P)~'P' (28)

where c is the concentration of impurity. We have
neglected the terms N„which does not contribute to
the imaginary part of g(p). Equation (25) can be
written as

gs«& (P,o&n) =&o&n (2(&)

where

—=I'r. «& '+I's. «& (27)

Various physical quantities can be expressed by the
correlation function, the product of two Green's
functions. Since the average over the product of two
Green's functions is not equal to the product of the
two averaged Green's functions, the vertex correction
emerges. Finding the vertex correction in the two-band
model, in general, is complicated, since the interband
scattering makes the s and d vertex functions coupled
equations. Fortunately, we are interested only in the
case of the small concentration of impurities, and the
equations can be decoupled.

In order to carry out the previous calculation of H, 2

to an impure superconductor, we have to take the
average of the kernel g.sg, ' in Eq. (9) over all impurities.
Our result on the basis of Eq. (24) is similar to that
which is obtained in Ref. 3, because the contribution

where 2o&„' is given by Eq. (29). The summation

P„I
1—2o&„'F(2o&„')7, which is essentially the correction

due to the s band, decreases as F, increases as a function
of impurity concentration. It is interesting to note that
if I',((I'&, would not be taken into account in Eqs. (28)
and (29), H, s should have stronger temperature depen-
dence as impurity concentration increases.

Equation (24) can also be used to obtain the trans-
port life time in the Born approximation. Since our
equations are almost identical to those in Ref. 18 except
for minor modi6cation, we just write down the trans-
port life time of s and d electrons, I', ~~~','

c
I r, «&'] '=

I
cV, «& (1 cos8)u, «&s(8)—dQ

+X (.) '(8&dB) . (30&

' The vertex correction due to the interband scattering does
not exist in the Born approximation because there are no linear
terms of v in Eq. (24). This explains why no vertex correction is
taken into consideration in C. C. Sung and V. Kong, J, Phys.
Chem. Solids 28, 1933 (1967) LV,' and Vs' should replace V,Vs
of Kqs. (7) and (13) in the conventional notation of V, and Vs/.

"This is a well-known result used in the transport theory of
transition metals. See, e.g., H. Jones, in IIandbuch der Physik,
edited by S. Flugge (Springer-Verlag, Berlin, 1956). We recall
that J'cos0v'(0)dO is the vertex correction. Since there is no
vertex correction due to the interband scattering according to
Eq. (24), J cosov'(0)dQ does not appear.
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V. RESULTS

A. Parameters in the Model

It is important to review the parameters involved in
the two-band model so that the corrections due to the
two bands are clear. First, we discuss the ratio nest/m„
where ns, is taken to be the free-electron mass. The
normal specihc heat c~ of Nb is dominated by the
d-band contribution. Vsing"

ci ——3.26X10 'V"'eP'T(md/m) cal/mole deg, (31)

where V is the molar volume, nd the number of d
electrons per atom, we obtain m~/m= 10.

md can be derived from experimental data of II,~,

which, at zero temperatures, is given by

H„(O) = (1/e V. ) (13.3/2) ~„(0),
where Vg, inferred from experimental data of H, 2

is about 2.0X10' m/sec. If we take the Fermi ve-
locity of the free-electron model as V, =1.25X10'
m/sec, and assume the Fermi momenta of the s and d
band to be about the same, then mq/no=8. Since the
values mz/m obtained from Eqs. (31) and (32) are
reasonably close, we believe it reasonable to use
V,/Vd = 10—8.

Since most equilibrium properties are determined by
d electrons, J~S~ can be obtained from the SCS
theory" as

JgSg= 0.3. (33)

"J.G. Baunt, in Progress irl, I.om Temper gtlre Physics, edited
by C. J. Gorter (Wiley-Interscience, Inc., New York, 1955),
Vol. I.

"If the electron-phonon interaction is taken into account, all
the parameters JpE~, J'/J. Jz, and J,N', may be changed sub-
stantially. Since we use them as parameters here, our results are
not affected by this change.

Since it is reasonable to assume that the integrals in
Eq. (30) are of the same order of magnitude I', ' I'&'

the transport properties are dominated by the s band.
The electric current and heat current are inversely
proportional to the mass of particles and the lighter
particles always dominate the transport properties. In
other words, the mean free path of s electrons is larger
than that of d electrons. This conclusion is important to
analyze the data later where most thermodynamical
properties are dominated by the d band whose deduced
parameters cannot be used to determine the Incan free
path. Instead, a free-electron model (s band) should be
more suitable.

In the comparison of the calculation of one-band
theory and experimental data, a parameter
p= (2irT.I') ', where I' is the lifetime of the electrons,
is introduced to denote the purity dependence. In our
case, p is defined as (2irT, I'q) ', which dominates H, 2(0)
in the dirty samples, but it is noted that I'&=F, if we
assume e I, u~.

We are not aware of any ways of determining J2/J, Jq
and J,S, directly, but some rough estimate of these
numbers can be obtained by Pitting the experimental
data and theoretical values of specific heat. First of all,
J'/J, Jq is very small 10 ', and J,N, is related to the
energy gap 6, (0) at zero temperature, through

a, (0) J
A, (0)—~ii exp —1— — J,N, , (34)

~, (0) J,,
if we assume the same Debye temperature for both
bands. We will choose

J'/J, Jd =0.6X10 ', J.N. =0 15 (35)

These numerical values are used in the following
discussion, but it must be emphasized that the cor-
rection to H, 2 is practically determined by J'/J, Jd
and that other parameters are not very important.
When nonmagnetic impurities are present, we introduce
one parameter p= (2m Ti'q) ', and let I', =I'iq=l'q, and
I'g,—0,

B. Results in the Pure Limit

Since J'/J, Jq is very small, Eq. (15) can be written
as

(1—2a&„")F (2a)„")
lnT/T, +Q

n (e+-', )L1—(I'id, 'Vg'eH, ) "'F(2(o„~)j
N~J~N, J, J'

t T

JdNg —J.N, J,Jg( T,

(1—2a) ')F(2(a ')
+Z

~ (e+-', )[1—(I', .'V, 'eH„) "'F(2 ')j)—
T

X JgNg J,N.+J,N, JdN—g ln—
T.

(1—2(o 8)F(2'„s) ——1

+Z
(m+~)$1 —(I'i, VPeH, 2) i~~F(2co ')$

(36)

Although Eq. (36) is numerically complicated to solve
for II,2, a general picture of the two-band-model cor-
rection due to the right-hand side in Eq. (36) is easy to
assess. Since P„(1—2~„')F(2~ ') is considerably
larger than lnT/T„ the right-hand side is about 10 '.
Thus, the correction to the solution of H, 2 by neglecting
the modification is not important for t= T/T, ((1, —
whereas at t&0.8 the correction will substantially
reduce H, 2. In other words, the slope of II,2 at t= j. is
extremely sensitive to the correction term. The limit is

dt g g dI, g JdXd —JX,'V~'

"The expression of T, in the two-band model is used to obtain
Eq. (361.
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surface, still remains, but it can be tested at 1&t~&0.95,
~here Eq. (36) predicts the slope of H, 2 to vary sub-
stantially, 24 i.e., H.2Hw(0. 95)/H„(0.95)= 1.3 and
H, 2Hw(1)/H„(1) =1.5. In the following discussion, we
take the slope of dH. 2/dt from t=0.95. Since we can
never determine the absolute value of H, 2(0), the
measurement of B,& at 3 —+ 1 is the only way to dis-
tinguish the difference between the HW theory and.
our work.

Since V,/Ud is smaller than Z,/Zz by a, factor
V 2/V .2 25

FIG. 1. Temperature dependence of H; for pure sample. The
lower and upper curves are computed from the HW theory by
fitting the theory of the slope of.H,2(T,) and H,2(0), respectively.
The middle curve is obtained from the present work. The dots
are some data taken from Ref. 5.

We want to remark here that although II,2 and I~~

are determined by d electrons for most of the tempera-
ture region, they are strongly influenced by s electrons
near T,. Hence, the statement" that the s electron
dominates H, & is correct only near T,.

Our results are plotted in Fig. 1. The lower curve is
obtained from the HW theory which is made to fit the
slope of II,2 at 1=1, as is done in many experimental
papers, while the upper curve fits B,~ at t=0. The
middle curve is our numerical result which is obtained
by taking the s-band correction into the upper curve.

Since the correction of the theory of Hohenberg and
Werthamer" raises the value of H, 2 as t —+0, their
theory can certainly ht the experimental data also.

A word is in order to compare the HW theory and
our model. The two-band model used in this paper
consists of two isotropic bands. The anisotropy of the
energy gap and the Fermi surface of "each" band is
neglected. In terms of a very. general model, where
both anisotropy of the Fermi surface and energy gap
are considered, our model is mathematically equivalent
to a specific choice of anisotropy. However, our choice
that N, (0)&&N.(0), /J2,J«J(1, inferred from experi-
mental information, implies that the anisotropy is not
small, and the approximation used in Ref. 7 and by
Gorkov et al. is not applicable. Because of the large
density of the state of the d band, the measured anisot-
ropy of the energy gap and the Fermi surface should be
referred to the d band. Thus, if we include the small
anisotropy of the d band, as is done in Ref. 7, in this
paper, this work would be considered as a study of the
eRect of the s band in addition to what is accomplished
in Ref. 7. Although to include the d-band anisotropy
makes the model more realistic and can be done in a
straightforward manner, there are too many parameters
involved and comparison of the experimental data will
be meaningless.

The question as to which correction is more im-

portant, the s electron or the anisotropy of the Fermi

«2/K2Hw~(1+n2Z, /Z ) '
—=1+(N,/lVd)(V, '/Ud')(J/Jd)'S(V, /Vd) ',

where 5(V,/V~) is a function sensitive to the choice of
the parameter V,/V~. If we use the parameters in this
section, N, V,'J'/N~Vd'J2'S(V, /V~) is about 0.1 at
t—0.9. Thus the correction to I~:2 and H, & is qualitatively
similar. This result also checks with experimental
evidence, ' although the uncertainty of data makes any
quantitative comparison impossible. Since ~2/a2 is
too sensitive to the choice of V,/Vd, and the function
5 can be easily computed from Ref. 4, we do not plot it.

C. Effect of Nonmagnetic impurities

To apply the model to the very dirty samples which
consist of the transition superconducting metal and
another superconducting material perhaps is not
meaningful. For instance, Nb+x Ti used in Ref. 6
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FIG. 2. Temperature and impurity concentration dependence
of h(t) =H,p(t)/(dH, 2/dt) & 1 as a function of p= (2m. Trp) '. From
the top to the bottom, p= 0, 0.2, 0.5, and 1.0. The next two curves
are from the HW theory with parameters p =0 and
respectively.

"T. Ohtsuka and N. Takano, J. Phys. Soc. Japan 23, 983
(1967); and S. Williamson, Phys. Letters 28A, 665 (1969) have
measured the value of H,2(T) at T~ T,.

~ The relation X,(~~'=Z, (d,) of Ref. 4 is used.
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changes the value of the normal specific hear more than
10% when x)5%, and it is clear that correction due
to the presence of Ti is more important than that of
the s electron. The so-called dirty limit calculation" "
is of pedestrian interest only, in our opinion, unless one
can compute the properties of the superconducting
alloys. Our discussion here thus can be applied to
superconductors with small concentration of impurities.

It is pointed out' that the quantity k(t)=H, &(t)/
dH, 2/dt ~,=& is more suitable in comparing theory with
experiment. In Fig. 2, we plot the results which show
that h has a larger purity dependence than predicted
for the H% theory. This, of course, is a consequence
that the correction term in Eq. (34) becomes smaller as
impurities are introduced. The experimental data in
Ref. 6 show that k(0) = 0.7 at the pure limit consistent
with the HW theory, but h(0) has larger purity de-
pendence. We notice that the crucial number dH, ~/
dt ~,=~ is 6.1 kOe and 4.8 kOe in Refs. 6 and 5, respec-
tively, despite small difference in p. Consequently, an
accurate comparison is not possible. The confusion is
caused, we believe, by the difficulty in reading the
number (dH, ~/dt) &=~ from the experimental data.

The only available experimental work to measure
h(t) carefully is given by Ohtsuka and Takano, 24 who
show k(0) is about 20% larger than the HW theory at
the pure limit. In Fig. 2, the choice of the parameter
J'/J, J& assumes the discrepancy is about 30% from
reading the data in Ref. 5. There are only two or three
experimental points available from Ref. 6 and the new
reference consistent with the prediction of larger p
dependence of k(0) derived from this paper. No detailed
comparison between theory and experiment is made for
another reason, namely, p cited in the experimental data
of H, &(1) may remarkably diRer from the p determined
from the lifetime, the theoretical value. Again, we
wish to emphasize that whether or not (dH„/dt) (/& 1)
is, indeed, very sensitive to the purity, especially at the
small value of p, is decisive proof of the correction due
to s electrons. On the basis of the data available so far,
we cannot come to any definite conclusion, although
we are able to obtain a stronger impurity dependence of
h(t), indicated in Fig. 2.

Since our result changes substantially when t ap-
proaches one, and the value «~(1) is not certain, we
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Fzo. 3. The purity dependence of ~1 (0.1)/&1(0.95). The upper
curve is from this calculation and the lower curve is taken from
Ref. 4. (The assumption is made that the transport time and life
time are equal. ) We write ~&(0.95) instead of a&(1) to emphasize
the important difference between these two quantities.

plot «q(0. 1)/«(0.95) in Fig. 3 to show the strong purity
dependence in our model, but it does not contain more
information than Fig. 2. Although the calculated curve
in Fig. 3 and the corresponding experimental curve in
Ref. 6 are similar, a quantitative comparison is
meaningless.

In conclusion, we make the following remarks
pertinent to the experimental data:

(1) Since the resistivity and H, &(0) are determined
by s electrons and d electrons, respectively, it is not
surprising that the values of p from the experimental
data of these quantities differ. Furthermore, since
H, &(1) is strongly influenced by s electrons, no single
value of p should be used to fit the data of H.2(1) as a
function of p.

(2) Properties of superconducting alloys (two kinds
of superconducting materials) are very complicated. It
is dificult to analyze the data of H, ~ and ~2 of super-
conducting alloys in terms of the purity dependence.

(3) Whether or not the two-band effect is important
depends on the experimental data of H, 2 at t&1 to
prove the assertion in Sec. V B. The purpose of com-
paring the experimental data, with this work is to
point out that the present discrepancy is not neces-
sarily at T —+ 0. If both anisotropy of the d band and
the effect of the s band are taken into account, as
should be done, the discrepancy may not appear a,s
serious as is cited in numerous experimental papers.


