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A calculation is presented of the electron-phonon mass-enhancement parameter X and the supercon-
ducting transition temperature T, for sixteen simple metals plus Ca, Sr, and Ba. Empirical pseudopotentials
and phonon spectra are used to calculate the electron-phonon coupling in a one-orthogonalized-plane-wave
approximation using a spherical model of the phonons and the Fermi surface. Umklapp processes are
explicitly evaluated. Calculated values of X are compared with values of ) extracted from T, and with
values of the enhancement of the density of states at the Fermi surface as measured by the low-temperature
specific heat. Excellent agreement is found for the divalent hexagonal metals, using empirical nonlocal
pseudopotentials. Satisfactory agreement is found for the other simple metals. It is predicted that Li and Mg
should be superconducting at low temperatures. The calculated results are also compared with a simple
model for X due to McMillan, and the simple model is used to discuss the occurrence of superconductivity
in the Periodic Table.

I. INTRODUCTION

A I-THOUGH most of the aims of superconductivity
theory have been accomplished by the Bardeen-

Cooper-Schrieffer (BCS) theory' or more general
theories based on BCS, like the Nambu-Gor'kov-
Kliashberg theory, ~ 4 one of the most basic aims, the
calculation and prediction of superconducting transition
temperatures T„has only begun to be realized. It is
widely accepted that the reason for the inavailability
of accurate calculations of T, lies not in any basic
failing of superconductivity theory, but rather in the
fact that T, depends sensitively on the normal state
properties of materials. In recent years, much has been
added to our understanding of these normal state
properties, and reliable calculations of T, can now be
attempted. Successful model calculations with a small
number of adjustable parameters have been done for
several systems where transition temperatures can be
varied by varying carrier concentrations. Examples of
such calculations are Seiden's work' for the lanthanum-
selenide system with two adjustable parameters and
works by the authors and others for degenerate semi-
conductor systems using one adjustable parameter. '
The direct calculation of the single number T, in a
metal with no adjustable parameters is more difficult
and the results are somewhat less convincing as a
test of the theory, but rather good success has been
reported by Carbotte and Dynes' for Al and Pb.
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McMillan' has done a detailed study of the depend-
ence of T, on the electron-phonon coupling in metals.
He found a simple model formula for T, in terms of a
few parameters, the most important of which is the
electron-phonon mass enhancement X. Detailed and
fairly successful calculations of X in a few simple metals
have now been done by a number of authors io—i6 The
term "simple metal" refers to elements in which the
outer (s and p) conduction electrons are far enough
removed in energy from d or f levels that these conduc-
tion electrons can be treated as nonlocalized nearly
free electrons. In these metals the electron-ion interac-
tion can be represented by a pseudopotential, '7 and the
pseudowave functions are similar to free-electron plane
waves. It is the knowledge of the pseudopotential
which has made reliable calculations of X possible for
the simple metals.

In this paper we present pseudopotential calculations
of X and T, for 16 simple metals plus the alkaline
earths, Ca, Sr, and Ba, using Animalu-Heine model
potentials, "and (whenever possible) empirical pseudo-
potentials obtained from band-structure calculations
fit to Fermi-surface measurements. The theory and a
description of the calculations are given in Sec. II. In
addition, previous calculations of X are assembled and
discussed in this section. It is argued that a reliable
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Benjamin, Inc., New York, 1966), Table 8-4.
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value of X can be found provided the correct pseudo-
potential and phonon spectrum are known, even if
effects of phonon anisotropy and departure from free-
electron behavior of the conduction electrons are
ignored.

The calculations are presented and discussed for
individual metals in Sec. III. Particularly good success
is found for the divalent hexagonal metals Be, Mg,
Zn, and Cd, as previously reported by the authors. ""
This success is attributed to the availability of extremely
accurate empirical nonlocal pseudopotentials in these
metals. On the basis of this success we feel it is possible
to calculate A. and T, accurately in simple metals
provided the empirical pseudopotentials are known
accurately, and the band-structure density of states at
the Fermi surface Ar(0) has been calculated. It appears
that the nonlocal form of the empirical pseudopotential
is important for obtaining the desired accuracy in
these quantities, and in fitting Fermi-surface data to
the accuracy of recent experimental work. On the basis
of the calculations shown in Sec. III, we predict that
Li and Mg should be superconducting at very low
temperatures.

In Sec. IV, general trends in the occurrence of
superconductivity in the Periodic Table are discussed.
In particular, the conclusions of the jellium modeP' "
for simple metals are shown to be roughly correct in
the more exact theory. Another example of an interest-
ing regularity first pointed out by McMillan' is found
in the metals Be, Mg, Zn, and Cd. Finally, in Sec. V we
conclude that the theory of T, for simple metals is now
understood, and that the electron-phonon interaction
mechanism does a completely adequate job of explaining
T, in these metals.

II. THEORY

A. General Theory

(2 1)

The parameter X, is the contribution from Coulomb
interactions to the electronic mass renorma, lization;
these contributions have been most recently calculated
by Rice" and appea, r to be small. Henceforth, we will

' P. B.Allen, M. L. Cohen, I.. M. Falicov, and R. V. Kasowski,
Phys. Rev. Letters 21, 1794 (1968)."P. B. Allen and M. L. Cohen, Solid State Commun. 7, 677
(1969)."D.Pines, Phys. Rev. 109, 280 (1958)."P. Morel, Phys. Rev. Letters 1, 244 (1958); J. Phys. Chem.
Solids 10, 277 (1959)."P.Morel and P. W. Anderson, Phys. Rev. 125, 1263 (1962).

The parameter of fundamental interest to us is X,
the electron-phonon contribution to the electronic mass
enhancement at the Fermi surface. In the simple case
of a spherically symmetric band structure, the observed
mass m* (as found by cyclotron resonance, de Haas —van
Alphen effect, or specific-heat measurements) is rela. ted
to the band mass ms (as computed in a, band-structure
calculation) by

m*= ms(1+X+X,) .

neglect A, , on the grounds that its value is small; its
magnitude is probably no greater than uncertainties in
the value of X.

Real metals are generally more complicated than the
spherical model above. Because of anisotropy and
because of Bragg refiection at zone boundaries, cyclo-
tron masses and de Haas —van Alphen masses vary from
orbit to orbit, and the renormalization varies from
point to point on the Fermi surface. Formula (2.1) then
does not define a unique enhancement X; we must also
specify which mass is being considered. In this paper,
we will choose m* to be the specific-heat mass defined
as the ratio of the linear coefficient y of the specific
heat to the value y would have in a free-electron gas of
equal density. The proper choice for I& is then the
band-structure density-of-states mass at the Fermi
surface, defined as ratio of the calculated density of
states at the Fermi surface N(0) to the density of
states of the free-electron gas. With this choice A. is an
average of the mass enhancements over the Fermi
surface and is given by '4

X=X(0) dSg dSg

dSs de . (2.2)

The integrals are surface integrals over the Fermi
surface, o~, (q) is the measured frequency of the phonon
of mode n and wave vector q, and M (k —& k') is the
matrix element for scattering an electron from a Bloch
state Ik) to a Bloch state Ik'), both on the Fermi
surface, by a phonon of mode n,'

M (k~ k') =P bRi (k'I p'V(r —Rt) Ik), (2.3)

where V(r —Ri) is the electron-ion interaction, the
index t runs over the atomic sites Ri, and 8Rt is the
displacement of the atom at R~ arising from phonons
of iTlode n.

Equation (2.2) is exact only if the electron-ion
interaction U conta, ins the bare interaction plus the
effects of (a) screening by conduction electrons and
(b) both Coulomb and phonon vertex corrections.
MigdaP' ha, s shown, however, that phonon vertex
corrections contribute nothing to lowest order in the
square root of the electron-to-ion-mass ratio (m/M)"'.
Furthermore, Heine, Xozieres, and Wilkins" have
proved that the electron-ion interaction which deter-
mines the band structure contains both screening and

'4 For a simple derivation in the isotropic case see J.J. Quinn, in
2'he I~'ernsi Surface, edited by W. A. Harrison and M. B. Webb
(Wiley-Interscience, Inc. , Xew York, 1960); a more general
derivation is given by S. Nakajima and M. Watabe, Progr.
Theoret. Phys. (Kyoto) 29, 341 (1963)."A. B. Migdal, Zh. Fksperim. i Teor. Fiz. 34, 1438 (1958)
/English transl. : Soviet E'hys. —JETP 7, 996 (1958}j."V. Heine, P. Nozieres, and J. W, Wilkins, Phil. Mag. 13, 741
(1966).
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Coulomb vertex corrections in the same fashion as the
electron-ion interaction needed for the electron-phonon
coupling in (2.3).This means that the correctpotential V
in Eq. (2.3) is the potential which determines the Fermi
surface. Finally, Sham'7 has demonstrated that the
matrix element in (2.3) can be computed equally well

by using a pseudopotential for V and pseudowave func-
tions for the states

~
k), instead of the real potential and

the real wave functions. The result of these theorems is
that it should be possible to compute X very accurately
Li.e. , to lowest order in (m/3II)'"j from experimentally
accessible quantities, namely, the phonon spectrum and
the pseudopotential. Because pseudopotential matrix
elements are needed only for states on the Fermi surface,
a pseudopotential empirically fitted to Fermi-surface
data would seen to be the ideal choice. Pseudopotential
theory, however, is not yet at a suKciently advanced
state to identify unambiguously a single pseudopotential
to be used incalculating all properties of a given metal.
It is to be hoped (but it is not a priori certain) that a
single truncated pseudopotential, when applied in a con-
sistent way to band-structure and to electron-phonon
coupling, is capable of describing both problems. The
resultsof the present calculation constitute empirical
evidence that a single pseudopotential can be used in
this way.

Calculations of X can be tested because there are
three independent ways of determining X. Two have
already been mentioned: X can be calculated directly
from Eq. (2.2) or extracted from Eq. (2.1) provided a
band-structure density-of-states mass is known. These
values of A. depend strongly on the accuracy of the
electron-ion potential used. A third method which
comes from superconductivity theory gives reliable
values of X independent of the knowledge of the
potential. The Eliashb erg kernels in the Nambu-
Gor'kov integral equations involve a phonon-coupling
function u'(&u)F(co), where F(~) is the phonon density
of states and n'(co) measures the coupling of electrons to
phonons of frequency co. McMillan and Rowell2' have
devised a technique of inverting the integral equations
and extracting o,'F from the measured tunneling density
of states. The parameter X is related to n'P by

(2.4)

Thus X can be computed from tunneling data. Un-
fortunately this procedure at present is only useful for
strong-coupling superconductors where deviations from
the BCS tunneling density of states can be observed
by present techniques. However, McMillan' has also
devised an approximate solution of the Nambu-
Gor'kov equations, giving the transition temperature

27 L. J. Sham, Proc Phys. Soc. (Lon.don) 78, 895 (1961).
~s W. L. McMillan and J. M. Rowell, Phys. Rev. Letters I4,

108 (1965).

T, as a function of X and the Coulomb couplin~«p, '

OD
— ( (1.04) (1+))

T, = exp —
~

1.45 4—g"(1+0.62k)).

2k'&

p =1V(0) V (0)
(2k p)'

(2.5)

(2.6a)

(2.6b)

In these equations, OD is the Debye temperature, E& is
the Fermi energy, and V, (q) is the fully screened
Coulomb interaction between electrons. Equation (2.5)
is known as the McMillan equation; it is based on a
two-square-well solution of the integral equation, with
parameters adjusted to fit more exact calculations of
T, for various coupling constants o.2 and p,*.McMillan
used for F(cu) a phonon density of states patterned after
niobium. This equation yields values of X when T„
OD, and p* are all known. In practice, y* is not usually
known, but a rough estimate is adequate because T,
is not too sensitive to p*, unless X is fairly small. For
weak-coupling superconductors, values of X from Eq.
(2.5) should be quite reliable. For the strong-coupling
superconductors Pb and Hg, however, Eq. (2.5) is
not expected to work so well, because T. becomes
sensitive to the exact form of the phonon spectrum. The
McMillan equation can also be used to predict T, if
the value of X is known. We will present some examples
of this in Sec. III.

B. Previous Calculations of 2

The earliest calculations of X were done using
screened Coulomb potentials for the electron-phonon
coupling and jellium models of the phonon spectrum. ""
In addition, umklapp contributions to X (processes
where k' —k lies outside the first Brillouin zone) were
only roughly estimated. These calculations had some
qualitative success in explaining the distribution of
superconductivity in the Periodic Table, but little
quantitative agreement. Knowledge of the phonon
spectrum and electron-ion coupling is now sufficiently
improved so that more realistic calculations can be
attempted. The minimal requirements for a "realistic"
calculation are that the phonon spectrum and electron-
ion coupling should conform to experiments insofar as
possible, and umklapp contributions should be explicitly
evaluated. The present calculation satisfies these criteria
in perhaps the simplest and most naive way, by taking
an isotropic model of the Fermi surface and the phonon
spectrum, free-electron Lor single orthogonal plane
wave (OPW)$ ma, trix elements, and a Debye sphere
for the phonon Brillouin zone. These approximations
ignore four effects which would otherwise make the
calculation considerably more difficulty:

(i) The actual Fermi surface is distorted away from
a sphere near zone boundaries.
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TABLE I. Summary of previous calculations of X.

Element
Ashcroft and

Wilkins'
Animalu

et al.b Pytte' Grimvall~
Janak'

one OPW
Jane' TroQmenkoff'

two OPW et al. Riceg

Ll
Na

Rb
Cs
Mg
Zn
Cd
Al
Pb

0.18'

0.49'
1.12'

0.14h
0.13h
0.15"
0.16"

O. 18h
O.22h

046
0.60"

0.12h

P 30h~m

0.14h™
O.5Oh

1.67h

0.13h

0.12h

39h
P 28h~m

p 15hm
0.53h
1,55h

0.12h

0.11h

0.46"
1.69"

0.15~
0 20~1
0.12~
0.11'

a Reference 10.
b Reference 11.
e Reference 12.
d Reference 13.' Reference 14.
f Reference 15.
g Reference 16."Using the Animalu-Heine model potential, Ref. 18.
1 Using an empirical pseudopotential; for Al this is very nearly identical

to (h).
& Using the Ashcroft potential LN. W. Ashcroft, Phys. Letters 23, 48

(1966)3.

"Using the empirical phonon spectrum; the remaining numbers in this
column use a theoretical phonon spectrum.

1Using 13 OPW's. The remaining numbers in this column use a single
OPW.

m J. F. Janak (private communication). A density-of-states mass mi
=0.59 for Zn and 0.54 for Cd has been included to facilitate comparison

with the present calculation. The remaining values in these columns use
mf as given by D. Weaire, Ref. 36.

&Using the Harrison potential t W. A. Harrison, Phys. Rev. 131, 2433
(1963)J.

(ii) The actual matrix elements involve mixtures of
many OPW's, and deviate from the free-electron
matrix elements near zone boundaries.

(iii) The phonon frequencies are anisotropic.
(iv) The phonon polarization vectors are not purely

longitudinal or transverse except along certain sym-
metry directions.

A number of previous workers have done realistic
calculations of X, mostly for Xa, I&, Al, and Pb, using a
variety of approaches to include these four effects.
Seven such calculations'~" are known to the authors,
the results of which are summarized in Table I.The most
ambitious calculation is that of Ashcroft and Wilkins, "
which attempts to include all four effects by integrating
over the actual distorted Fermi surface using two OPW
matrix elements, with a calculated phonon dispersion
relation giving co~ and ~, fit to symmetry direction
neutron scattering data. Pytte" has obtained nearly the
same value of X in aluminum by handling effects (i)
and (ii) in the same manner as Ashcroft and Wilkins,
but ignoring effects (iii) and (iv) in the same fashion
as the present calculation. Trofimenkoff ef at."have also
found the same value of X in Al by ignoring effects (i)
and (ii) and including effects (iii) and (iv). Janak'4 has
found nearly the same value of X by ignoring all four
effects; also he found very little change in A. when he
used two OPW matrix elements to handle effect (ii).
These calculations constitute rather good evidence that
in Al all four effects can be neglected. The possibility
remains that in less free-electron-like metals effects (i)
and (ii) may not be entirely negligible. Also there is the
possibility that the isotropic phonon approximation
may fail in some materials which are less isotropic than
Al. However, in the alkali metals, where there is
considerable anisotropy in ra(q) Rice" has found that

this generates very little anisotropy in A. We believe
that with the possible exceptions of Sn and Ga which
have complex structures, phonon anisotropy effects
are fairly unimportant. A comparison of Janak's one-
and two-OPW calculations shows that the free-electron
matrix element approximation has less than a 10% effect
on X not only for free-electron-like metals such as Na,
K, Al, and Pb, but also for metals with severely
distorted Fermi surfaces like Zn and Cd. This appears
to contradict Rice's result that X for Na is enhanced by
30% when higher OPW's are included. Rice used
perturbation theory to include the effects of the 12
(110) reciprocal lattice vectors. When the plane waves
k and k' mix with higher plane waves k+ G and k'+ G',
the scattering matrix element involves not only
V(k' —k) but also terms such as V(k'+G' —k—G),
where G and G' are reciprocal lattice vectors. ln the
case of a two-OPW calculation the extra plane wave is
chosen to lie as near as possible to the Fermi surface,
so that the pseudopotential V(q) required for wave
vectors q is not much longer than 2k~. However, in
the Rice type of calculation the pseudopotential is
required at wave vectors of the order of 4k' and
higher, where it is not determined empirically. Rice s
30% enhancement is highly sensitive to the magnitude
of the pseudopotential in the region above 2k~. How-
ever, the pseudopotential which produces the band
structure is effectively truncated at q=3kp. If the same
pseudopotential can be used to calculate the electron-
phonon coupling, then fewer plane waves than Rice
used will actually contribute to P, and the results should
be closer to the one-OPW result.

At least for the simplest metals, the most naive
calculations give the same results as the most complex.
Therefore it seems worthwhile. to try a naive calculation
for all the simple metals, using the best available
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pseudopotentials, and to judge the validity of the
approximations by comparison with experiment.

C. Calculation of 1
The actual integrations involved in evaluating (2.2)

are quite difficult. The simplest approximation is to
use a completely spherical model in which the Fermi
sphere is considered to be undistorted, the states Ik)
are single OPW's, and the phonon dispersion relations
co (tl) are approximated by spherically symmetric
functions co (I qI) with a Debye sphere replacing the
actual Brillouin zone. One advantage of this model is
that the matrix elements of the pseudopotential
become simple functions of the magnitude of the
momentum transfer k' —k; thus

(k'IvV(r)Ik)=i(k' —k)V(Ik' —kI). (2.7)

~{kiev)

~ {kiev)

30—

20

0
0
r

0,2 0.4 0.6
A

a)

0.8 1.0r'

b)

This result holds both for local and nonlocal pseudo-
potentials, because the states Ik) and Ik') are on the
Fermi sphere. The form factors V(Ik' —kI) are experi-
mentally determined only'for

I
k' —kI =

I GI, where G
is a low-lying reciprocal-lattice vector. The value of
V(0) is rigorously" —sE& where Es is the free-electron
Fermi energy. It is convenient to extrapolate between
the known values of the form factor by using the shape
of the Animalu-Heine model potential. '

Within the completely spherical approximation
equation (2.2) can be written as

),=x(o)p p
6 a=1 +=1

ds9
I

e'o'oee ' (q+G) V(tl+G) Is

Iu~e, s
I
q+G

I
m~. '(q)

&&0(2k,—
I q+GI). (2.8)

The integration goes over the Brillouin zone (replaced
by a Debye sphere) and the summations go over
reciprocal lattice vectors, atoms at positions ~ within
the unit cell, and phonon modes n with polarization
vectors e, at atom a. The number of atoms in a unit
cell is v. The 0 function ensures that only scattering
on the Fermi sphere is considered.

The majority of the metals under consideration have
structures with one atom per unit cell. This simplifies
the labor involved in evaluating equation (2.8), because
the sum over atomic sites ~ drops out and there are only
three phonon modes to contend with. The remaining
metals are mostly hcp structure, except for Sn and Ga
which are complex and quite difficult to treat. At first
sight, at least one of our approximations fails badly in
hcp metals —the assumption of a Debye sphere in
place of the first Brillouin zone, which is quite far from
spherical in hcp materials. Furthermore, the phonon
spectra of hcp metals looks relatively anisotropic. On
closer examination, however, hcp metals should be
just as good candidates for a spherical approximation
as cubic metals. After all, in real space hcp and fcc
structures differ only at second nearest neighbors (or

20

, :0
'0
r

0.2 0.4

q/q,

0.6 0.8
hh

1.0

Fxo. 1. Phonon dispersion relations a&(q) in meV for Mg with q
measured in units of gD, the radius of the extended Debye sphere.
The solid lines correspond to the neutron scattering measurements
of Iyengar et al. , in Inetastsc Scattersng of fqentrons sn SolÃs and
LiguAs (International Atomic Energy Agency, Vienna, 1965),
Vol. I, p. 153. The dotted line is the quadratic Gt used in the
calculations. In (a) the modes along the (0001) direction from F
to 2 are shown, with the optical modes unfolded into the second
Brillouin zone. In (b) the modes along the (1010) direction from
F to M are shown. The dotted lines for the optical modes near I'
are found by translating by (0002); for the optical modes near 3E
the translation is (1010).

in the stacking order of hexagonal layers). We have
attempted to exploit this similarly by treating hcp
metals as if they were fcc as far as phonon properties
go. This means instead of six modes in a Debye sphere,
we take three modes in an extended Debye sphere of
twice the volume. Another justification of this is the
fact that the optical-phonon modes can be unfolded
across the hexagonal face of the Brillouin zone (where
optical and acoustic modes are degenerate because the
structure factor vanishes) into a Jones zone twice as
high as the first Brillouin zone. This extended zone is
much more nearly spherical than the first zone is. Then
all the isotropic approximations can be made. The
spherically averaged phonons give a remarkably good
fit to both the acoustic and optical branches. This is
illustrated in Fig. 1 for Mg.

The same trick is also useful for Sn and Ga as a
means of avoiding the difficult task of choosing phonon
frequencies and polarization vectors for many phonon



530 P. B. ALLEN AN D M. L. COHEN

TABLE II. Data used in the calculation of X and T,.

Ll
Xa
K
Rb
Cs
Ca
Sr
Ba
Be
Mg
Zn
Cd
nHg
pHg
Al
Ga
In
Tl
Sn
Pb

3.24
3.94
4.88
5.22
5.63
3.27
3.57
3.69
1.87
2.64
2.29
2.57
2.65
2.63
2.07
2.18
2.39
2.47
2.21
2.29

6.164
3.413
2.516
1.629
1.324
3.95
2.67
2.235

13.12
6.00
3.78
2.98
1.703
1.703
6.00
4.4
2.73
2.055
3.546
2.29

2.624
1.486
1.113
0.690
0.566
2.34
1.58
1.325
9.21
3.23
2.24
1.757
0.944
0.944
3.00
2.7
0.935
0.7216
1.800
1.007

CL, CT
(10' cm/sec} (10' cm/sec} (meV)

40.0
15.2
9.1
5.5
4.1

20.1
12.7
9.5

83.5
29.0
20.8
16.4
12.0
12.0
38.9
28.0
14.8
10.6
16.0
9.02

(meV)

22.0
8.6
4.3
2 ~ 76
2.12

11.9
7.5
5.6

56.6
14.9
10.8
8.4
5.0
5.0

28.2
20.4
6.5
4.5
8.0
6.80

2.20
1 ~ 26
1.24
1.25
1.43
1.92
2.03
1.40
0.37
1.33
0.86
0.74
1.88
1.40
1.49
0.59
1.39
1.14
1.29
2.01

O~D

('K)

352
157
89.4
54
40

234
147
110.5

1390
400
309
209
71.9
94

420
324.7
109
78.5

195
96.3

0.18
0.16
0.15
0.15
0.14
0.16
0.16
0.15
0.10
0.15
0.12
0.12
0.13
0.12
0.14
0.11
0.12
0.11
0.12
0.12

1.00
1.00
1.00
1.00

0.30
1.00
0.59
0.54

V

g(G) Q e»G ~ »» (2.10)

This is the final formula for X. The polarization vectors
are chosen to be purely longitudinal (» parallel to q)
or transverse L» perpendicular to q, with (» G)'
averaged over orientations of » perpendicular to qj.
The term with G=O then arises only from longitudinal
phonons. This is called the normal or N contribution
to A.. The remainder is the urnklapp or U contribution,
and is usually much larger than the E contribution
(except in the alkalis where the Fermi surface is small).

The pseudopotential can also be used to calculate the
electron-phonon part of the electrical resistivity p(T),
using an expression given by many authors"; for
convenience we will call it the Ziman-Baym theory.
Within our spherical model, p is given by Eq. (2.9)
except that a factor

b'ce '(q)
(1—cost}) (2.11)

ee'h (1 ee" ~")—(e~"~»&'~ —1)

must be included in the integral, where e is the electron
density, P= 1/k&T, and 8 is the angle between k and k'.
The factor 1—cosg weights the large momentum trans-

' J. M. Ziman, E/ectrons and Phonons (Oxford University
Press, New York, 1963), Chap. 9; G. Baym, Phys. Rev. 135,
A1691 (1964). For an application of these theories in simple
metals using pseudopotentials see R. C. Dynes and J.P. Carbotte,
ibid. 175, 913 (1968).

modes. Within this model, Eq. (2.8) becomes

I»»- (q+G) i'(q+G) I'
x=E(0) P QI5(G)l'

0 a 16m-kp'l q+Gl3Au '(q)

&«(».-Iq+Gl), (29)

where the integration is over the extended Debye sphere
and $(G) is the normalized structure factor

fer scattering more heavily than the small-angle scatter-
ing, and further enhances the U contribution over the
E contribution.

The data used in the calculations are given in Table
II. For convenience, a quadratic fit to the phonon
dispersion curves was used, fitted to the measured
sound velocity C& and Cz for longitudinal and transverse
modes, respectively, and to representative frequencies
cvz, and co& at the radius of the extended Debye sphere
q= qD. The constants Cz, and C~ were chosen whenever
possible by taking T=O elastic const and averaging
the inverse square of the velocity for each mode on the
various symmetry directions. Since the two transverse
modes enter Eq. (2.9) in an identical way, their fre-
quencies were averaged together to get one representa-
tive doubly degenerate mode. The constants cvz, and co&

were chosen, whenever possible, to be the most rep-
resentative maximum frequency of the mode as rnea-
sured by neutron scattering. In metals where neutron
data are unavailable we used frequencies of peaks in
the superconducting tunneling density of states when-
ever possible. In the absence of either type of informa-
tion, cez, was set equal to 0'& and cur was given by
(Cr/CQ) O™D,except for Cs where reference was made
to theoretical calculations. " In Ca and Sr where only
Cz and O~ were available, the value of (Cr/Cz) found
in Ba was used. Finally, in Cd cop. and co& were chosen
by taking the values for Zn and scaling them by
(Ccq/Cz„) for each mode.

The quadratic fit to the phonon spectrum is shown
in Fig. 1 for Mg. This form was chosen because it
gives a rather good fit to the phonons in a variety of
materials. The added errors from the quadratic model
lie within the roughly 10%%u~ uncertainty already present
because of the isotropic approximation. The convenience

P. S. Ho, Phys. Rev. 169, 523 (1968); A. O. E. Animalu,
F. Bonsignori, and V. Bortolani, Nuovo Cimento 44B, 159 (1966) .
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TABLE III. Calculated values of X, T., and p using various pseudopotentials. The experimental values of the electrical resistivity at
295'K are given by Meadan'; residual resistivities have been subtracted.

Element

Rb
Cs
Ca

Sr
Ba

ZIl

Cd

aHg

PHg

Al

Ga

Tl
Sn

Pb

pseudopotential

HAb
Harrison'
Goddam~
HAb
Lee, ' Ho'
Darbyg
HAb
Lee" Hp
HAb
HAb
HAb
Animalu'
Animalu'
HAb
Animalu'
HAb
Tr1I I '
HAb
Kimball~
HAb
Stark'
HAb
Stark'
HAb
Brandt'
Bogle&
HAb
Brandt'
Bogle&
HAb
Ashcroft&
HAb
Reed V1g'
Reed V~'
Ingles6eld U6'
Inglesfield U7'
HAb
Cohen~
Ashcroft Vi"
Ashcrpft V2"
HAb
HAb
WeiSZv
HAb
Anderson"

X (McMillan)

0.23

0.38

0.38

1.0(1.6)~

0.38

0.40

0.69

0.71
0.60

1.12(1.3)

g (calc)

0.56
0.53
0.37
0.15
0.19
0.23
0.14
0.14
0.14
0.12
0.22
0.28
0.19
0.14
0.14
0.10
0.26
0,35
0.31
0.27
0.42
0.10
0.40
0.84
0.97
0.98
0.69
0.79
0.80
0.53
0.52
0.25
0.29
0.22
0.23
0.23
0.89
1.16
0.88
0.84
1.07
0.78
0.99
1.34
1.32

T, (expt)
( K)

&0.08

0.026

&0.017

0.875

0.56

4.153

3.949

1.196

1.091

3.404

2.39
3.722

7.193

T, (calc)
('K)

1.5
1.1
0.015

5X10-5

0.15
0.08
0.009
0.013
0.9

0.5
2.5
3.4
3.4
2.1
3.0
3.1
3.0
2.6
0.006
0.05
0.0003
0.0009
0.0005
4.6
7.2

4.0
4.8
6.2

10.2
7.6
7.5

pygmy (expt)
(10 0 cm)

9.32

4.75

7.19

12.5
20.0
3.6

21.5
39.0

3.25

4.30

5.92

7.27

95 9n

2.74

8.75

16.4
11.0

21.0

p2g5 (calc)
(10 '0 cm)

15.0
9.8
6.1
2.7
3.9
4.7
4.1
4.0
5.0
5.0
2.5

2.9
3.4
3.5
0.30
1.07
3.1
2.3
1.5
3.2
0.4
3.5
7.1
8.0
8.2
59
6.3
6.6
2.1
2.0
1.2
1.0
0.8
1.0
0.9
5.8
6.7
4.7
7.6
7.0
3.3
3.2
5.9
5.6

a G. T. Meaden, Electrical Resistance of Metals (Plenum Press, Inc. , New
York, 1965).

b Heine-Animalu model potential, Ref. 18.' W. A. Harrison, Ref. 38.
d Reference 39.' M. J. G. Lee, Proc. Roy. Soc. (London) A295, 440 (1966).
f P. S. Ho, Ref. 30. We have used only the value of g0 determined in this

calculation, where u(qo) =0.
g This is the potential Darby extracted from liquid-metal data which

was used by N. W. Ashcroft and J. W. Wilkins, Ref. 10; J. F. Janak,
(private communication) .

h Reference 35.
' Reference 42.
& Reference 31~"Reference 32.

1 Reference 33.
m The values in parentheses are derived by inverting the tunneling data.
& For liquid mercury, whereas the calculated values assume mercury is

still solid.
o G. B. Brandt and J. A. Rayne, Phys. Rev. 148, 644 (1966).
& T. E. Bogle, J.B.Coon, and C. G. Grenier, Phys. Rev. 177, 112 (1969).
& N. W. Ashcroft, Phil. Mag. 8, 2055 (1963).
& W. A, Reed and V. Heine, Bull. Am. Phys. Soc. 13, 364 (1968);W. A.

Reed (private communication).
s J. E. Inglesfield, J. Phys. C, 1, 1337 (1968).
t Reference 47.
& Reference 46.
~ Reference 45.
w J. R. Anderson and A. V. Gold, Phys. Rev. 139, A1459 (1965).

of this choice outweighs the added precision of using
individually fitted dispersion relations. In the case of
pseudopotentials, however, it would be a mistake to
sacrifice accuracy for convenience. The calculated value
of X is quite sensitive to the details of the pseudopoten-
tial, particu1arly in the region near 2k+, where the
pseudopotential passes through zero. Thus in our
computer calculations, we supplied as data the pseudo-
potential tabulated at increments of 0.1 in qj2k~.

The fina1 ingredient in a calculation of A. is the
density of states at the Fermi surface E(0) (or, equiv-
alently, the mass mb), which should be taken from a
band-structure calculation, i.e., not renormalized by
phonons. Currently available values of ns& vary widely
and are quite sensitive to the type of band calculation
and to the form of the potential used. For example, a
nonlocal pseudopotential will give a different value
from that found with a local pseudopotential. At the
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present time, there is probably more certainty in the
value of 1+X (although perhaps not in X itself) than
there is in mb in most cases. This suggests that mb should
be estimated using m* and 1+X. We have been some-
what arbitrary in our choice of values of mb. In a few
cases, namely, Be, Mg, Zn, and Cd, we have used
values of mb obtained in nonlocal pseudopotential
band-structure calculations. "" For the alkali metals
Na, K, Rb, and Cs (but not Li) we have chosen the
value mb ——1. These values are shown in Table II. For
the remaining metals we have 6rst calculated a value of
X denoted by P«using mb=1. We then chose a scale
factor mb in a self-consistent way such that

X—=mbhP ——m*/mb —1, (2.12)

where the value of m* is shown in Table II. The value
of mb found by this method depends on the calculated
value of A.o and thus on the particular choice of the
pseudopotential; therefore the numbers are not shown
in Table II. The results of our calculations are shown
in Table III, and discussed in Sec. III.

D. Calculation of T,

Using the experimental value of O~, the calculated
value of X, and some assumed value of p,*, the transition
temperature can be calculated from Eq. (2.5), the
McMillan equation. McMillan assumed a value p,*=0.1
when he extracted P from T, for the simple metals.
For the purpose of estimating T, in metals not yet seen
to be superconducting, it is important to have a more
accurate value of p*; Eq. (2.5) is very sensitive to p* in
cases where X and T, are small. Inspection of Eq. (2.6)
and (2.7) suggests that considerable variation may
occur in p* from metal to metal, both because of
variations in mb (from 0.3 in Be to nearly 2.0 in Li)
and because of variations'4 in ln(Ep/cur) (from 5.0 in Li
to 7.0 in Pb). It is difficult to get reliable first principles
values of p because of the lack of a consistent and
convergent scheme for calculating Coulomb interactions
for real metals which have values of the electron-gas
parameter r, between 2 and 6. However, values of p,

*
have been extracted from experiments for a few metals,
either using the isotope shift or the inversion of tunnel-
ing data. The isotope shift yields a value @*=0.12 in
Zn. If p, is evaluated within the random phase approxi-
mation (RPA) with the correct value of mb, the result
for Zn is p,*=0.10. Since r, does not vary much for most
of the metals, it seems reasonable that the RPA should
give values of p that scale properly from metal to metal,
even if the absolute magnitude is wrong. Therefore, we
have computed p,

* by taking RPA values for p and
scaling these values of p, by a constant amount, such

J. H. Tripp, W. L. Gordon, P. M. Everett, and R. W. Stark,
Phys. Letters 26A, 98 (1967)."J.C. Kimball, R. W. Stark, and F. M. Mueller, Phys. Rev.
162, 600 (1967)."R.W. Stark and L. M. Falicov, Phys. Rev. Letters 19, 795
(j.967).

that y* in Zn agrees with the isotope-effect measure-
ment. The values of p,

*we obtained are given in Table II.
The resulting transition temperatures are listed in
Table III, and are discussed individually in the next
section.

III. DISCUSSION OF RESULTS

Calculated values of the mass enhancement P, the
superconducting transition temperature T„and the
electrical resistivity at 295'K p»5 are shown in Table
III, and compared with experimental results and with
the values McMillan found for X. The over-all agree-
ment is fairly good for A. and worse for p. Our theoretical
estimates of p from the Ziman-Baym theory are usually
smaller than the experimental values. More complete
calculations of p(T) by Dynes and Carbotte" have
shown that the Ziman-Baym theory agrees well with
experiment for T«Oii, but that at temperatures
T OD, the measured resistivities are higher than
predicted. This partly arises from neglecting the change
of phonon frequencies and lattice constants with
temperature, which serve to increase p. However,
additional discrepancies appear to be present, which
have been ascribed2' to multiphonon and anharmonic
effects. In our calculations the disagreement is most
pronounced for the metals with low values of O~n or
melting temperature. For example, in the case of the
alkali metals, experimental values exceed theoretical
values by 30 or 40% in Li and Na, and the discrepancy
increases monotonically as atomic number increases
(and O~ii decreases) up to Cs where the discrepancy is
400%. There is no reason to believe that this reflects a
corresponding weakness in the theoretical values of
X. As far as transition temperatures are concerned,
the theoretical values are surprisingly good on the
whole, especially considering the sensitivity of the
dependence of T, on p,

* and X, and the inherent un-
certainties of the calculation. For an over-all estimate
of the uncertainties, we assign a 10% uncertainty in X

arising from the spherical approximation for the
phonons, and another 10% uncertainty arising from
the free-electron approximation used for the Fermi
surface and the matrix elements. These estimates come
from the analysis of previous calculations as discussed
in Sec. II B, and are probably overestimates. In many
cases, particularly Be, Zn, and Cd, the variations
induced in X by using different pseudopotentials far
exceeds this 20% over-all uncertainty. Thus the first
requirement for a reliable calculation of X is a reliable
pseudopotential. On the other hand, in the hexagonal
divalent metals where we believe the pseudopotentials
are most reliable, the evidence suggests that the theoret-
ical values of X are reliable to considerably better than
20%. In the following sections the calculations are
discussed individually for various groups of metals.

'~ We have used ~b in place of 8n in Eq. (2.6). This has a very
small eGect on ps~.



MASS ENHANCEMENT AND SUPERCONDUCTIVITY

A. Alkali Metals

These are the simplest of all the metals in that the
Fermi surface is very close to the free-electron sphere,
and the free-electron approximation for matrix elements
should be most reliable. Consequently, they have
received the most theoretical attention. On the other
hand, the simplicity of these metals constitutes some-
thing of a drawback in that it is nearly impossible to
obtain experimentally more than one Fourier coefficient
of the pseudopotential from Fermi-surface measure-
ments. Furthermore, this form factor occurs at a
reciprocal lattice vector G=2.28k', and thus it is
difficult to know the behavior of U(q) for q(2k+. In
the case of K, Lee and Falicov" have found that a
highly nonlocal pseudopotential gives the best fit to
the Fermi surface. The magnitude of this pseudopoten-
tial is not too diGerent from that of the Animalu-Heine
model potential.

For the band mass, a value nz|, =1.0 seems quite
likely for Na and K. There are two effects which cause
deviations from the value of 1.0, first the nonlocality
of the pseudopotential, and second the inhuence of
band gaps on e(k) at the Fermi surface. (A third effect,
the reduction in area of the surface because of zone
boundaries, is not present for the alkalis. ) Weaire's has
studied the first effect using the Animalu-Heine model
potential, and finds the corrections are small. Ham'~
has done more complete calculations using the quantum-
defect method. His results show I& is nearly 1.0 for
Na and K; however, his results for Rb and Cs seem too
large (larger than m* in Cs). We have somewhat
arbitrarily used a value m& ——1.0 for Na, K, Rb, and Cs.
We have made no attempt to compare calculated values
of X with the observed masses, because of the un-
certainty in m&. Rice" has shown that Coulomb
renormalization is larger (on the order of 0.05) in the
alkalis (where r,)3.0) than in other metals. He finds
good agreement with the experimental value of m* in
Na and K by assuming m& ——1.0, and including both
Coulomb and phonon renormalization.

None of the alkalis is presently believed to be
superconducting, so the only test on our calculated
values of X is by comparison with previous calculations.
The only previous calculation for the whole series of
alkalis is that of Animalu et al. ,

"who find X rising with
increasing atomic number. Our calculated values on
the other hand decrease with increasing atomic number.
The basic source of this discrepancy is probably the
choice of phonon spectra. Animalu et al. used theoretical
phonon spectra computed from the Animalu-Heine
model potential, with no adjustments made to fit
experimental data. Several other calculations of
have been made for Na and K, and these are in fairly
good agreement with the present calculation. These

~~ M. J. G. Lee and L. M. Falicov, Proc. Roy. Soc. (London)
A304, 319 (1968).' D. Weaire, Proc. Phys. Soc. (London) 92, 956 (1967)."F. S, Ham', Phys. Rev. 128, 82 (1962); 128, 2524 (1962).

TABLE IV. The Grst three moments of the electron-phonon
scattering function g'&(k, k') as defined by T. M. Rice in Ref. 16.
The zeroth moment go'& corresponds to X/(1+X).

Pseudo-
Element potentiala Authorb go'& gI8P g 87'

Li

Rb
Cs

HA
Harrison
God dard
HA
Lee, Ho
Darby
Ashcrof t'
Ashcroft~
HA
Lee, Ho
Ashcrof t'
Lee'
HA
HA

0.36
0.35
0.27
0.13
0.16
0.19

Rice 0.13
Rice 0.17

0.12
0.12

Rice 0.11
Rice 0.10

0.12
0.11

—0.17—0.006
0.03
0.06
0.06
0.07
0.05
0.06
0.06
0.06
0.05
0.04
0.07
0.06

0.17
0.10
0.10
0.014—0.004—0.002—0.001
0.01
0.014
0.012—0.001
0.001
0.016
0.018

a The references for the pseudopotentials are given in Table I and III.
b Present calculation unless otherwise noted.
e One OPW calculation.
d Thirteen OPW calculation.

results are shown in Table I. Also Rice" has calculated
various moments of the scattering function which he
denotes as g~'", where ge'& is the same as X/(1+X).
We have also computed these moments, and the results
are compared with those of Rice in Table IV.

The results for Li are anomalous. Both the Animalu-
Heine potential and the Harrison" potential have
exceptionally large positive values near q=2k&. The
Animalu-Heine potential has an additional anomaly at
q=0 where its magnitude is smaller than —,E~. This is
reflected in the large negative value of g~'& in Table IV;
also the resistivity (in Table III), which is closely
related to go'& —g&'&, comes out anomalously big. The
resistivity is also too large using the Harrison potential.
Goddard' has calculated a pseudopotential for Li from
first principles, which passes through zero at the same
point qo as the Animalu-Heine potential, but takes
smaller positive values near g

= 2k~. When this potential
is further reduced to take account of conduction
electron screening (using a static I.indhard dielectric
function), a more reasonable value of the resistivity is
found. All three of these potentials predict that Li is a
superconductor. It is interesting to note that Frohlich"
found an anomalously large electron-phonon coupling
in Li in his pre-BCS theory arguments relating super-
conductivity to electrical resistivity. Lithium is
presently believed" to remain normal down to 0.08'K..
It would be interesting to test Li for superconductivity
at lower temperatures. It is not possible to make
unambigous theoretical estimate of T, for Li at the
present time because of the uncertainty in our knowl-
edge of its properties. In particular, there is no reliable
empirical pseudopotential. Furthermore, our most
conservative value of X, a value of 0.37 using the
"W. A. Harrison, Phys. Rev. 131, 2433 (1963).
'9 W. A. Goddard, III, Phys. Rev 174, 659 (196.8)."H. Frohiich, Phys. Rev. 79, 845 (1950).
4r 8 3. Goodman, .Nature 167, 111 (1951).
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1'iG. 2. Pseudopotentials used for Cd.

l

1.2

temperature elastic constants are known. Model
potentials of Animalu" and of Heine and Animalu"
both seriously underestimate the resistivity and give
X=0.14. The recent discovery4' of superconductivity
in Ba under pressure might tend to indicate a larger
value of A. at zero pressure. The most serious problem in
computing X is probably the lack of an empirical
pseudopotential.

In Ca and Sr there are apparently no measured
elastic constants. The sound velocity can be computed
from room-temperature thermodynamic data. The
Animalu potential4' gives T, for Ca around 10 4 'K,
but overestimates the resistivity. The Animalu-Heine
potential gives a reasonable resistivity, and gives
P =0.22, and no superconductivity. The situation in Sr
is similar to that in Ba. Once again there is no empirical
potential. These results seem to rule out superconduc-
tivity in Ca at zero pressure, but are inadequate to
allow any statement for Sr and Ba.

Goddard potential, assumes a band mass mb ——1.61
(which follows from m*= 2.20). To be more conserva-
tive, (i.e., generous in allowing for uncertainty in ns ),
a value mb ——1.0 reduces X to 0.23 and T, becomes
effectively zero ((10 " 'K) because of the anomalously
la, rge Coulomb coupling.

It would appear that for a wide range of reasonable
choices of the pseudopotential and m b, the conclusion
remains that Li alone among the alkalis, is probably
superconducting at a theoretically attainable tempera-
ture. For the other alkalis, T, is - certainly either
nonexistent or negligibly small.

TABLE V. Empirical values of the mass enhancement in Be,
Mg, Zn, and Cd compared with theoretical values using empirical
nonlocal pseudopotentials.

Pseudopotential

Be
Tr lpp
et al.'

Mg Zn Cd
Kimball Stark and Stark and

et a/. Falicov' Falicov'

Band mass mq
Specific-heat mass re*
Kmprical mass

enhancement A,

McMillan value of P

Calculated value of A,

0.30
0.37

0.25
0.23
0.26

1.00
1.33

0.31

0.59
0.86

0.43
0.38
0.42

0.54
0.74

0.36
0.38
0.40

& geferenge 31., b Reference 3g, ' Refetegge 33,

B. Alkali Earths Ca, Sr, and Ba

These are the most complex of the metals under
consideration in the sense that their conduction
electrons have a fair amount of d-like character,
making them relatively unsuitable candidates for free-
electron approximations. Furthermore, experimental
knowledge of the band structure is meager, and of the
phonons is practically nonexistent. However, the
position of these metals in the Periodic Table makes
them obvious candidates for undiscovered superconduc-
tors, so it is interesting to try to make reasonable
estimates for A. . The best data are for Ba where room-

C. Hexagonal Divalent Metals Be, Mg, Zn, and Cd

These metals are the most suitable candidates for
studying the electron-phonon coupling, partly because
the phonon spectra are known (except in Cd), but
mainly because the Fermi surfaces have been studied in
great detail. Band-structure calculations fitted to the
Fermi surface have been done using both local and
nonlocal types of pseudopotentials. The local potentials
cannot fit all the data to the available accuracy, and
nonlocal potentials are now available" " which do
give an accurate fit. Furthermore, band masses mb

have been calculated using these nonlocal potentials.
These are listed in Table V along with the specific-heat
masses m* and the enhancement factors X derived from
Eq. (2.1). Also shown in Table V are the values of P

which McMillan found from T, and the values of X

computed from the empirical nonlocal potentials. All

three values of X are in remarkably good agreement
and are well within the uncertainties of the various
calcula, tions. This is perhaps the most unambiguous
evidence yet assembled for the essential correctness
of the theories involved: the same value of P explains
both the specific heat and the transition temperature,
and a pseudopotential model of the electron-phonon
interaction gives the correct value of X. Furthermore,
the appropriate pseudopotential for calculating X is the
pseudopotential derived from a band-structure calcula-
tion of the Fermi surface. This answers the questions
raised in Sec. II A about the uniqueness of the empirical
pseudopotential. The calculated value of X is quite
sensitive to the magnitude of the pseudopotential near
q=2kp, as can be seen by comparing values of ) com-
puted with the empirical potentials with values of P corn-

puted with the Animalu-Heine potential. The difference
is most dramatic in Cd where there is a factor of 4

' A. O. K. Animalu, Proc. Roy. Soc. (London} 294, 376 {1966).
4' J. Vilittig and H, T, Matthias, Phys. Rev. Letters 22, 634

(1969).
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change. The pseudopotentials used for Cd are shown in
Fig. 2. The use of nonlocal pseudopotentials seeins
indicated both for fitting accurately the details of the
Fermi surface, and for giving accurate values of the
Fermi-surface density-of-states mass mb.

Several predictions can be made on the basis of these
calculations. One interesting point is that Be, Zn, and
Cd all have strong pseudopotentials and therefore strong
electron-phonon coupling. However, the strong pseudo-
potential in a divalent material has the eRect of reducing
the Fermi-surface area considerably, almost filling up
the conduction band and approaching a semiconducting
state. This can be seen by examining the calculated
electronic density of states as a function of energy, as
shown in Fig. 1 of Ref. 19. There is a sharp dip in the
density of states right at the Fermi energy. Thus alloys
of Zn or Cd with atoms of higher or lower valence
would have higher densities of states at the Fermi
surface within the rigid-band model. Simple calculations
assuming that phonons are unaffected show that dilute
alloys (1—5/~) of either valence-1 metals such as Cu
or valence-3 metals such as Ga in Zn and Cd would
have higher transition temperatures than the pure
elements.

Magnesium is anomalous from this point of view. It
has a weak pseudopotential and thus a weak electron-
phonon coupling. However, the Fermi surface is free-
electron-like, with a density of states unchanged from
the free-electron value. Thus X for Mg is moderately
large, large enough, in fact, to expect it to be super-
conducting. However, because of a large density of
states, the Coulomb coupling p,

* is also large. The eRects
compete, but do not cancel entirely, and Mg should
definitely be superconducting at some theoretically
attainable temperature. " Because of the accuracy of
the experimental knowledge of Mg, it is possible to
assign fairly narrow limits to P and p,*. Unfortunately,
the range in temperature is rather large because T, is
so sensitive to X and p,

* for weak. -coupling superconduc-
tors. This is shown in Fig. 3, where isotherms of T,
versus X and p* are constructed from Eq. (2.5). We have
chosen P =0.33&0.03 in line with the mass enhancement
value; the theoretical values of A. are 0.31 from the
nonlocal empirical potentiaP' and 0.35 from the
Animalu-Heine potential which agrees with a rather
accurate local pseudopotential. "A value of @*=0.16 is
chosen rather than p,*=0.15 as shown in Table II.
The justification for this is that the eRective value of
p* in Zn (the reference material) is depressed by an
additional amount over a free-electron metal like Mg
owing to the increase of the Coulomb repulsion away
from the Fermi surface as the density of states rises.
The expected value of T, as shown in Fig. 3 is 0.012'K,
a presently attainable temperature, and not far below
the lowest temperature at which Mg has been already
tested. However, values of T, as low as 0.001'K are
consistent with the uncertainties in the calculations.

0.25

0.15—

0.10

OK

0,05

It seems worthwhile to investigate Mg for superconduc-
tivity, both by direct measurement, and by the indirect
proximity effect method.

D. Other Polyvalent Metals

The remaining simple metals are Hg, Al, Ga, In,
Tl, Sn, and Pb. These are all superconductors with a
variety of crystal structures and wide variations in the
current status of experimental knowledge. For many of
these metals, the Fermi-surface data are precise enough
to warrant a nonlocal pseudopotential band-structure
calculation, but unfortunately none have been reported
yet. Probably the simplest of these metals are Al and
Pb, which have fcc structures, well-known phonon
spectra, and rather free-electron-like Fermi surfaces.
The computed values of X for Al and Pb shown in
Table III are in good agreement with both McMillan's
value and with previous calculations (Table I). In both
Al and Pb the empirical potentials are very similar to
the Animalu-Heine model potentials, and give the same
regults for X. For Al, the calculated values of X are
somewhat high, as is the case with previous calculations.
However, if instead of p*=0.10 (McMillan's choice),
a value p,*=0.14 is used, the McMillan value of A.

would be raised to 0.46, in better agreement with the
calculations.

The most complex of the polyvalent metals at least
in terms of crystal structure, are Sn and Ga. Here it
may be expected that the simple spherical extended
zone approximation to the phonons may fail. In
particular for Ga the calculated value of X is too small.
The phonon spectrum of Ga has recently been measured
by Reichardt et al.44 by neutron scattering. A number of
optic modes occur which are softer than any modes
that can be obtained from our model, and these modes
also hybridize with the acoustic modes, depressing
their frequencies as well. A realistic calculation for Ga
would be tedious, but the answer would certainly be
larger than our value. For Sn the spherical extended
zone model also gives a poor fit to the phonons, and

44%'. Reichardt, R. M. Wicklow, G. Dolling, and H. G. Smith,
Bull. Am. Phys. Soc. 14, 378 {1969);and {private communication).
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I'IG. 3. Isotherms of T, for Mg as a function of p* and A„, The
probable ranges of ~ and y* are within the oval centered about x.
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overestimates the frequencies of several modes. It is
therefore surprising that both YVeisz's empirical
potentia14' and the Animalu-Heine model potential
give values of X which are too large. The calculated
resistivities on the other hand seem somewhat small.
Perhaps this is a clue that the pseudopotential needs
improvement; it is difficult to see how a more realistic
model of the phonons could both lower X and raise the
resistivity.

The remaining metals are Hg, In, and Tl. The
calculated value of A. in In agrees fairly well with ex-
periment for the Animalu-Heine a,nd Ashcroft-Lawrence
potentials, "but is too high when the Cohen-Bergstres-
ser potential4~ derived from InSb is used. The calculated
values of X for Hg are in fair agreement with McMillan's
value of 1.0, but not with the more reliable estimate' of
1.6. In Tl the Animalu-Heine potential gives a value
of X somewhat too large. In both Hg and Tl, the
spherical phonon spectrum could possibly be at fault;
neutron scattering measurements of the phonon spectra
are not yet available to check this. More likely, however,
a more reliable pseudopotential is what is needed.

IV. OBSERVATIONS

Shortly after the BCS theory, Pines" discussed a
number of regularities in the occurrence of super-
conductivity in the Periodic Table, most of which had
been previously pointed out by Matthias. " Two
regularities in particular apply to the simple metals:

(i) Superconductivity is enhanced as the valence Z
is increased in a row of the Periodic Table.

(ii) Superconductivity is enhanced for fixed valence
Z as r, increases (this generally occurs as atomic
number A increases in a given column).

The earliest comprehensive theoretical treatments of
transition temperatures were estimates of the BCS
coupling Et(0)V within the jeilium model by Pines, "
by Morel, " and by Morel and Anderson. " f/t(0)is
the density of states for a single spin orientation, half
as large as 1V(0).] In these calculations, Fermi-Thomas
screening of point-ion potentials was assumed, and only
longitudinal phonons were included, using a Debye
spectrum with the Bohm-Pines velocity of sound.
Pines calculated the quantity X—p, and shortly after-
wards Morel and Anderson improved the theory by
noting that p should be changed to p,*. In spite of the
shortcomings of the calculations, Pines succeeded in
giving a fairly satisfactory explanation of the regular-
ities (i) and (ii). The present calculation is the most
comprehensive survey since that time for the simple

4' G. Weisz, Phys. Rev. 149, 504 (1966).46¹ W. Ashcroft and W. E. Lawrence, Phys. Rev. 175, 938
(1968).

47 M. L. Cohen and T. K. Bergstresser, Phys. Rev. 14I, 789
(j.966)."B.Matthias, in Progress in Ion Temperature I'hysics, edited
by C. J. Gorter (North-Holland Publishing Co., Amsterdam,
j.957), Vol. 2,

V'(q) q'dq V'(0) q'dq (4.2)

and is a measure of the strength of the pseudopotential
as it affects X. The quantity 0„is the ionic plasma
frequency and (co')'t' is an average over-all phonon
frequency for which McMillan suggests using the
average of longitudinal and transverse peaks in the
phonon density of states. The ratio (ro')/Q~' is a measure
of the amount by which electronic screening reduces the
phonon frequencies from their "bare" values. In the
jellium model this is given simply by a dielectric func-
tion, and a measure of the screening is

(&o')/0 '=-,'qD'/kg= (1/8r )(3s'/Z)'~' (4.3)

where k, is the Fermi-Thomas screening wave vector.
The potential strength (e') is a simple function of r,
in the jellium model, and can be approximated by
0.075r, in the region 2&r,(5. The actual behavior is
shown in Fig. 4. Combining these results we see that X

should scale as r,Z'~' in the jellium picture.
McMillan has also written Eq. (4.1) in a slightly

different fashion

X=Xt (0)(ls)/M(~os), (44)

where (Is) is the average of LqV(q)]' over the Fermi
surface, and is related to (v') by

(Is)= 2k''(-'sEp)'(v'). (4 5)

We have computed the various parameters in Eqs.
(4.1) and (4.4) using the choice

( ')'"= s(~~+~r). (4.6)

The results are shown in Table VI, using the empirical
nonlocal pseudopotential for Be, Mg, Zn, and Cd, and
Animalu-Heine potentials for several other metals.
The resulting values of X are generally too small by.

about 50%, and the agreement could be improved by
choosing a somewhat smaller value of (oP). Apart from
this effect, there are still significant differences between

metals. In terms of numerical agreement with experi-
ment, much has been gained by using empirical pseudo-
potentials and phonon spectra. However, the simplicity
of earlier calculations had the advantage of providing
a simple scheme for explaining the empirical rules (i)
and (ii). It is not nearly so obvious where these
regularities originate in the present calculation, but it
seems worthwhile to attempt to uncover these origins
insofar as is possible.

McMillan' noted tha, t X as given in Eqs. (2.2) or
(2.9) can be approximated by a simple model

1.51m b (v')
(4.1)

((-')/(l, ')

where (vs) is an appropriate dimensionless average of
the pseudopotential V(q) squared:
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TARSI,E VI. Values of various parameters entering the simplified calculation of X.
The pseudopotentials mentioned in rove 1 are identified in Table III.

Pseudopotential

Nt(0)t state s/eV atomj
(I'K(ev/&)'3
Nt (0)(P)(eU/A')
(~/~)(~') (Rx')
Nt (0)(I )/M(uP) =X(approximate)
X (exact calculation)
(e')
'itPZ Q

(~')/sl. '
r,Z"'( ie)s/0 '

Be
Tripp

0.031
41.2
1.29
0.44
0.12
0.26
0.059
0.30
0.118
0.35

Mg
Kimball

0.208
3.1
0.65
0.12
0.23
0,31
0.036
1.00
0.088
0.37

Zn
Stark

0.093
10.2
0.95
0,16
0.24
0.42
0.050
0.59
0.080
0.29

Cd
Stark

0.107
9.5
1.01
0.17
0.24
0.40
0.093
0.54
0.121
0.50

Al
HA

0.187
11.2
2.09
0.30
0.29
0.53
0.030
0.97
0.074
0.32

In
HA

0.189
6.8
1.28
0.13
0.41
0.89
0.043
0.74
0.049
0.24

0.151
7.5
1.14
0.12
0.41
1.07
0.058
0.55
0.048
0.25

Sn
HA

0.212
8.4
1.78
0.17
0.43
0.78
0.033
0.73
0.038
0.21

Pb
HA

0.270
8.6
2.32
0.13
0.75
1.34
0.042
0.86
0.032
0.18

values of & predicted by Eqs. (2.9) and (4.4). These
differences reQect mainly the details of the pseudo-
potential, which are washed out in the average in Eq.
(4-.2). However, we have found that Eq. (2.9) predicts
values of X that are independent of the crystal structure,
provided ~z~ and the phonon spectrum do not change.
This helps to justify the simple form, Eq. (4.4), which
should be adequate at least for discussing general
trends. The following observations can be made:

(a) The jelliurn model tends to overestimate the
coupling strength and the phonon frequencies rather
badly, but these effects cancel to some extent in
calculations of A.

(b) The scaling of the phonon frequencies predicted
by the jellium model, Eq. (4.3), is roughly obeyed.
This can be seen from the last row of Table VI where
values of r,Z'ts(ops)/Q„' are shown. Variations of a
factor of 3 still occur, but there is greater regularity in
this quantity than there is in (oP)/Q„' which is also
shown in the Table. The remaining irregularities
would be considerably reduced if Z'~' were used instead
of Z"'. (However, the alkalis deviate in that (oP)/Q~'
scales like r, instead of like 1/r, .) The remaining varia-
tions in (o&')/Q„s seem random, and probably reflect
the rather complex fashion in which phonon frequencies
depend on the pseudopotential and the crystal structure.

(c) The situation with the pseudopotential strengths
(ti') is somewhat more random. In Fig. 4 values of (ti')

for various metals are plotted against the value of r„
and compared with the value in the jellium model.
Animalu-Heine potentials are used for all except the
divalent hexagonal metals Be, Mg, Zn, and Cd. A

roughly linear increase of (ti') with r, can be detected
within the trivalent and quadrivalent metals. However,
for the divalent metals where the potentia1s are most
reliable, there is no perceptible order. En the monovalent
alkalis, an inverse relationship appears between (ti')
and r„.this same inversion was noted above for the
behavior of (ops)/Q~'.

(d) The net result is that the empirical rules appear
to be explained for metals of va, lence 3 and 4, with the
jellium model providing the correct explanation except
that empirically X should scale as r,Z"' instead of r,Z'~'.

In the alkalis we And P decreaszrig with r,. This con-

tradicts both the empirical rules and the Animalu
calculation" based on theoretical phonon spectra. We
have no explanation for this phenomenon. Finally, no
regularities emerge for the divalent metals. Matthias '
also noted this phenomenon. For completeness it 'should

be noted that the empirical rule (ii) was not intended
to apply to the alkalis. The regularity applying to the
alkalis is the observation that monovalent metals are
not superconductors. However, the present calculation
indicates that this regularity should be broken in the
case of Lc.

McMillan9 noted another regularity among the bcc
transition metals V, Nb, Ta, Mo, and W. He found
that the parameter Xt(0)(P) was very close to a
constant value of 6 eV A ' in these metals, although
the parameters Xt(0) and (P) individually varied by
nearly an order of magnitude. The fairly wide variation
of X in this group of metals is then entirely dominated
by the term M(a&'), which measures the lattice stiffness.
This same regularity occurs for the computed values of
Xt (0)(P) in the divalent hexagonal metals Be, Mg, Zn,
and Cd, when empirical nonlocal pseudopotentials are
used. These results are shown in Table VI. Once again
Nt (0) and (P) vary individually by an order of magni-
tude. The regularity is not quite as striking here as it is

0.3

0.2

otentiol with

os screening

0.1— Cdg
~ Hg

~ Be 7n ~Tl

Gaq q sin
~ ~ pb oM
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Fro. 4. Dimensionless parameter (es) plotted against r,
The value ot (v') is calculated using empirical nonlocal pseudo-
potentials for Be, Mg, Zn, and Cd, and using the Animalu-Heine
potential for various other metals. The solid line is the value for a
point ion potential with Fermi-Thomas screening.
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for McMillan's bcc transition metals; the scatter of
values of N(0)(ls) is somewhat larger, and the range
of values of P spanned is not so wide. However, it is
possible to offer some qualitative explanations for this
phenomenon in the simple metals, as opposed to the
transition metals where it is as yet entirely unexplained.
It is easier to discuss this effect in terms of dimensionless
parameters

Xt (0)(ls) = constXZmb(e')/r, 4. (4.7)

The divalent metals have just enough electrons to fill

up their Brillouin zone and condense into an insulating
state. They would do just this if the potential (v') were
large enough. Magnesium has the weal est pseudopoten-
tial of the four metals (and the smallest value of (v')),
and its Fermi surface is quite free-electron-like. The
value of X is moderately small, partly because of the
weak pseudopotential. The other divalent metals have
stronger pseudopotentials, and the Fermi surface dis-
tortion is quite sensitive to the potential. The most
important effect is that the area of the Fermi surface is
reduced to 50/~ or less of the free-electron area, , and
the density of states as measured by mb is correspond-
ingly reduced. This has the effect of keeping A. relatively
small, in spite of large electron-phonon matrix elements.
Thus a strong pseudopotential can inhibit superconduc-
tivity as much as enhance it, and the net effect will

clearly act to prevent large variations in X&(0)(l').
Why it should be so close to constant is still not clear.

V. CONCLUSION

For most of the simple metals we have had good
success in computing A. and T,. This adds further weight
to the already existing body of evidence that electron-
phonon properties of simple metals can be calculated
accurately from empirical pseudopotentials, and that
the superconducting properties can be calculated from
the electron-phonon interaction and the screened
Coulomb interaction, with no other interactions neces-

sary. The assumptions of phonon and Fermi surface
isotropy appear to be empirically justified. The evidence
points to the conclusion that a single empirical pseudo-
potential can accurately describe both the Fermi
surface of a metal and the electron-phonon coupling.

General trends in superconductivity can be partly
explained by a jellium model, because this model

happens to predict roughly correct behavior for the
pseudopotential strength and the phonon frequencies
as a function of valence Z and density r, for many
metals. However, the exceptions, such as the divalent
hexagonal metals, are widespread, and no metal except
possibly metallic H, behaves much like jellium. The
details of the pseudopotential change X from its jellium
value in three ways. First through decreasing the
coupling strength (e'), second by changing the density-
of-states mass m&, and third by producing variations in
phonon spectra.

It would be very interesting to know the super-
conducting properties of the predicted high-pressure
metallic phase of H. According to the jellium model,
the coupling X should be quite small because both Z and
r, are small. However, Ashcroft4' has suggested that
the phonon frequencies may be considerably lower than
the jellium prediction, and metallic H may be super-
conducting at quite high temperatures. This result
seems plausible on the basis of simple arguments like
those of Sec. IV. The jellium model should be fairly
good for predicting the coupling strength (v'), and this
quantity will be large at nearly all densities. The
phonon spectrum of an assumed stable metallic H
lattice would certainly contain modes softer than the
jellium prediction. There is no reason to expect the
mass m~ to be small. Thus, X should be at least mod-
erately large and T, may be very high because of the
large Debye temperature.

Finally, we would urge that Mg and Li be tested for
superconductivity at low temperatures. The discovery
of superconductivity in these materials would be a
rather convincing demonstration that the theory of
the transition temperature had come of age. The
discovery of superconductivity in Li would be partic-
ularly interesting in that it would remove the dictum
that monovalent metals are not superconducting, and
add weight to the suggestion that H may be a super-
conductor at high temperatures and pressures.
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