
PHYSICAL REVIEW VOLUME 187, NUMBER 1 NOVEM BER 1969

Uariation-Iteration Method for Many-Particle Bound States*

Yukap Hahn
Department of Physics, University of Connecticut, ~ Stox~s, Connecticut 06268

and
DePa&ment of Physics, State University of¹uYork, Buffalo, ¹zoYork 14214

(Received 10 March 1969)

The extension to bound-state problems of the variational bound formulation of scattering
theory is considered. The simple decaying boundary condition allows a wider class of pro-
jection operators than in scattering theory, and they can be used to arrange an accurate
wave-function calculation. The method retains the extremum property of the Ritz principle.

I. INTRODUCTION II. FORMALISM

In connection with the variational bound formula-
tion' of the low-energy scattering problems, a
simple variation-iteration procedure was studied
previously. It treats the low-energy scattering
problem in two steps; the virtual excitation effect
due to the presence of closed channels is taken
into account variationally, and enters as an in-
homogeneous term of the open-channel scattering
equation, which is then solved exactly numerically.
The particular separation of the problem into two
parts is necessary there to ensure the extremum
property of the calculated scattering parameters.
The iteration procedure makes it possible to
avoid the explicit use of the "static" Green's
function which would otherwise appear in the
purely variational bound approach' and which
would complicate the application.

We consider in this paper an extension of the
above formalism to bound-state problems, and
show that the method can be used with greater
flexibility than in the scattering problems to ob-
tain an improved variational wave function of high
accuracy. The iteration procedure of Ref. 2 is
especially useful here, since the bound-state
energy is not known a priori, and consequently
the static Green's function required in the non-
iterative procedure has to be evaluated repeat-
edly as the trial function and energy improve.
If the dominant component of the wave function of
a bound state can be projected onto a subspace
(the P space) and the equation for it solved ex-
actly, while the more complicated but presumably
smaller correction part (the Q space) is estimated
variationally, then the sum of these two parts
should result in an improved variational wave
function. Effectiveness of such a procedure de-
pends largely on the choice of the operators P
and Q, and this can be done much more readily
for the bound-state problem than for the scatter-
ing problem where the form of asymptotic channel
functions has to be specified exactly.

N N
H= Z a(i)+ Z v(z, j),

i&j
(2.l)

where h(i) = t(i)+ v(i),
A2

t(i)=- v '
2'

v(i) = —Ze'/x. , v(i, j)= e'/~ r. —r. ~,j
and where the charge Z of the nucleus may not be
equal to the number N of the electrons. The ith
electron coordinates ri is measured from the
nucleus and is written simply as i for the argu-
ment of a function or an operator.

A. Projection Operators

We divide the bound-state wave function 4 into
two orthogonal components, using the projection
operators P and Q which satisfy the usual proper-
ties:

P+Q=1, PQ=QP=O,

P'=P=P, Q=Q=Q .
(2. 2)

We then obtain the Feshbach equations'

P(H Z, ) Pe= - PHQy-,

Q(H —E,)Q%' = —QHP4',

(2. Sa)

(2. sb)

where E, is the binding energy to be evaluated.
The discussion will be restricted to the lowest

We consider an N-electron atom with an in-
finitely heavy nucleus and neglect the spin degrees
of freedom, but we assume that the electrons
obey the exclusion principle. The Hamiltonian is
given by
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state of the system with given symmetry and
total spin and angular momenta, so that the ex-
tremum property of the resulting energy EOI can
be maintained readily. (For the excited states,
the method described below may still be valid if
the variational yrocedure for the calculation of
q4' should be modified and if P@ contains all the
components of wave functions of the lower states
such that the Hylleraas-Undheim theorem' is
satisfied. ) In (2. 3), the form of P and q is still
arbitrary, and it is the main purpose of this
paper to discuss various possible choices. If we
write the effective single-particle operator h~(f )
as

(2. 4)

(2. 5)

then the sinI, le-particle projection operators can
be defined by

P„(f;~')= P (f)) ( P„(~')=P(f), -

q„(f;i') = n(f —f') —P„(f;f'')=q„(f),

with P (i)' = P„(f)= P„(i)~,

(2. 8)

p„(f)q„(f)= o,

P„(f)P (f) =8„P„(f).

For an infinitely heavy nucleus assumed here,
we have the important additional yroperty that

where the model potential v~(i ) may not neces-
sarily be the same as v(i) of (2. 1), and construct
a complete orthonormal set (P„(i )) from

y = (pp )
~ det[g (1) ~ ~ ~ 0 (N I)-

(y
'

cM1 QN

x g~ (N)], (2. 9)

HF
and similarly for q~ 4. The best possible
choice ofh~(i) for the form (2. 9) is well known
to be the Hartree-Fock solution, with the self-
consistent potential e (i) given in a nonlocal
form,

" (')-=" (';')=(P " [&-~]P );,
(2. Io)

where ( ~ ~ ) f indicates the integrations over all
the variables involved except the i th and i'th,
and we denote simply i for the set i and i', and
where

Obviously, one can improve the procedure by
adding other states Pz HF. Since the approach
with the choice (2. 8) is well known, we do not
yursue it further.

The second choice of P and q we should like to
explore is given by

where e denotes a set of N states,
(o, l, ~ ~ . , o.~ I, o.~f, all of which are different
from each other, and g' denotes the sum of
terms obtained by all possible permutations of N
particle labels such that each particle label ap-
pears only once in each term. The resulting wave
function assumes the usual form of the Hartree-
basis function

[p (f), p„(q)]=o (2. 7)

for all pairs of m, n and i,j.
In principle, we can also construct other more

complicated many-yarticle operators from some
model Hamiltonians which may contain interelec-
tron interactions. However, it is in general
difficult to construct such operators, and the
simplest possible choice would certainly be the
form which is a symmetric sum of products of
the single-particle operators P~(i). We restrict
our discussion to this simple case only, although
the formalism presented here can be readily
modified for other cases.

As a first choice within the above simplifying
restriction, we consider operators of the form

(f) ~ ~ ~ P (q)P (u),
1 N 1 N

(2 8)
q

HF D g(
~ ~ i) P HF

1=1

N-1-- Z ZP (f)"~ P (i) P (&)
™N-1n=Q

~

(2. 11)

where a now denotes a set of N- 1 states, n
= fo. l, ~ ~ ~, o.~ 1], all of which are different, and
the sum g' is over all possible permutations of
N particle labels such that each particle appears
only once in each term. Since the first sum in
(2. 11) contains terms involving only N Istates, -
one of the electron variables is always missing
in each term. On the other hand, the second sum
includes all N electrons in each term so that
pairs of electrons always occupy the same state.
Therefore, this second sum can not affect the
wave function which is already antisymmetrized,
but is added here to satisfy (2. 2). We also have
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(2. iS)

When P~ operates on a properly antisymmetrized
function 4, we obtain

P += (N!) '"det[(o. (1) "~fz~ (N-1)

actly for all practical purposes, and this is the
direct consequence of the simple form of P~ we
have chosen.

By Green's theorem, we have from (2. 14) and
(2. 3)

&„=E,—E, =(P4, PHQ@)/(Pe, Py).
(2. 16)

xu (N)j (2. iS) It is convenient in discussing the iteration pro-
cedure to define further the subspaces of P as

B. Variation-Iteration Method

Once the specific forms of P~ and Q~ are
chosen as given by (2. 11) and (2. 12), the solution
of (2.3) proceeds as follows: We first solve the
homogeneous equation of (2. 3a).

J(H-E, )Pe =0, (2. 14)

where we put P=Pz for the simple case when P
contains only one term Pz. After the N-1 vari-
ables are integrated over, and a particular angular
momentum consistent with total J and S are taken,
(2.3a) and (2. 14) can be written in a typical form
as

which contains an unknown function uz of one vari-
able; Eq. (2. 13) should be compared with (2. 9)
which consists entirely of the basis functions g„.
The advantage of the Hartree-Fock form (2. 9)
is that the second function P~ ' HFC, which is con-
structed in a similar way, is automatically orthog-
onal to P~HFy j. e Po, IHFP~HF g~l~P~HF
the form (2. 13) does not have such a nice prop-
erty, and we have to construct the orthogonal
function using the operator (2. 12). However, the
presence of u~ in (2. 13) will make the function a
little more flexible in many cases, especially
when the Qn part is added. It is also possible to
construct other forms of projection operators,
even within the restricted case being considered
here. For example, a sum of products of N-2,
as well as N-1 and N, single-particle operators
gives a new P operator. The resulting PC will
then contain an unknown function u of two vari-
ables, and such a function would be extremely
difficult to obtain exactly, although the form may
be just right to incorporate strong two-particle
correlations.

P=II +Z, (2. 17)

where II=PC' )(P4, P4' ) '(P4'

II' = ll = Ii t, (2. iS)

IIP= n, ZII =0.

We can rewrite (2.3a) in the form

11(H- E,)114 = —IIHQ4,

z(H- E,)ze= —zHqe,

(2. 19a)

(2. 19b)

I [Q+f 1 = 2 (Q@f, QHP@f ) + (Q@f, [H- E0ft Q@f ).

(2. 20)
The trial function Q@& in (2. 20) is constructed to
be orthogonal to Pet and to satisfy the decaying
boundary condition asymptotically. Var iational
parameters are contained in Q%f, but E0f in
(2. 20) is held fixed during the variation.
Step B: Using Q4'f of step A, the energy correc-
tion ~0t is evaluated as

where (2. 19a) is equivalent to (2. 16) since op-
erates in the full N-particle syace and (P,P%')
=(P@P,g4). Thus, (2. 19) replaces (2. 16) and
(2.3a). [ For the case with the Hartree-Fock
basis, ' extra terms of the form —IIBZ4' and
—ZHII%' appear in (2. 19) due to the fact that the
basis functions there do not commute with PHP. ]

The variation-iteration procedure to solve (2. 3)
for the lowest state under consideration is given
by the following three steps:
Step A: For given E0f and PCf, Q4'f is ob-
tained variationally by minimizing the quantity I
as 5I =0, where

d2
, —au(v) —a') g(r) = J K(x, x')g(x')dr' B(x)

(2. iS)

A0, =(pe, pHqe, )/(pe, pe, ),

and the new energy value is given by

(2. 21)

In (2. 15), ~(r) is assumed to contain both the
"static" potential and the centrifugal barrier
term. B(r) comes from PHQ%' in (2. 3a) and is ab-
sent in the case with (2. 14). For given B(r) and
X(r, r'), (2. 15) can be solved numerically ex-

P
Ot 0 Ot

' (2. 22)

Step C: The iteration cycle is completed by
solving (2. 19b) for Z4'f exactly numerically us-
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ing the new values of EOf and Q+f, that is,

Z(H-E )Z4 = —ZHQC

or, more directly for PC f with

(H Eof)P-@,= PHq-

(2. 23)

(2. 23')

Both (2. 23) and (2. 23') are of the form (2. 15) in-
volving u of a single variable. . The iteration
cycle (A, B,C) may be started, for example, by
taking initially EOt = EOP and P@y =PIP. Except
for a few minor changes, the procedure given
here is identical to that in the scattering theory. '

C. Convergence of Iteration Series
and Extremum Property

For the above method to be effective, we re-
quire that P4P of (2. 14) be dominant by a proper
choice of h and the operator P. The iteration is
to make a smail correction arising from the cou-
pling of PC to Q@, and thus, is expected to con-
verge rapidly. We define formally

e, =lle+Ze, + qe, , (2. 27)

where Ill'is the exact and uncoupled solution of
(2. 14) and where Z+f are given by (2. 24) with GZ

and Gq replaced by their approximate forms. Di-
rect substitution of (2. 27) into the Ritz principle

6I =0, (2. 26)

where I [O', W ] = (O', H4 ) +X [1—(4', 4' )]
f

Equation (2. 26) implies that if EOf initially is so
crude that there are one or more states supported
by the effective interaction ZHGQHZ with energies
below EOt, then the iteration series (2. 25) would
diverge. Certainly such a situation is contrary
to the assumption of the PC dominance. It is
probably always possible to adjust A and P such
that the effect of the Q space is minimal.

We now discuss the extremum property of the
energy calculated. The upper bound Ep & Epf can
be shown trivially; for the trial function which
has converged, we write

Z4'= G ZHQ4', G = [Z(E, —H)Z]
(2. 24)

QC =G HII@+G HZ+, G =[Q(E,-H)Q]

gives, after some cancellations of terms and using
Eqs. (2. 20), (2. 21), and (2. 23),

and obtain

PAL=114'+G ZHG HII@+XZ+Z

=II++ Q A (G HG Hne),
m=0

Z
where X = G HG HZ.

(2. aS)

f„-E (lie, lie)+~ (II@,lie)+~ [I (lie, II+)]P
Ot

(2. 29)

As &f is varied, (2. 29) gives Xt = EOf and this
proves the upper bound. As in the scattering
case, this upper bound results essentially from
the fact that, for EO= E,GQ7, &G-Qt & 0, or more
precisely,

In theactualcase, wehave, of course, anapproxi-
mate Xf rather than the exact X,

3',t =G HG HZ,Z

where G~f is still the exact "static" Green's func-
tion but for the approximate energy Epf, while
Gqf is a variational approximation to GQ as it is
obtained from step B. If we assume that 3'.-Xf is
negligible, then, since the kernel X is presumably
compact, we have the convergence condition for
the series (2. 25) given by'

D '- Q+f)(Q+f, Dq@f) '(qe &0,
f

(2. 3o)

where D=q(E, —H HG H)q and G -&0Z Z

If the coupling between the Q and the P spaces is
small, then the "shift" operator QHGZHQ is prob-
ably negligible and D = Q(E, —H)Q & 0. We note
here that if E is not the lowest state, then the
procedure should be modified to retain such in-
equality, (2. 30).

The opposite, lower bound on E, can also be
obtained in exactly the same way as in the scat-
tering case. ' Again assuming Ept=EO, we write

ly I&&
n (2.26}

DQC -=—R
f f'

for all n, where yn are the strength eigenvalues
defined by

Dqe= QHlle=-
(2. 31)

xi&„& =~„i~„&. Since (Rt, Rt }=Zf~o, we immediately have a for-
mula equivalent to Temple's:
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E ~E &—/[(Q9, QC )(hl —E0 )], (2. 32)

where h, Q is the lowest eigenstate of D. -The
formula analogous to that of Stevenson and Craw-
ford' can also be derived which involves the J 'I'
factor, but not (81Q- E0&) '. We refer to Ref. 2

for such formulas and their improvements.

III. EXAMPLES AND IMPROVEMENTS

In this section, we consider several specific
applications and also possible improvements of
the variation-iteration method (VIM). For the
two- and three-electron atoms, we explicitly con-
struct the projection operators, taking into ac-
count the spin symmetries. The method, how-
ever, may turn out to be more useful for atoms
with many more electrons, as with the Hartree-
Fock approach. Next we consider a problem in
which Cg obtained by VIM is used to evaluate the
expectation value of an operator Q. Here, a
variational approach due to Schwartz' may be
used to improve the calculation. Finally, VIM
is modified in Sec. IIC so as to be applicable
to bound systems other than atomic systems
in which heavy central cores are absent.

Thus, I'C contains the function up of One variable
which is to be evaluated exactly, and PC as-
sumes the same form as (3.3) with u, replaced
by u, . Since P4 and P@ are obtained exactly
from (2. 14) and (2. 23') for given Q4f and E0f
=E„ the assumption of the P dominance means
that the total wave function C~ obtained by VIM
will in general be more accurate than the ones
obtained by a purely var iational approach. Be-
cause of the presence '~" of the spurious solu-
tion c g,(l)g, (2) in the case of the triplet state
with the total orbital angular momentum L=O,
some care is necessary in setting up a numerical
program for (2. 14) and (2. 23'), but this problem
is not expected to be serious.

The accuracy of PCg can further be improved
by enlarging the P space. P=P,(1,2) of (3. 1)
gives a single integrodifferential equation for Qp.
We may take instead a finite subset of Pn(i) and
construct a single-particle operator of the form

S . s
(i)= Z P (i), (3.4)

where S denotes a subset of s+1 states, S=Q„
g„.~ ., Ps]. A more general two-particle opera-
tor can be constructed now as

A. Twc-Electron Atoms P=P (1,2) =P (1)+P (2)—P (1)P (2) (3.5)

For atoms with two electrons such as H, He,
and Li+, we have' simply, from (2. 11)

and Q=Q (1,2)=1-P (1,2)=Q (1)Q (2). (3.6)
S S S S

They satisfy, aside from (2. 2),
P (1,2) =P (1)+P (2) —P (1)P,(2),

Q,(1,2) = Q,(1)Q,(2),
(3. 1)

P (i)P (i)=P (i), where meSS.
m m

[Q (i), P (j) ] =0 .
(3. 7)

and (for an infinitely heavy nucleus)

[P.(1),P.(2)] = o,

P,(1)Q,(2) & o

(3. 2)

In actual problems with spins, we have the spa-
tial part of the wave function given by

4(1, 2) =K [g (2)u (1)+ &0 (1)u (2)],

with &=+1, and the sum includes also the con-
tinuum states of the complete set Qr ]. With P
= P, and Q = Q„ for simplicity, we have

With (3. 5), the P equations (2. 23') form a set of
s+1 coupled integrodifferential equations for the
functions un(i), n=0, 1, ~ ~ ~, s. For s not too
large, in the order of 10 or less, such solutions
can be obtained on a computer.

In connection with the fine and hfs studies, there
are already available "-"several extremely ac-
curate calculations of the nonrelativistic energies
and wave functions. It would be of interest,
therefore, to test VIM for those states and to
compare the result with the more accurate anal-
yses.

B. Three-Electron Atoms

P@=tp (2)[u0(1)+eZng (1)(4 (2), u (2))

—e $ (1)((0(2))u (2))] + @[1—2]

-=$,(2)u,(1)+ sp, (1)u,(2). (3.3)

The case of three-electron atoms illustrates
nicely the reasons for choosing (2. 11). Again,
(2. 11) is only partially correct since in it we
neglected the spin degrees of freedom. In fact,
we can put two of the three electrons in the 1s
state of h, for example, and write the P opera-
tor as
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p,(i,j ) =p, (i) + pgj )-p, (i)p, (j )

fori, j=1, 2, and 3 but i4 j, and

(s. 6)

[p.(i),p.(j)] =0,

[Po(i), Po(j, k)] =0.

We try first the form

P (1,2, 3) =P (1,2)+P (3)-P (1,2)P (3)

3 3. 3
= Z P,(i)- Z, P,(i)P,(q)+ II P,(i),' —1

(H- E )4 =6t, (s. is)

and thus, may not be accurate enough as required
in a particular problem. If we denote the error
in the variational wave function Ct by

Dent

———
0& —C,

it is well known that the variational energy Ept is
usually accurate roughly to the order (ll6'kilt/II% II)'.
On the other hand, the expectation value of an op-
erator 0 may be only accurate to the order
116+ill/II@II. Schwartz' has discussed a method of
improving (4f, M'f ) and also 4f itself, and we
may apply it here to Q4'f . Assuming that the
variational energy is almost correct, the error
in 4t gives

3
and Q,(1,2, 3) =1-P,(1,2, 3) = g Q,(i).

i=1

(3 9)

(3.10)

which may be small, but not negligible. The vari-
ational statement for the expectation value of 0 is
then given by'

As discussed earlier, (3.9) gives rise to P4 (and
P4' ), which contains a function u of two variables,
and thus is not readily calculable in general al-
though it may be for some special cases, and then
the resulting P4' may be a much better approxi-
mation than the one involving a function u of one
variable.

A much simpler form would be
3 . . 3P=P (1,2, 3)= Q P (i)P (j) —2 Q P (i), (3.11)

i&j i=1

3
and Q=Q, (1,2, 3)= II 6(i —i') —P,(1,2, 3)

&=1
3
Z Z P,(i)Q, (j)Q,(k).

i= 1, (jXiVk)j &k
(s. is)

They are obviously symmetric in all three par-
ticle coordinates and Pk obtained with (3.11) con-
tains u of only one variable. As in the two-elec-
tron atoms, I' can be improved either by adjusting
k~ or by adding more terms as was done in (3.5).

The discussion given above illustrates that VIM
can be easily extended to atoms with many more
electrons and the construction of P and Q is en-
tirely a triviality. In this connection, it is inter-
esting to note that neither the form (3.9) nor (3.11)
would be acceptable for the e —He scattering prob-
lem in the variational-bound approach, simply
because such P would not. give the correct asymp-
totic-state projection. To preserve the extremum
property of the scattering parameters, the exact
He wave function is required.

C. Expectation Value of Operators

Although we attempt by VIM to improve the
over-all accuracy of the wave function, Qkf is
still obtained by the variational procedure (step B)

(+, f1+ )+(x, 6t)+(6t, , x )
[n] =

( )
(3. 14)

where g& satisfies the equation

(H E0 )X =Q-4' —(4, 04' )4'/(4, 0 ) . 3 ~ 15

However, Xt is not in general easy to obtain for
complicated 4g and 0, and Schwartz has also
given an alternative procedure: For a simpler
function 4 with reasonably small 64 =—4 —4, it
may be possible to obtain x which satisfies (3. 15)
with 0 replacing 4t. Then, with X in the place
of Xf in (3. 14), we have [0] to the accuracy
II64f II ~ II6+ II/11411'. This may still be an im-
provement so long as II64 II/III II & 1. The entire
error in 4f of VIM comes essentially from Q4'f.
If we write, for Ept=Ep,

Q(H -E,)Qe, =IA, (s. i6)

then (3. 13) gives, with (2. 23 ) and (3. 16),

PS =P,

Q6t = 8 +QHP4',Q

(3. 17a)

(s. i7b)

The commutativity (2. 7) is the important sim-
plifying feature of P (i) used to formulate VIM

where (3. 17a) is, of course, a simple consequence
of step C of the iteration cycle. Substitution of
(3. 17) into (3. 14) should give the desired improve-
ment. Incidentally, we note that the explicit
evaluation of 6ttQ will also be useful in estimating
the lower bound on Ept, as discussed in Sec. G.

D. Absence of Heavy Cores
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and is a direct consequence of the presence of the
infinitely heavy nucleus. It is a much more dif-
ficult task to construct the proper I' if the core is
not so heavy, as, for example, in mesic atoms and
in nuclear bound-state problems. In general, we
have [P~(i), Ps(j)]NO for i Wj, and the formalism
of Sec. II is no longer applicable. We recognize,
however, that the difficulty is very similar to that
in the rearrangement collision theory, and a gen-
eral formalism developed recently" may be ap-
plied to the present case. It is noted that the
usual Hartree-Fock method based on the shell
model of the nucleus ignores this problem com-
pletely. For simplicity, we consider a three-
particle bound system with the particles 1 and 2
being identical, as in the triton and He . Assum-
ing the central two-body interactions, we have

T + V12 + V13+ V23

the c.m. of the particles 2 and 3, and t„is for
their relative motion. As in Sec. II, we let

a (23)q (as) = e y (as),

and obtain P (23) = P (23))($ (23)1 1
. 1

im m m

q (as)=I- p (as) .

(3.at)

Obviously, we have

[P ', P ~]~0 (3.22)

for i,j = 1, 2, and 3, but i tj. Substitution of (3. 21)
and (3. 19) into (2. 3) gives" the following set of
coupled equations:

T = T1+T2+T3 p

which we rewrite in the form

H = H1 + V, =H2+ V2,

where H, = T+ V23 V1 V12+ V13

(s. 13) P, [H, + Y, —E]P,4', = —P, (V2 —Ym)P24'~

—p, (v, —Y,)q,e„
P, [H2+ Y2 —E]P2%~ = —P2(V, —Y,)P,4',

-p, (v, —Y,)q, e„

(3. 23a)

(s. asb)

H2= T+ V13, V, = V2, + V23 .

4=+, +42, (3.19)

and define a model Hamiltonian

Of course, to be completely consistent mathe-
matically, the three-particle problem should be
treated by the method developed by Faddeev, "
Weinberg, "and others. But, for the bound-state
problem involving projection operators, "it is not
necessary to employ the full hierarchy of equations
of the many-particle theory. We follow here the
result of Ref. 14, and write

and similarly for q&@f. In (3. 23), Y's are intro-
duced to further minimize the effect of q%', but
are otherwise quite arbitrary. (This may be an
important advantage in actual applications and is
not present in the Faddeev formulation. ) For the
case in which the particles 1 and 2 are identical,
(3. 23a) and (3. 23b) degenerate to an identical
form, and we have to solve only one of them. VIM
can be applied to (3. 23) and the corresponding
equations for q+. We also note that in the case
where the particle 3 is infinitely heavy, (3. 23) re-
duces to the case with (3.1) for Y, = Y, =O. The
proof is straightforward.
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A millimeter-wave molecular-beam maser has been made to operate as both an amplifier
and an oscillator on the ~= 1-0 and the 4= 2 —1 transitions of HCN at 88.6 and at 177.2 kMc/
sec, respectively, thus doubling the previously operational frequency range of such masers.
With this maser, hyperfine components of these transitions have been measured for H C N

and D C N to nine significant figures. The spectral constants (in kc /sec) that are derived
from these frequencies are, for HCN, &0=44315 975.7+0.4, D~——87.24 +0.06, (eQq)¹
-4709.1+1.3, and CN ——10,4+0.3; for D C N, 80=36207462.7+0.2, Dg=57.83+0.04,
(eQq) =-4703.0+1.2, CN=8. 4+0.3, (eQq)D=194.4+2.2, and CD=-0.6+0.3.

INTRODUCTION

Molecular-beam techniques provide the highest
resolution and make possible the most accurate
measurement of molecular spectral frequencies
of any known method. Although the beam maser
was first successfully operated' in1954, it has,
to date, been used to measure the spectral tran-
sitions of only a few molecules, notably the inver-
sion spectrum of ammonia, NH3, and NH, D, and
rotational transitions of the asymmetric-top
molecules H, O, HDO, D,O, HDS, HDSe, H,CO,
and HDCO. These transitions all occur in the
centimeter-wave region. There are several
reasons for this. Microwave techniques become
increasingly more difficult as they are extended
into the millimeter and submillimeter region,
and detection sensitivity decreases rapidly.
Maser techniques require transitions with rela-
tively large populations and favorable state-
selection properties. Both of these are provided-
by the above types of molecules. Linear and
symmetric-top molecules without inversion result

in either poor population (molecules with small
rotational constants) or transitions outside the
centimeter region (molecules with large rotational
constants}. The state selection is also most ef-
fective for the closely spaced doublets of the NH,
inversion spectrum and of the light asymmetric
molecule s.

Two molecular-beam masers have previously
been made to operate in the millimeter-wave re-
gion. Marcuse' succeeded in obtaining maser ac-
tion, both amplification and oscillation, with the
J = 1-0 rotational transition of HCN at 88.6 kMc/
sec, but he did not make high-precision measure-
ments of the frequencies. Likewise, Krupnov and
Skvortsov' constructed a molecular-beam maser
which operated successfully on the 1py Opp transi-
tion of H2CO at 72.8 kMc/sec, but they did not, to
our knowledge, measure the spectral frequencies.

We have constructed an HCN beam maser which
operates as amplifier and oscillator, not only on
the hyperfine transitions of the J= 1-0 transition,
but also on the J= 2- 1 hyperfine transitions which
fall at 177.2 kMc/sec. Thus we have succeeded


