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where
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In the high-field approximation, this gives
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The correlated motion of an E-spin system has been described in terms of the coherent states of a har-
monic oscillator. We have shown that this description of the system provides us with the closest analog to
the classical limit. The macroscopic dipole operator in the coherent-state representation is shown to obey
the Bloch equation in which each of the three components is simultaneously well dered.

I. INTRODUCTION

'ANY interesting aspects of atomic physics are
- ~ associated with atomic coherence, for example,

Dicke's superradiance, ' optical pumping, ' photon
echo, ' self-induced transparency, 4 etc. The coherence
properties of a quantized radiation field have been
recently described in terms of the so-cal1.ed coherent
states' of a harmonic oscillator. These states have
provided a natural basis for description of coherence
phenomenon in the theory of laser' and Josephson'
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oscillators as well as certain aspects of superQuidity. '
In this paper we demonstrate how the correlated or
superradiant states of an E-atom or an E-spin system
can be described in a convenient and (hopefully)
pedagogical fashion in terms of coherent states of a
boson field. After briefly outlining the arguments lead-
ing to correlations in an atomic system and reviewing
the coherent states of a boson field, we show in Sec. II
how these states may be used in describing an 3f-atom
system and apply the formalism to a specific problem
in Sec, III.

A single atom having two relevant levels I+) and

I

—) is said to be in a coherent superposition of states

by R. J. Glauber (Academic Press Inc. , Ne~ York, 196S); M.
I ax, Phys. Rev. 157, 213 (1967);J. P. Gordon, ibid. 161, {1967);
W. H. Louisell and J. H. Marburger, IREE J. Quantum Electron.
QR-3, 348 (1967).

'M. J. Stephen, Phys. Rev. Letters 21, 1629 (196S); M.
Scully and P. Lee, ibid. 22, 23 (1969).

The relation between a superfluid system and a coherent
electromagnetic field is discussed by P. C. Martin, in Proceedings
of the Einth International Conference on Joe-Temperature Physics,
Columbus, Ohio, edited by J. G. Daunt, D. O. Edwards, F. J.
Milford, and M. Yaqub (Plenum Press, Inc. , New York, 1965};
F. W. Cummins and J. R. Johnston, Phys. Rev. 151, 105 (1968);
J. S. Langer, ibid. 167, 183 (1968).



DON IF AC I 0, KI M, AN D SCULL Y

V=g(Z ~*)~'+g*(Z ~")&
i=1 i=1

where g is a c-number coupling constant.
One conveniently describes the temporal dependence

of the atomic state I+(t)) by an iteration in the inter-
action picture:

iq"—
ly(t)&=PI

-=octa)

o 0

&n—1

dt„Ur (ti)

X U, (t,) U. (t,.) I+ + ). (5)

When we confine our attention to the resonant case in

which the atomic frequency is equal to the radiation
frequency, the interaction Hamiltonian Vr(t) becomes
independent of time. Thus if one turns off the light
after some time T, I %(t)& up to the second order in g is

I +(t))= (1—g'T') I+ + )
+v2gT[(1/%2)(l+i 2)+ I i+2))g

+&2g'T'[ —i—2), (6a)

where we have taken the initial photon number to be
zero. From Kq. (6a), we note that the interaction term
V couples the initial state I+i+2) to the two other
symmetric stationary states

(1/~~) (I+i—)+ I

—i+2))
and

(6c)

However, in order to have a complete set of states for
a two-atom system, we clearly need four eigenstates,
t;hree of which are already seen to be connected by V.

when its wave function is represented by

+,(t) = a+(t)e '~s—+'"&'+a (t)e '&s '""-, (1)

where a+(t) and a (t) are the probability amplitudes,
and E+ and E are the energy of the two states, re-
spective y.t' 1 The atom then has an oscillating dipo e
moment given by

9'(t)) =e(+ I «I —&(&+*&-e'"'+cc ), ~= (&+—&-)/f (2)

and serves as a source term in Maxwell's equation. The
field generated by the atom when viewed at a distant
point R is given by

K(R, t) = (1/cE')oPnXBX(P[t —(R/c))),

where O'=R/E is the unit vector from the source and
c is the velocity of light.

Next consider two atoms both in the I+) state
contained in a resonant traveling-wave cavity. When
we shine light on this system, the atom-held coupling
is described by the interaction Hamiltonian V, which,
expressed in terms of Pauli spin-flip operators for the
ith atom 0.;, Oi anh t, ~ and photon creation and annihilation
operators at, a, is

The remaining one is the antisymmetnc combination

(16~)(I+ —)—I
—+ )),

which does not radiate. This antisymrnetric state is
not coupled to the other states by the interaction
Hamiltonian (4); hence, the two-atom system may be
l k d

' t the state (7) (if it ever gets there in theoc e ino
first place). As an example of how the state ~ g cou
be prepared, consider two atoms placed in the cavity,
the first in the I+) state and the second in

I
—). This

state may be resolved in terms of (6b) and (7) as

I+ i—~&
= (1/v2) [(1/~~) (I+i—2&+ I

—i+2))
+('/~2)(l+ —

&
—

I
—+»j

As time evolves, the symmetric part of the wave
function decays to

I

—i—~&, leaving the system in the
antisymmetric state, which means that even after a
long time there is still a chance of finding an excited
atom. Interesting results such as this provide a stimulus
for considering the cooperative aspects of a many-atom
system.

Next consider a system of E atoms, e+ in the upper
level and e in the lower level. For simplicity let us
take the initial-state vector of this system in a sym-
metric combination,

I
n„n ) = (n, !n !/x!)'i'

x+„I+i+~ +.,—.,+i —~), (9)

where g„denotes the sum over all possible permuta-
tions among the S atoms. The interaction Hamiltonian
for the atoms and field is identical to Eq. (4) except
that the subscript i extends from 1 to E. The matrix
element associated with spontaneous radiation resulting
in a transition from state Ie+,e, to in+-a ~ ~

i
s —1 ft 1 is

then equal to g[(n +1)n+)"'. Thus, if n+=n =-', iV,
the emission rate is proportional to S' rather than the
usual population factor E. Dicke' first investigated
these collective aspects of the spontaneous radiation
problem and called these states superradiant.

In his original paper, Dicke made use of the close
analogy existing between E two-level atoms and a
system of E spin-& particles, and introduced two quan-
tum numbers r and m in specifying the 2~ eigenstates
of the atomic system. In this notation the state (9)
would be

e+e = rm,
where

r=-'(n++n ) and m=-,'(n+ —n ).
The states of the two-atom system considered earlier
expressed in terins of Ir, m) are

I+i+2&= I1 1&

(1/a2) (I -+,—,&+ I
—,+,&) = I1,o&,

(1/n) (I+-,—,
&
—

I
—,+,))=

I
o,o&.
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In concluding this introduction let us brieRy review is coupled to other states by the operator
the coherent states' of a quantized radiation field. In
terms of the photon number states In), these classical Z=Z (a'+a.t)
limit states are j=—1

(18)

)=2 (~!Vtz!)e-~-~'~ ltz), (10) as discussed in Sec. I. The explicit. uiatiix eleuients of
interest are easily found to be

and have the property of being an eigenstate of the
photon annihilation operator a with the complex number
o. as an eigenvalue:

ao. =en.
Furthermore, these states are complete in the sense that

1
1=— (Pain)(nl,

and we may therefore expand an arbitrary state of the
field

I 4) as

These In) states constitute a convenient basis for
investigating the properties of an almost classical field.
In the next section we demonstrate how these coherent
states may be used in describing the state of a many-
atom system.

IL Ar-ATOM SYSTEM AND Ie) STATES

Denoting the upper state of the zth atom by I+;)
and the lower state by I —;),an arbitrary state of the
E-atom system can be expressed in terms of basis
vectors such as

1 2 3' ' N p

or in terms of the basis vectors
I r, nz). In general,

nz=-,'(n„—n )

(22)

In fact, it has been shown by Schwinger" that a general
angular momentum can be profitably described in
terms of the second-quantized boson operators u+, a
obeying the commutation relations

Lar, ar j=5rr, f) f'=+, —. (23)

The total number of spins and the angular momentum
J are given by

(24)

(zzp+1, n &1lglzzp, n )=Ln+(tz +1)ji~z
=Ln (n +1)g'I'.

In the r, m notation' this reads

(r, nz&1I + lr, nz) =
I (r+nz) (nWnz+1)g'~ (.20)

One readily observes that the matrix elements of
Eqs. (19) and (20) have formally the same connotation
as those which connect the number states of two boson
field operators a+, u in the presence of interaction of
the type a+~a or a ~a+, i.e.,

(n~W1, n +1Ia~ta +a ta+I n+, zz )
= Ln, (n +1)y'
=Ln (n, +1)j'&, (21)

where ln+, n ) is defined by

is the difference in population in two levels and is
formally analogous to the magnetic quantum number
m; r was termed by Dicke as the cooperation number
and is given by

(16)

1.e.)
J+=Ji+zJz a~ta——

J =Jg—ZJ2=a ~a+)

Jz ———,'(a+ a+—a a ).

(26a)

(26b)

(26c)

As a specific example, let us consider the case where
all the spins are initially pointing up, i.e., all atoms are
excited into their upper level. Then the state would
evolve in time via the spontaneous emission of radiation
into a linear combination of ln+n ),

(a t)n+(a t) n

In+. ,n ) = IO),
(n !zz !)'" (27)

We may now transcribe ln+n ) or Ir, nz) in terms of
these operators as

Ie)= P a„,,„ ln+, n ), (a t)r+m(a t)r m

lr, m) =
I 0).

L(p'+nz)! ji& I"(y —nz) &] &z

(28)

where the symmetric basis vectors ln+, zz ) are given in
Eq. (9) and a„„ is the corresponding probability
amplitude. When we consider a dipole interaction of
this system with the radiation field, the state ln+, n )

9In this paper J, J3 will represent operators of the angular
momentum, and r, m the associated eigenvalues.

'0 J. Schwinger, in Quantum Theory of Angular Momentum;
Perspectives in Physics, edited by L. C. Biedenharn and H.
VanDam (Academic Press Inc. , New York, 1965).
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r= 3/2 r= I/2 we may wiite

m =3/2/

III= I/2 (I/3) (I++-&+I+-+)+I-++&)I/2

P P

(I/6) (I++-&+!+-+&-2j-++&)(I/2) (I++-&-I+ +))
I/2 I/2

where

j.
I'I)= — d'n+ d'n f(n+, n )I~+,n ), (30)

z-2

I/2
rn =-I/2 (I/3) (I--+&+I-+-&+I+--&)

rn =-3/2

I/2 I/2
(I/6) (I-"+&+I-+"&-2(+--&)(I/2) (I--+&-I-+-() (~ 4)r+m(~ 8)r na

f(~+,~)=2 ~.,-
I

(r+m)!7'/'L (r —m)!7i/'

FIG. 1. The 2' eigenstates of the three-atom system in terms of
r, m. r= & states are doubly degenerate. We have used the index
I' to indicate the orthogonal degenerate subsets. Each column is
associated with a pair of boson operators. For example,

!~=28, ~=2)=L(~,t)3(~ ')~/(3.0!)i'g!o),
l~=l iii=l, &i)=I:(I+")'(I-')'/0!0!8'3IO)

!~=2, ~=0, &ii) =L(~+')'(~-')'/(O!&!)'"j!o»
where

g+tg++g ~g =3 b+tb++b ~b =c+tc++c tc =1.

XexpL —'(I~+I'+ I
~-I')7 (31a)

The state (30) is then given by

(31b)

As an interesting case, consider the state correspond-
ing to the classical limit of an E-spin system, that is,

A few comments are perhaps in order at this point.
The states with a given r value are always coupled to
the other states of the same r value (as well as the
same value of P)"when subject to the dipole interaction
with an external field. In order to simplify the dis-
cussion let us consider a specific example of 'three
atoms as in Fig. 1. It is clear from Fig. 1 that any
state with a given r and m is uniquely specified by an
index E that indicates to which of the two degenerate
columns having the same r the state actually belongs.
Having specified uniquely a set of states corresponding
to one column, we may introduce a pair of. boson
field operators for these states. In general, one should
note that m+ and e are not to be thought of as the
number of atoms in the upper and lower states, except
in the first column from the left having the maximum
r value.

We now proceed to expand I r, m) in terms of coherent
states ln+, n ); using the completeness relation (12),
wefind

(~ 4) t+m(~ 8) r m

I+&=I +, &—=Z Z =
g=o m=—p

I
(g+yg)!7i/2I (r y~) '!7i/2

&«xpL —l(I~+I'+ l~-I')7lr, ~&. (30')

Note that Eq. (30') defines the coherent state I~+,n )
as a linear superposition of angular momentum eigen-
states "for all the possible values of r from zero to
infinity. " Hence the coherent states are defined in an
extended Hilbert space where the total number of
atoms is not speciIied exactly (as is the case in a grand
canonical ensemble). However, the quantities of interest
such as e+ and m, and hence r, m, and E, are extremely
weil defned'if I~+I'&)1 or l~-I'&)1

Now let us recall that the state jr,nz) provides us
with the full. information concerning the measurement
of J and J3, while the phase information is lost com-
pletely, i.e., J~ and J2 are indeterminate. But in the
classical-limit state (30') it can be shown that not only
J and J3 but also J~ and J2 are known exactly in the
limit of large spin number E. To see this we evaluate
the expectation values of J~ and J in the In+, n ) state.
By using Eqs. (11) and (26), we obtain1

d'~+ d'~-&~+
I
(~+')"+"ll:(r+~).7'"

I
0&

7r2 Iu' —&J &)'I~, -&

=-'(I~+I'+ f~-I') (32)x&=l (. )--/L( — ).7"I0&

&«xpl: —k(l ~+ I'+
I
~- I') 7I ~+ ~-& After performing similar calculations for ((»i)') and

&(»2)'&, we find that the results are exactly the same
as Eq. (32). Hence, the relative uncertainty in the three
components of J is given in the limit of large E by~~

~

(~ 8) r+m(~ 4) r m-
d n+ do.

I:(+ )!7'"L(r—III) 7'"

xexpL —l(I~+I'+I~I')7I +,~-& (») &(»')'&lJ'=(l~l'+l~-I'& '"& "', ~=1, 2, 3 (33)

For an arbitrary state I4) given by

Ie&=g a„,„lr,m),

'1 For example, the states under I'I and EIz in Fig. 1 are not
coupled.

It is clear from Eq. (33) that as we increase the number
of spins or atoms considered, the three components of
J are simultaneously determined almost exactly. VVe

are thus led to the conclusion that
I n+,n ) is the classical-

limit state. We elaborate on this aspect further in the
following section.
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H = s A(v(a~'a+ a —ta )+e(t) (a~ta +a ta~) (3. 4)

Here we have taken the external field in the x direction,
and the quantity e(t) is given in terms of the atomic
dipole matrix element between two levels, the field
frequency v and the 6eld amplitude E, as

e(t) = ighrs (e'"'—e-@') g =e(+ I
r

I &8/h. —(35)

It is convenient to go into an interaction picture. The
density operator p(t) of this system obeys then the
equation

(36)p(t) = (i/tt) Ll'(t), p(t)],

where, in the rotating-wave approximation,

V(t)=i-,'ge'&"—"&'a ta i ', ge '&" "&'a t—a -.
—(37—)

We consider the resonant case, viz. , co= v, and obtain
a set of mean equations of motion for the following
combination of operators a+, a

(d/dt)(a+'a++a 'a &=0,

(d/«)( +' +—-' -)=
g&

-' ++ +' -)

(d/dt)(a ta+ a+ta ) =—0,

(38b)

(38c)

(d/dt)(a ta +a ta )=—g(a a —a a ). (38d)

In the coherent-state representation this set of op-
erator equations (38) leads to the c-number equations
in the form

(d/«)&I +I'+I -I'&=o (39a)

(d/«)(I~p I'—
I
~-I'& =g&~-'~++~+*a-&, (39b)

(d/dt)(n *n+ n~*n )—=0, (39c)

(d/«)(~-'~++~+*a-&= —g(I~+I' —la-I') (39d)

Let us introduce a vector A. such that

A=x(cs *&r+—&r+*n &+gn "ca&.+n+*rr-&

+s(I~+I'—l~l'& (4»

III. MOMENT EQUATIONS AND
CLASSICAL LIMIT

We consider in this section a system of E spins
coupled to a classical field by a dipole interaction. The
Hamiltonian of the system reads

In this case Eqs. (39b)—(39d) can be compactly written
as

BA/Bt= —
gl A.x&]. (41)

This equation is well known as the Bloch equation
which describes the precession of a macroscopic dipole
in the presence of a classical field. By solving Eq. (41)
we can determine with the additional condition of Eq.
(39a) the time dependence of the four complex quanti-
ties n+(t), n+*(t), &r *(t), and n *(t) uniquely. Let us
next consider the Heisenberg equation of motion for
operators a~ and a~~. Using the Hamiltonian given in
Eq. (34), we note that the time rate of change of ar
(or ar.t) is functional only of ar (or art), i.e.,

&tr F(ar .——t). (42)

In conclusion, we have considered in this paper the
correlated motion of an iV-spin or E-atom system in
the presence of a classical driving force, in which case
the spins are seen to move together as a macroscopic
dipole. Using the fact that angular momentum opera-
tors can be represented by boson field operators, and
the fact that the boson field can in turn be represented
by the coherent states, we have introduced coherent
states for E-spin system. We have shown that the
dynamics of the system can be conveniently described
in terms of coherent states in a way which gives the
classical limit immediately. The macroscopic dipole
operator of the system was shown to be adequately
represented by the ordinary vector whose three com-
ponents are simultaneously well defined in the limit
where S becomes large. Finally, we have shown that
the equation of motion of this vector has the same form
as a classical Bloch equation.

"See R. J. Glauber, Phys. Letters 21, 650 (1966).

For this case we see easily that if a Schrodinger state
is initially a coherent state, it remains a coherent state
at all times, while its amplitude n(t) evolves in time
according to either Eq. (41) or Eq. (42)." Hence we
conclude that the change in time of the E-spin system

I r, m) can be investigated almost classically by expand-
ing the state vector in terms of

I n+(t)&, the occupation
probability of which is given by a product of two
Poisson distributions, viz. ,

'

Ln+*(t)n+(t)]"+ Iu *(t)n (t)]"—"
I(r,nein~(t), n (t)) I'=

P(r+rN)!]'"I (r —m)!]'t'

Xexpl —(I~+I'+ I~I')] (4»


