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Dynamic Jahn-Teller Effect in an Orbital Triplet State Coupled
to Both E, and T„Vibrations
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(Received 4 June 1969)

The Jahn-Teller coupling of a triplet state in cubic surroundings to both E, and T2, modes of vibration
can lead to a vibronic ground state that includes both tetragonal and trigonal distortions if the energy
difference between the static distortions is small. A simple model is set up to study the properties of this
ground state, assuming the Jahn-Teller coupling is strong, so that the adiabatic approximation can be
used. Expressions for the reduction factors A (L) and E(Ts), the g values, and their sensitivity to strains in
the crystal are derived. These properties interpolate nicely between those appropriate to coupling to Eg
or T&, modes separately. The ground state is a triplet belonging to the same irreducible representation as
the original triplet throughout the range of parameters considered.

I. INTRODUCTION

HE aim of the calculations reported here was to
611 a gap in our knowledge of the properties of an

orbital triplet state in a cubic environment. A full
discussion and bibliography of this and other mani-
festations of the Jahn-Teller effect are to be found in
review articles by Ham' and Sturge. ' The existence of
these articles makes it unnecessary to give more than a
brief resume of the problem here.

Van Vleck' set out the problem in his classic paper on
the application of the Jahn-Teller effect to paramagnetic
ions in solids. When the immediate surroundings of the
ion are of cubic symmetry and the ion has a triplet
ground state corresponding either to a T~ or T2 repre-
sentation of the cubic group, the ground state couples
linearly to vibrations of both E, and T2, symmetry.
The resulting problem, in five vibrational variables and
three electronic states is complicated even if we ignore
the fact that in a crystal there are many modes of each
symmetry, not just one. Because of the complexity of
the problem, solutions have been found only by making
various assumptions about the relative values of the
parameters. The important parameters are the coupling
coefFicients to the two sorts of normal mode and the
frequencies and effective masses associated with those
normal modes. Ham, 4 studying the case when the
coupling is to E, vibrations only, was able to find an
exact solution for all relative values of the remaining
coupling constant and the normal-mode constants. He
showed that the ground state retains the same sym-
metry throughout, and he characterized its properties
in terms of various reduced matrix elements or reduction
factors. Caner and Englman' looked at the opposite
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cas-- coupling to T2 vibrations only. They did the
calculation numerically, also for all possible relative
values of the coupling constant and the mode constants.
They also found the ground state to have the same
symmetry throughout, and they obtained values for
the various reduction factors. If the coupling to both
modes is equally important, it is more dificult to cover
the whole range of coupling constants at once. If the
coupling is weak, then perturbation theory can be used
to find the ground state and its properties. In the
present calculation we atta, ck the case of strong coupling
to both types of mode by making the extra assumptions
that the coupling is about equally strong to both types
of mode and that the frequencies of the modes are
equal. We then take the difference in the coupling to
the modes as a parameter and calculate the energy
levels and ground-state reduction factors over a range
of values of the parameter. It is satisfactory tha, t the
result again shows a ground state of the same symmetry
throughout with reduction factors that tend towa, rds
the results of the previous calculations at the ends of

the range.
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fABLE E. Values of the normal coordinates at the two possible
types of minima in the potential energy. The notation is Ham's':
The three minima of type 1 are given by taking for e,;f) and e,„
the diagonal elements of e& and ~e, and they correspond physically
to tetragonal distortions of the cubic complex with the axis along
each of the three cube axes. The four minima of type 2 correspond
to trigonal distortions along the four (111)axes, and ( &, mmm&)s

takes on the four sets of values (+1, +1, +1), (—1, —1, +1),
(+1, —1, —1), and (—1, +1, —1).The energy at each minimum
ls —Eyz'.
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II. HAMILTONIAN AND CONDITIONS FOR THE
APPEARANCE OF A DYNAMIC

JAHN-TELLER EFFECT

For an orbital triplet state coupled to E, and T2,
modes of vibration, the Hamiltonian can be written as

X= V~(Qgeg+Q, e,)
+V&(Qgrg+Qn&g+Qr&r)+&&& (2 &)

)Q «=( & )Q-

q. = (~~v'~~)Q q.= (»v'»)Q.
qr = (»v'») Qr

(2 3)

so that the Hamiltonian can be written as

the potential-energy changes are small. It is obvious
that this happens in this system if

V~2/2gisn sg =2 Vg g/3»(ur2. (2.4)

If these two energies are exactly equal, not only are the
trigonal and tetragonal distortions and intermediate
stationary points all of the same energy, but as we
shall show, there exists a two-dimensional region of Q
space connecting these points in which the energy
remains constant. To show this, let us start by making a
change of variable in the Hamiltonian: Put

1 0
0
,0 0

0
0
1.

0~0 —1
0 0 0

.—1 0 0.

0 0 0
0 0 —1.0 —1 0.

0 —1 0',
—1 0 0

0 0 0.

(2.3) qg
——,'v3q,

—Apt.
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—
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+"2 (o@2(pg2+p 2)+iroT (p$ +p +pr2)

The notation used is that of Ham, '
Qg and Q, are normal

coordinates of the E, mode, and Qg, Q„and Q» of the
T~, mode. The Hamiltonian is the same whether the
orbital triplet is of T& or T2 type

In the adiabatic approximation, in which the nuclear
kinetic energies (all the terms in E) are neglected, the
lowest eigenvalue of this Hamiltonian is a function of
the Q's and can be regarded as a potential-energy
function in the five-dimensional Q space. In the limit of
infinitely large nuclear masses we expect the equilibrium
configuration of the complex to correspond to the mini-
mum value of this potential energy. The positions and
natures of the turning points in this potential energy
were discussed by Opik and Pryce, ' who showed that
two families of minima may exist with the values of Q
shown in Table I. They showed that these two types of
minima do not exist in the same system: If Vz'/2gizcoz')2 Vr'/3»»', then the tetragonal distortions are
minima and the trigonal distortions are saddle points,
and conversely. Since in general the minima are sepa-
rated from each other, the system cannot move freely
from one to another without acquiring some sort of
activation energy. Opik and Pryce also identified a
third set of stationary points in the energy, at
„(Vs'/2@x~~')+4(—2Vr'/3pr~r'); this represents the
height of the saddle between two minima; that is to say,
if we choose a path between two minima to minimize
the maximum potential energy on that path, that
maximum potenti31 energy is the one given here.

To get dynamic Jahn-Teller effects we need paths
from one minimum of V to another along which the

g U. Opik and M. H. L. Pryce, Proc. Roy. Soc. (London),
A238, 425 (1957).

qg'+ q'+ qg'+q'+ qr'= q'

Also, the tetragonal turning points occur at

q= V~/ ~/~pe, z,
(8,y) = (0,0), (-,'~,0), (-;~,—;~),

(vr, 0), (-,'vrp-), (-', vr gal),

(2.8)

(2.9)

+~(qg'+q, '+qg'+q„'+qr')]. (2.6)

Here X = (Vr/»gpr)/(V~/ro~gp~), and the condition
for equal energy at the trigonal and tetragonal distor-
tions is X'= ~. Now it is obvious that if we neglect the
kinetic energy, any linear orthogonal transformation on
the q's leaves the diagonal part of the Hamiltonian
invariant, so that we must look for an orthogonal trans-
formation which leaves the roots of the matrix in-
variant. The required transformation is one in which the
Ave q's taken together transform like a set of d states in
the same space in which the orbital triplet basis states
transform like a set of p states.

To show this, we consider the following parametriza-
tion of the q's.'

qg
——q-,'(3 cos'8 —I), q, = q-,'V3 sin'8 cos2$,

qg=q2 6 sin28 sing, q„=q-', v3 sin28 cos@, (2.7)

qr ——q-,'v3 sin'8 sin2$.

With this, if q is held constant while 8 and p are
allowed to vary, the representative point in q space
moves on a particular two-dimensional surface, which
maps on the surface of a sphere in three-dimensional
space. It is easily verified that with these limitations
the q's satisfy
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and the trigonal turning points are at

q= (2~/v3)(V~/~sv'I s),
(8,@)= (8„,'n~)-, (~—8„-,'n~), n=1, 3, 5, 7

(2.10)

where cos8r = I/v3. Note that in this representation, if
we take the obvious limits on 8 and P allowing the
representative point in (q, 8,&) space to lie on a sphere
of radius q, each real configuration of the q's appears
twice, so that points related to each other by inversion
in the (q, 8,&) space correspond to the same point in the
original g space. This will become important in deter-
mining boundary conditions, and it has the effect here
of making every turning point appear twice in the
above list.

We now set X=-,'v3 and demonstrate the existence of
a continuous distribution of minima in the potential
energy. Suppose that initially the system is in one of its
tetragonal distortions, so that qg=q, and the other q's

are zero. The matrix part of K is

—qV~/cu~gps, and its appropriate eigenvector is

sin8 cosP
~
$)+sin8 singin g)+cos8~$). (2.15)

Including the term ~g' in the Hamiltonian, and mini-
mizing with respect to q, gives q= Vs/co@+p@, and
E= ——,

' Vs~/ps~s' for the equipotential surface of
lowest potential energy.

This has demonstrated that if X=2iV3, there is a
continuous two-dimensional distribution of minima in
the potential energy, with the q's given by (2.7). If
X= —~%3, all the arithmetic can be done in the same
way if we start by putting q~= —(cozgpr)Q» and so on.
Although the actual physical shape of the distorted
complex will be quite different in this case, much of the
theory that follows will be done in exactly the same
way. To satisfy ourselves that the continuum of minima
is no more than two-dimensional, we look again at the
Hamiltonian (2.11), and introduce the Hamiltonian
(2.6) as a perturbation. Working to second order in the
perturbation, the energy of the ground state is seen to be

0
U@

— 0 —,'g

0i

0 (2.11)

Vz (8q„'+bqr. ') V—Rgb —X2

~zV Ijz

.0 0 —q.

which operates within a set of states we may represent
by ( ('), ~g'), (f');

~

f') being the lowest eigenstate. We
now make an orthogonal transformation on the basis
states in the following form:

cos8 cosP cos8 sing —sin8'
—sing cosP 0 X g . (2.12)

sin8 cosP sin8 sing cos8.

This represents a rotation in (q, 8,$) space. It is not a
general one since it has been made to depend on only
two angles, not three, but it is su%.ciently general for
this purpose. It has been chosen so that ~f'), which we
know is the lowest eigenvector, is given by

sin8 cosQ
~
$)+sin8 sing

~ g)+ cos8
~ f) (2.13. )

gqg 2V3qg —-,'v3qr

—-',v3qr i~qe+243q.

——,'VSq„

—-,'v3q)

—,'V3'q, —-',v3qg

(2 14)

if the q's are as given in Eq. (2.7). The diagonal part of
the potential energy, unaltered by the transformation,
remains equal to —,'q'. We may thus deduce that if the
q's are restricted to the values given by (2.7), then the
lowest eigenvalue of the Hamiltonian (2.14) is at

If we use this matrix and its inverse to transform the
Hamiltonian so that it operates in the states

~ $), ~ g),
and

~
f') a little matrix multiplication gives

', q'+-', (8qy'—+bqP +bqr2), (2.17)

from which it is clear that only two of the parameters
qq gt can be altered without increasing the potential
energy, and that the curvatures of U associated with
changes in the other three are equal, and equal to one
in these units. It is also clear that this state of affairs
will hold at all points on this two-dimensional surface,
since the transformation (2.12) takes this special point
into all the others.

Now, what about the kinetic energy? This is ob-
viously invariant under these same transformations if
mz ——or&. We assume this equality hoMs and explore the
consequences. We need to find the transformation on
Pp', or the Laplacian, that is equivalent to the trans-
formation (2.7) on the q's. Since we have not specified a
complete transformation of the Gve g's in terms of five
new variables, we cannot get a complete expression for
the transformed Laplacian, but by making some as-
sumptions we can 6nd the part of it which depends on
8 and P. It is necessary to assume that the transforma-
tion is orthogonal and that the coeScients of the sup-
pressed variables in the metric tensor are independent
of 8 and P. It is easy enough to ensure that this is so in
the neighborhood of any point on the sphere in (q, 8,@)
space, and since we are interested in motion on this
sphere, that should suKce. The line element, for varia-
tions in 8 and P alone, is easily found to be

ds'= dqe'+dq, '+dqP+dq„'+dqr'
=3q2d8'+3q' sin'8+' (2.18)

+-', ((q+8qe)'+8q. '+8qP+8q, '+8qr21 (2.16)

and setting q= V@/&asgp@ and X'= 4 makes this
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which leads to an expression for the I.aplacian,

8—sing —+
3g' sing 80 80 3q' sin'0 Bg'

(2.19)

so that in the kinetic-energy part of the Hamiltonian
(2.6) we can set

potential is harmonic, with the restoring force as-
sociated with the frequency co. Hence, the characteristic
separation of energy levels for this type of motion is Ace.

Consequently, we may look at motion on the spherical
surface on its own as long as the energies concerned are
very much less than Ace, that is, as long as

g2 g2 g2 g2

+ + + +
8/0 Bg, Bg~

k'(u'/g'«h(u

8~~3)-,' k~.

(2.25)

(2.26)
8—sing + (2.20)

3q' sing gg 80 sin'0 8$'

and the kinetic energy becomes

1hM 1 8 8 1 l3—sing —+ . (2.21)
3q2 sing 80 80 sin2g gg~

Now we a,ssume that the increase in potential energy
as we leave this equipotential surface is so sharp that
such excursions can be neglected and solve the
Schrodinger equation in the remaining variables, 0 and

g. This Schrodinger equation has a, constant potential
energy, which we shall omit, and simply takes the form

Here we have used Zgr V@'/=2p@cu'=-,'q', so that for
the vibronic spacing parameter, we have 0'cg'/i7'
= A'(u'/2Eg~.

The properties of such a dynamic Jahn-Teller ground
state can be expressed in terms of a set of reduction
factors used by Ham4 and by Caner and Englman. '
These relate the eBect of an operator of any symmetry
within the original three orbital states to its eBect
within the actual triplet ground state. Of these three
reduction factors E(Ti) is identically zero in this
approximation, since it relates to an operator such as
orbital angular momentum whose expectation value is
zero in a real orbital singlet state, which is what our
orbital state is. The other two reduction factors E(E)

hG0 1 8 8 1 8 and E(T2) can be found in Ref. 1, Eq. (3.1.10):—sing —+ P =EP, (2.22)
6q' »ng 80 &0 sin'0 84' E(&)= —(p, rl ~i Ip,r), E(T&)= Q«I rrlp„—). (2.27)

which is, of course, just the same as the equation for the
square of the total angular momentum of a spherically
syiTo~etric system. The eigenvalues are

(0'(v'/6g') l(/+ 1), (2.23)

where / is an integer under the usual boundary
conditions.

To find the appropriate boundary conditions for this

system, we must go back to the wave function (2.15)
and realize that the complete vibronic eigenstate must
have the form

We have not yet identified the three components of the
ground-state wave function, so we can choose

f,~= (43ir)"' sing cosg(sing cosgl $)
+sing sing

I i7)+ cos0
I t )),

P„=(43m.) 'i' sing sing(sing cosP
I $)

+sin8 sin&I il)+cosgl f)), (2.28)

P,»= (43~)'" cosg(sin8 cosQ I $)
+sing sing

I g)+ cosg
I f)),

which have been normalized over the surface of a unit
p(8,&) (sin8 cosg

I
&)+sing sin&I n)+cosgl l )) (2 24)

Now under inversion in (q, g, &) space the electronic
wave function changes sign, while the q's remain un-

altered. This operation of inversion, which does nothing

physically to the system, must not alter the total wave

function, so P(8,&) must change sign under inversion.

This means that the eigenstates must be limited to
those corresponding to odd values of l, and that in

particular the lowest energy level is a vibronic triplet
corresponding to /= 1.

Now we can look at one criterion for the validity of

this approximation. Ke have found tha, t the spacing of

energy levels associated with motion on the minimum

potential energy sphere in (q, g,&) space is of the order

of h'cv'/g'. For motion orthogonal to this surface the

3
Q.r I el&. )=r

4x
cos'0( —cos'0+-,' sin'0 cos'p

so tha, t E(L~') =+5, a,nd

(k.~l rr14..)

+~ sin'8 sin'g) singdgdp = —5,

sin'0 cosg sing( —2 sin'0 cosP sing)

Q singdgdp = —25,

so that E(T)=1~2 also.
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III. EIGENVALUE PROBLEM WHEN TRIGONAL
AND TETRAGONAL ENERGIES

ARE DIFFERENT

In Fig. 1 a contour map is sketched on a spherical
surface to show the main characteristics of V(8,&).

The simplest form of V(8,&) that we can write down

satisfying these conditions is the combination of fourth-
order spherical harmonics that has cubic symmetry, the
usual fourth-order cubic Geld term,

V(8A) = A( Vt'(8A)+ (5/14)'"L Vt'(8A)+ Vt '(8A')3)
(3.2)

which can also be expressed in Cartesians as

(& +p +s s& )r=const y (3.3)

and it is easy to show that the turning points in it are
as required. If the parameter 6 is positive it is the
trigonal distortions which are the minima of V, while
if 5 is negative it is the tetragonal distortions. Now the
Schrodinger equation to be solved is

$2oi2( 1 8 8 I—sing —+ 4+ V (8,4)4' =&4'.
6q' (sing gg gg sin 8 8$

(3 &)

As soon as X' —4 becomes different from zero, the
rotational symmetry of the equipotential surface in

(q, g,@) space is lost. We are faced with the problem of
ending the lowest root of a cubic equation, and then
using that lowest root as the potential energy for the
nuclear Schrodinger equation. Even when P' —~3 is small
we have not got an analytic expression for the lowest
root of the cubic equation, and hence do not know the
form of the potential energy as a function of the q's.
However, it is reasonable to assume that there is no
drastic change in the potential energy as A.

' —
4 becomes

different from zero, and that as long as the difference
between the energies of the trigonal and tetragonal
distortions is small compared with the total Jahn-Teller
energy, the potential energy on our sphere in (g,g, tt)
space is still much lower than anywhere else, though it is
no longer constant.

What we shall do then is to continue to assume that
the system is constrained to move on the (q, g, tt) sphere,
and we shall add to the Hamiltonian a term V(8,&) to
represent differences of potential on that surface. Now
we know that V(g, tt) must have either maxima or
minima at the tetragonal points, and either minima or
maxima at the trigonal turning points; it Inust also have
saddle points at the intermediate turning points, which
in (g, g, p) space occur at

(g,y) = (-,'ir, —,'nn-), (-,as., —,'nn-), (-,'m, —,'~+-,'n~),
n= 0, 1, 2, 3. (3.1)

FIG. I. Contour plot of V(8,&}on a spherical surface. Tetragonal
distortions are represented by all the [100$directions and trigonal
distortions by all the [111jdirections.

matrix of U operating within the n lowest eigenstates,
and diagonalize the resulting e'en matrix. This pro-
cedure has the additional advantage that the basic
states are angular momentum eigenstates, and since U
is expressed in spherical harmonics, all the matrix
elements can be expressed in terms of 3y' symbols, which
are well known and easily manipulated. The result of
such a calculation is shown in Fig. 2. For this calculation
the basic states were taken up to /= 13, and the diagram
shows energy levels originating from states up to I= 7,
which should be relatively free from the effects of the
cutoff at /= 13. The range of values of 6 was chosen to
be wide enough to show the lower-energy levels settling
into a harmonic-oscillator pattern in the trigonal and
tetragonal wells for large positive and negative values of
A. It should be noted that a T~ state is lowest through-
out the whole range of values of 6, which is consistent
with the fact that a T& state is already known to be
lowest when the coupling is to either the E, or T~,
vibra, tions alone. (The labeling on the diagram corre-
sponds to the case when the original orbital triplet is
T~. If it were T2, the suSxes 1 and 2 should be inter-
changed on all T's and A's on the diagram. ")

The reduction coefficients E(E) and E(Ts) in 'the
ground state are easily found from the following con-
siderations: We can write the ground-state wave func-
tions in the form

It' S=ft(84)(sing cosp($)+sing sinp~ti)+cosg~t)),
It',„=f„(8A) (sing cos4

~ $)+sing sing
~ tl)+ cosg

~ &)), (3.3)
It g»= f»(8A) (si» «se

~
t)+sing sing

~
g)+cosg~ i-)),

where the functions f;(8,&) are available in the form of
linear combinations of angular momentum eigenfunc-
tions. Then

f»(8,&)'(—', —ss cos'8) singdgdg (3.6)
Since this is in any case only an approximation that is
expected to hold when V is small, we can start from the
eigenstates of the equation with V=o, calculate the

7 Solutions of Eq. (3.4) have also been given by A. F. Devon-
shire, Proc. Roy. Soc. (London) 153, 601 (1936); P. Sauer, Z.
Physik 194, 360 (1966l.
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tetragonal distortion, even when the energy balance
between the two types of distortion is not very uneven.

The "cubic-field" perturbation used here will also
cover the possibility that co+/ co&, as long as the differ-
ence is not too large. If we take the Hamiltonian (2.6)
and do a canonical transformation on the variables, we
can put it in the form

~ qg
—~V3q

—X'qg

—X'q„

—X~qg —A q&

s qp+Wq3q,

FIo. 2. Figenvalues of Eri. (3.4). Energy is plotted in units of
En=&'~'/6q' against n/Zn. The dashed lines show the energies of
the bottom of the potential minima and of the saddle points.

(~,fl «I~,.)= ff(0,~)f.(0.~)

&& (—2 sin'0 cosQ sin@) singdodf, (3.7)

from which it is clear that

+i(Lies(PP2+P 2+P(2+P 2+P 2)

+'(qp'+q-'+qt'+q'+q«')

+L( ' ')/4 —'j(q '+q' qP q.—' q«—')) —(3 1o)

where X' = X~~/cpr and aP = -,' (~z'+

&mrs�)

. This has the
same form as (2.6) with &oz=cpr, except for the term in
(qp'+q, ' —q&' —q„' —q«). It is easy to see by making the
substitutions (2.7) that this is another cubic-field term
with exactly the same angular variation as V(g, p). The
magnitude of this effect is best expressed as the energy
diff erence between the maxima and minima of this extra
potential energy on the q

= constant surface, which
ls 3ust

and
E(&)= &f«1 Irs'

I f«) (3.8)
I (~z' —rprs)/2~' jq' = L(~a' —~r')/~' j&zr (3.11)

E(&s)= (ff I
(s/~2)(lrs ' —Irs')

I f.)
These expressions are easily calculated by means of

3j symbols. The results of this calculation are shown in

Fig. 3, where E(E) and E(Ts) are plotted against

(/s'cps�)

(6qs /

The main point to notice from these plots is that E(E)
and E(Ts) change rather rapidly from their value of s
when 6= 0 and get quite close to the values appropriate
to pure trigonal or tetragonal distortions, even when

is not particularly large. Since the results of experiment
on such a system w i11 frequently dep en d mainly on

E(E) or E(Ts) this suggests that we may deduce from
experiments that the system is in a state of trigonal or

The sign increases the energy of the tetragonal distor-
tions if &uz') cur', and conversely (which is what should
be expected): increasing co~' in (2.6) decreases the
effective mass for vibrations near the tetragonal points,
which in turn increases the zero-point energy and
effectively raises the energy of the ground state above
the potential energy. Thus, having coz' &co&' would tend
to tip the system towards the trigonal distortions rela-
tive to what would be expected from looking at the
Jahn-Teller energies alone.

In summary, this transformation of the Hamiltonian
shows that, as long as we are in the region in which
perturbation theory can be used, making uz~ +& will
not have any effect that is qualitatively diff erent from
having

IV. EFFECT OF STRAIN

K(E

-I .0
The effect of strains in the surroundings of the

paramagnetic center can be written in terms of a
Harniltonian analagous to (2.1) as

Xs= V@e(epep+e e,)
+Vr (efrf+e„r„+e«r«)+ Vg epc, (4.1)

I

80 40
b, /ED

40 80

pro. 3. Z(Z) and E(Ts) plotted against &/En.

where

«= e* s (e +ewu) e = s~~(e* euw)

e~ =e„„e„=e„, e~ = e,„,
ep ——e„+e„„+e... and. e@

', (Bu;/r)x;+——B—u;/r)x;)

(4.2)
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Vzses(OT&l(lEII IIr&) gs

for the T~ excited states, and

V~"s(or~((EIIOrg) g.

(44)

(4 5)

for the T2 excited states. The second of these two
matrices is obtained by looking up coupling coefficients
(for instance, in Koster et at. ), and noticing that with
the obvious identification of the three components of

is a component of the strain tensor. ' This will apply
whether the strain is caused by local impurities in the
lattice or by forces applied externally on the whole
crystal. If the effects of strains are the result of move-
ments of atoms in the immediate complex only, then
Vz~ and Vz ~ can be directly related to V& and V&. This
will not be true in general, but it may be a good erst
approximation. The 6nal term in (4.1) represents the
effect of a totally symmetric strain, which alters the
energies of all three states equally.

The first-order effect of this Hamiltonian in the
ground triplet can be immediately written down in
terms of E(E) and E(rg). We simply get

Xs= Vss E(E)(esgs+e, g,)
+Vg Z(rg)(eIrg+e„r„+etrr)+ V~ egg. (4.3)

It also may be necessary to consider the effect of
strains in altering the ground state by mixing in excited
vibronic states. This can be done with the introduction
of more parameters, though the validity of the model
used here is more questionable for the excited states
than for the ground state.

Let us consider, as an example, the eGect of an axial
strain e& which reduces the over-all symmetry at the
site from cubic to tetragonal. Since eg is a member of the
E representation of the cubic group, it couples the
ground T~ state to excited T~ and T2 triplets. Ke have
already seen how matrix elements of the form (Tz I

E
I Tz)

can be expressed in terms of a reduced matrix element

E(E), and we must now expand the notation to make it
more explicit which states are concerned. We shall write
the reduced matrix element between the two lowest T~
states as (Or~((EI(IT~), and between T~ and T2 as
(Org(IE((org); in thi»otation X(E) is (Or&(IE((org).
The appropriate matrices from which we can find the
admixture coeKcients are then

T2, we can use ~, and —eg for the matrices of 8 and ~

operators, respectively.
Using these matrices, we illimediately Qnd that the

ground states with first-order admixtures from the
lowest excited states become

where

I Or&f& —-', sees( lr, )&+-,' v3 ts'e s(OT, )&,
(Or»& —2tses I 1r»& ,'VS„—'e—s

I Or»),
(Org&+Ises( ir g&,

(4.6)

ss= vz'(ori((E((1ri)/E(1ri), (4.7)
ss'= Vss (Org(IEI(org)/E(org),

and E(1T~) and E(OT2) are the excitation energies of
the states above the ground state. Obviously, in general
there will be coupling to many excited states, but con-
sidering one state of each symmetry should make clear
the k.inds of things that can happen. These reduced
matrix elements can be calculated for any set of eigen-
states, and in particular we have, when 6=0,

1T&)=3v3/5+7=0. 39, (4.8)
(Or~I(E(lor ) = W3/435=0. 29.

Since squeezing the crystal in various ways will
produce more complicated strains than the simple ett

type considered above, it will be helpful to work in a
more compact notation. This is suggested by looking at
the states (4.6), which can obviously be rewritten in the
matrix form

(Or&) Isesgs( IT&)——p, 'esg
I Org& ~ (4 9)

Including the effect of an e, strain alters this to

(Org) y(eggs+—e,g,) I IT&& y'(egg, e—,es) I
Org)—. (4.10)

Now we must include the effects of T2-type strains;
these will mix in to the ground-state symmetry states
T&, T2, E, and A2. Further inspection of tables of
coupling coeKcients shows that these admixtures can
be represented in matrix form as

—I "(ears+ e„r„+etrt) I 1r~&
&"'(eg7g+e—„y„+ether) (Org& (4.11)

p' (egad+—e„n„+etnt) (OA, &

ts (eA+ esp—g+ etpr) I oE),
where ~~, 7-„, and rg have already been dered, and

0 0 0
0 0 —1.0 I 0.

0 0
0 0 0

.—1 0 0.

0

,0.

0 —1 0
1 0 0
.0 0 0.
0

m)= 0 (4.12)

2

pg
—— 0

0
0
0.

0
p, = —,'lS

, 0

0
1
2 j
0.

8 G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, I'roperties
Mass. 1966}.

0 0
Pr= 0 0.0 1.

of the 3Z I'oust Groups (MI& Press, Inc. , Cambridge,
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IOAz) represents the singlet state of symmetry Az, while IOE) represents the pair of L~' states, with the 0 member
of the pair coming first, and

z
"=Vrs(OT&IITzji IT,)/E(1Tz),

»-= V,s(oz',
ll T,ijoa, )/E(oa, ),

z
"'= l'r'(»illTzllOT2)/E(OT, ),
z.= V, '(Oz',

ll T,IIOE)/E(OE) .
(4.13)

se=pH (L+2S)+xL S. (5.1)

The spin-orbit coupling term is large compared with the
rest, but has no effect within the ground state, so we
take pH L+XL S to second order, keeping the terms
that are linear in P. This gives us

Z, j~)(NIZ,
K=2PH S—Q PX(H,S,+H,S,), (5.2)

Aft jg

where the suKxes i and j label components of a vector,
and izz) is an excited orbital state with energy L'„.

In our problem there are two excited states that couple
to the ground state via the angular momentum operator;
these are the states deriving from the other two roots of
the Hamiltonian (2.1). (In a practical problem there
may well be other states so coupled, but here we are
only discussing effects within the orbital triplet. ) We
shall assume that they are degenerate, with E = —,'E~&,.
this is true at the trigonal and tetragonal turning points
in phase space and at every point on the equipotential
surface when the trigonal and tetragonal energies are
equal, so it is as good as most other assumptions in this
model. We shall assume that the adiabatic approxima-
tion holds, so that we erst Gnd orbital angular momen-
turn matrix elements for a Axed set of normal-mode
coordinates, and then average the result over the ground
vibronic state. We need to find

&z,z,)=(1lz'l»&2lz'I »+&1lz'l»&3IL~I » (5»
where

I
1&=sine cosy

I ()ysine sing
I rj&+«»el i &

in the notation of previous sections, and
I 2) and

I 3) are
two linear combinations of

I P), I g), and ll ) orthogonal

9 A. Abragam and M. H. L. Pryce, Proc. Roy. Soc. (London)
A205, 135 (1951).

V. g VALUES IN THE GROUND STATE

In this strong Jahn-Teller coupling approximation
the electronic part of the ground states is an orbital
singlet, so the expectation value of the angular momen-
tum is identically zero, and the g values are those
appropriate to a free spin. But we also know that in ions
with orbital singlet ground states we expect there to be
orbital effects on the g values through spin-orbit coupl-
ing to excited states, and it can be expressed, in the
formalism due to Abragam and Pryce' as follows: We
take as our Harniltonian

to
I
1).I.et us write them. as

l1)=/ Ik&+/ In)+/ It),
I»=/ I ~&+/ I.&+/-lt-&,
I»=/»I &&+/»I v)+/»it&,

(5.4)

(Z,I,)= 1 —cos'8,

(L,L,)= 1—sin'8 cos'Q,

(L„L„)= 1—sin'8 sin'g,

(L L„)= (Z„L )= —sin'8 cosp sing,

(L„I,)= (L,L„)= —sin8 cosg sing,

(L,L )= (L,L,)= —sin8 cos8 cosP.

(5.6)

Comparison with the expressions (3.6) and (3.7) shows
that if we now take expectation values of these operators
in the ground vibronic state, we get

(L,L,)o ,'z+ ,'K(E) oo-—,
—-

(Z*Z*)o=
a &+K(E) s (—oo+~3o,),

(LuLu)o =
o z+ K(E)-', (—oo —v3o,),

&Z.Z.),= (Z„Z.).= ;K(T,).r-
(L„L.),= (L,L„),= &Kg,)„
(L,L„),= (L,L,),= ,'K(T,), —

(5 7)

When these are substituted into the spin Hamiltonian
(5.2) we get an expression of the form

X,= (2——;S)zPS. H —PSK(E)
&&L(S,H, —o'S.H)oo+V3 '(S,H, —S„H„)o,f—PhK(T )f ', (S„H,+S,H„) r.

-
+, (S,H +S,H.) „+,'(S,—H„+S„H) r), (5-.8)

where BCz operates in the ground vibronic triplet and the
spin states, and 8=X/-,'E~r. This form of the spin
Hamiltonian, if K(E), K(Tz), and 8 are taken as
parameters, is the most general form bilinear and sym-
metric in S and H under cubic symmetry, and so should
be rather generally valid.

Finding the eigenvalues of this spin Hamiltonian is
made very much simpler by the fact that 8((2 (this
must be so if our model is valid). This means that the
isotropic part of the spin Hamiltonian is dominant, and

where the 1's are elements of an orthogonal matrix.
Then, for instance,

(1 I
Lz

I
2) = (/11/z2 —/zz/12) ($ I

L,
I g) = z/38 (5 5) .

since ()IL,jg)=i and L, ji)=O, and similarly for other
matrix elements. Using these, we find
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to a good approximation the spin is quantized along the
direction of the magnetic field, so that if we transform
to axes along and perpendicular to the held, the per-
pendicular spin operators can be left out. If we take H
to be in a direction with direction cosines (11,13,13), then
H,S, is to be replaced by /, l,H, '5,', where s' is in
the direction of H. Using this, we get the spin Hamil-
tonian in the form

X/P = (2 —-', 8) 3S','H, '

8K(E—& L(l '—-', )ss+V3 —'(1 ' 1')e,—)S,'H. '

—hK(T3)flslsr3+1311r„+lilsrr)S. 'H, '. (5.9)

Note that this is still a 3&3 matrix. The roots of this
matrix, which will of course depend on (11,1,,13), give
three different coefficients of S,'H, ', which will be the

g values for the three transitions observed with the
field in this particular direction.

Since we are looking for the roots of a cubic equation,
it is not possible to write down an explicit expression
for the angular dependence for general values of K(E)
and K(T3), though the roots can, of course, be found for
any particular values of the parameters. Another reason
for not trying to write down any kind of general angular
dependence is that the effect of random local strains in
the crystal will probably alter the form of the spin
Hamiltonian, as we shall see later. There are however
some values of the parameters for which explicit angular
dependences can be found easily. One of these, as we
might expect, is when K(E)=K(T3), i.e., when the
trigonal and tetragonal Jahn-Teller energies are equal.
In this case we get

3C—= (2 ,'h) 1S,'H, ' —hK—(E)—

11 +3 114

X —l~. —13'+-'3 —1313

—13'+-'

S,'H, ', (5.10)

K—= (2 sb) 3S,'H, ' 8K(I.'")— —

0

+ 0

0

—13'+ 3 S,'H, '. (5.11)

The spectrum will be just the same as that of an

when the roots of the matrix are +3+3
——,', independent

of the direction cosines. Consequently, we should
expect to see in this case a completely isotropic spec-
trum with two transitions at g=2 —+~+13K(E))8 and
one at g= 2 —$3' ——3'K(E))8. A second special case occurs
when K(E)))K(T3), i.e., when the tetragonal distor-
tions are favored. Then we find

assembly of ions each with

g =2 —Ls —3K(E))h
g =2—Ls+3K(E))h,

(5.12)

and with their principal axes distributed among the
cubic axes of the crystal. The opposite state of affairs
K(T3)))K(E) is more complicated because the approach
of the A2 vibronic singlet to the ground triplet should
also be taken into account. We shall not pursue that
problem here.

It has been pointed out by Ham' and by Williams
et al."that the term in the Hamiltonian that determines
the eigenstates in a magnetic field, being of order hpH,
may very likely be small compared with the effect of
small local strains which may be expected to be present
in the crystal. This means that we should put in the
effect of strains first, and then consider the effect of the
magnetic Geld on these strain stabilized states. The
result is particularly simple if we suppose the E-type
strain predominates, either because of the details of the
crystal structure or because K(E)))K(T3). The three
states that are stabilized by this strain are just the three
states in terms of which our matrices have been set up.
The result is that we can ignore off-diagonal matrix
elements. Again, the set of g values is that appropriate
to a collection of ions with axial symmetry about the
crystal axes (even though the actual linear combination
of E-type strains may correspond to a local symmetry
that is lower than axial). The eA'ect of T,-type strains,
or a combination of both types, could also be calculated,
as could the result of strain and magnetic field effects
being comparable in size. Either of these situations
would be liable to produce an unusual dependence of
the spectrum on the direction of the field.

If the effect of small local strains is large enough to
stabilize the states against mixing by a magnetic field,
the effect of large externally applied strains should also
do so, but as we saw in Sec. IV we may also have to
consider their effect in mixing in excited vibronic states.
The ground states produced by a general strain are
given in Eqs. (4.10) and (4.11).We can now calculate
the g values for this set of states. First, we rewrite the
spin Hamiltonian (5.9) in operator form, to allow it to
operate on thestates mixed into the ground state. It
becomes, in an obvious notation,

X/P = (2 ——,'8)IS.'H, ' —8

X((133—')E3+v3—'(113—13')E )S 'H '

8(1313T3(+1311T33+l]13Tsr)S,'H, '. (5.13)

Now the admixtures to the ground state will be small,
so their largest g-value contribution will be in cross
terms between the admixtures and the original ground
states, giving rise to changes in g linear in the strains.
Operating with (5.13), using (4.10) a.nd (4.11) to give

10F. S. Ham. Phys. Rev. 166, 307 (1968)."I .I.B.Williams, D. C. Krupka, and D. P. Breen, Phys. Rev.
179/255 (1969).
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the admixtures, and picking out just these linear terms, we 6nd changes in the g matrix given by

hg/25= Q(eg«+e, g,)+ts"(egrg+e„r„+errr) j{(OT~[(E((1T~)f (ls' ——,)«+v3—'(lp —ls')g, ]
+(OT&((Ts((1T&)Llslsrg+lsl&r +E&lsrrf}+Pp'(e, gg, e—,gg)+ts"'(e»g+e„p„+engr)7
X{(OT,(IE((OT,)( (ls ——;).,—v3-~(1,' —l, )«3+(OT,((T,((OT,)Ll,l»,yl, l»,yl, l»„3
+p' («ag+ e.a +error) (OT~II Tsllox s) (lsls(Kg+ lsl A„+lglslRr)

+ts (egPg+ e„P„+erPr) (OTq((Ts((OE) (lslsPg+lslg„+lglsPr) . (5.14)

(Here a tilde has been used to indicate a transposed matrix. ) This whole expression for dg, now a 3&&3 matrix
which must be added to (5.9), the 3)&3 matrix expression for g, is to be diagonalized to give the observed g values
with the field in a direction (1 sl sl )sand a given set of strains produced by external f'orces. As with the original

g matrix, this one can be simplified if we are justified in assuming that the effect of local and applied strains is
sufficient to override off-diagonal terms in it. Thus, we now have to pick out just the diagonal terms in (5.14).
Inspection of the various matrices shows that these terms are given by the expression

~g/2&= t.(eg«+e...)(OT~IIE(l »~)Dls' ')—.g+v3-'(1 ' —l ') g,l
+t '(eg" —e"g)(OT~IIEIIoTs)(:(4' —s) g.—~3 '(li' —ls') «3
+ts" (OTs((Ts((1Tg) (eglslsrgrg+e, lslir„r, +erlxlsrrrr)
+&" (OT, (IT,IIOT,) («lsl», ~,ye„lsl»„y„+erlglsyt7r)
+t "(OT~II Tsl(Oas)(e&lslscMgcxp+e, lslga„cx„+erl~l aster)

+ts (OTy((Ts((OE)(eglslsP/Pg+e„lsliP, P„+erl,/sPrPr) . (5.15)

It is interesting that this expression can be rewritten to
show that the parameters it contains are sufficient to
account for all the parameters in the tensor relation
between S, H and e under tetragonal synunetry, except
that any effect of a totally symmetric strain is missing,
as are the terms corresponding to an equal shift of all
the g values. Such terms would arise from effects outside
the scope of this model. If K(Ts) in the ground state is
not vanishingly small, and the applied stress is such as
to produce Ts-type strains, then the form (5.14) must
be retained for the strain-dependent part of g, and we
should not expect S, H, and e to have a simple tensor

0

relationship. --:,,.'-.=-.,:.::--,::,j„:.'. . ;,-,.:,=.„.:=. ,„"„: „-..-~4.',.-.,-,—;, .
--:

„. .„...
VL EFFECT OF COUPLING TO MANY MODES

Generally in a crystal the Jahn-Teller coupling is not
to a single mode of vibration of each symmetry, but to
a large number of such modes. This can be expressed by
modifying the Hamiltonian (2.1) to read

K=+ Vs'( Q'g«+ Q,
'

g)

+Z v. (e»'+e, ',+e '«)+~. ,

{(pgi)s+(p g)2

2pg
+( ')'( ')'( (Q ')'+(Q ')'7} (6 1)

+Z {(pg')'+(p ')'+(pr')'
2pp~

+(t r')'(~r')'(:(Qgt)'+(Q ')'+(Qr')'3}

Qg'= LVs'/tss'((oz')'ls'(3 cos'8 —1),
Q '=

( Vying/ts@'(co@') )W3 sill 8 cos2$,

Qg'= ( Vr'/tsr&'((ur&') j sin28 sining,

Qj= PVr'/pr'(a z'') j sin28 cosy,

er = pvr'/tsr&'(~r')'j sin'8 sin2y.

(6.2)

If we assume as before that the lowest-energy levels
will be those in which the representative point in Q space
is constrained to move on this surface and look for an
expression for the kinetic energy in terms of 8 and @
only, we find the same simple form (2.21) as before if

Using this Hamiltonian instead of (2.1), the analysis
of Opik and Pryce' shows that there are still only the
same two kinds of minimum in the potential, and the
values of the parameters are those shown in Table II.

Note that although there are many more degrees of
freedom than before, the number and kind of the
minima in the potential energy are unaltered. There are
still just three tetragonal and four trigonal distortions
that correspond to turning points in the potential energy
out of the large number of possible trigonal and tetrag-
onal distortions.

If the energies of the trigonal and tetragonal turning
points happen to be equal, then as before, we 6nd that
there is a two-dimensional surface in the many-dimen-
sional Q space on which the potential energy is constant
and lower than anywhere else. This surface can be
parametrized in terms of the angles 8 and P as before,
and it is given by the set of equations

where the sum is over all normal modes of the ap-
propriate symmetry.

(V ')' (V ')'
. ,=sZ

' t ~'(~e')' ~' t r'(~r')'
(6.3)
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TA&LE II. Va1ues of the normal coordinates at the two possible
types of minima in the potential energy. The notation is as in
Table I.

Qgk

Q k

Q&'

Qn'

Q~'

E k& 8/PZ k(~'E4) 2

Vgkg. /~@4(~@'4)2

0
0
0
(V@0)2

1

r p~~(co~~)'

0
0

$2Vr&/314r& (&ar&)''5m'

[2vr&'/3pr& (err')'5'm4

$2Up&/3pr&(co &r)'5m4

( Vp&')'

4E—
I I r'(~r')'

(P' ')2
q

—~

A2 P ~

C(Ace@~, A&or'

4(~ 4) 4p
(6.4)

for all of the frequencies co~~, coz&. This is obviously
impossible if all the normal modes of vibration of the
crystal are included, since their frequencies go right
down to zero. However, it is reasonable to assume that
the Jahn-Teller coupling to these very long-wave-
length modes is rather small, so that we might initially
neglect all the modes below a certain frequency, and
introduce them subsequently as a perturbation. These
low-frequency modes, weakly coupled, will introduce a
relaxation mechanism and broaden the energy levels in
the excited states. Thus, while we should expect to Gnd
a ground state with rather the same properties as the
single mode case, we should. expect the excited states to
be considerably spread out by the coupling to many
modes.

VII. RELAXATION PROCESSES

If the ground eigenstates are stabilized by local or
externally produced strains, we must ask how the

and ~'/g' in (2.21) is replaced by

~
~

~

(P i)2 q
—1

Z
4(~ 4)4)

This condition (6.3) reduces, when only one mode of
each kind is included in the sum, to our original condi-
tion co+ = a&z. Small differences from equality in Eq. (6.3)
can be transformed into small diGerences between the
trigonal and tetragonal energies just as in the single-
mode case.

Thus, we see that if the appropriate conditions are
satisfied, the lowest-energy levels are given by solutions
of the 8, P Schrodinger equation (3.4) as before. How-
ever, there does arise an extra complication in connec-
tion with the validity of the approximation, i.e., in
order to assume that the system is in the ground state
of all those parts of the Hamiltonian corresponding to
motion away from the 0, p surface, we must have the
characteristic splitting of the 0, p energy levels small
compared with Ace (2.25). That is to say, we require

system can relax from one of these states to another.
This will happen by coupling to the thermal lattice
vibrations, either by a "direct" process from one com-
ponent of the ground state to another, or by an
"indirect" process of excitation to an excited vibronic
state and back. The indirect process would be charac-
terized by a temperature dependence of the e ~~~~ kind,
where E is the energy of the excited vibronic state. The
usual method of calculating such processes analyzes the
thermal phonons in terms of strains, and considers the
effect of such time-dependent strains in producing
transitions between the localized states.

It is obvious that when we come to apply that method
here it is no good to look at E-type strains, which are
diagonal in the ground state, and if exciting transitions
to excited T& and T2 vibronic states, could only return
the system to the same ground-state component that it
started from, at least in this approximation. On the
other hand, T2-type strains do have off-diagonal matrix
elements that may be active in direct or indirect pro-
cesses. For direct processes we need matrix elements of
T2-type strains within the ground triplet. Since, as we
have seen, these are proportional to Z(T2), if the
system has overridingly strong tetragonal coupling
with E(T2) vanishingly small, then such direct pro-
cesses can be neglected. However, in the intermediate
region where E(T~), though small, does not vanish, the
direct processes are possible and wi11 be the dominant
relaxation processes at low temperatures. For indirect
processes, as we saw in Sec. IV, a T&-type strain has
many o6-diagonal matrix elements to excited vibronic
states, and some of these are sure to be nonzero. Thus we
should always expect to find e6ective indirect processes,
which may be expected to be dominant at higher
temperatures.

It should be emphasized that we are now talking
about a situation in which the Hamiltonian no longer
has perfect cubic symmetry. The ground triplet is split
by distortions of the surroundings associated with local
or externally produced strains. We consider the ways in
which transitions can be induced between the com-
ponents of the triplet. If the Hamiltonian remains cubic
the triplet state is strictly degenerate, and no splitting
can be produced by tunneling or other relaxation
processes.

VIII. EXPERIMENTAL APPLICATIONS

Most examples of a strong Jahn-Teller effect in a
triplet state have been interpreted in terms of strong
coupling to one type of mode and small coupling to the
other, which usually suffices to explain the experimental
results. The work presented here goes some way to
explain why this assumption of extreme imbalance
between the modes should work so well. However, some
systems are known in which it does not work.

One such system, for which this calculation would
seem to offer an explanation, is the P center in calcium
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oxide. In this center the orbital triplet is an excited
state, while the ground state is an orbital singlet, and
the properties of the singlet-triplet absorption spectrum
are studied. The spectrum consists of a broad band
together with a sharp zero-phonon line. Both are sup-
posedly associated with the Il center, though some
doubt still exists about this. Faraday rotation measure-
ments on both broad and sharp lines have been reported
by Kemp et al."and by Bessent et al. ,

"and stress and
Zeeman-effect measurements on the sharp line by
Hughes and Runciman. ' The evidence from magnetic
measurements on the sharp line implies that spin-orbit
coupling is almost completely quenched, while under
stress the line splits as if there was coupling to both E,
and T2, distortions. The quenching of the spin-orbit
coupling suggests that the Jahn-Teller coupling is
strong. The existence of coupling to both E, and T2,
strains requires that neither E'(E) nor E (Ts) be zero.
In terms of the model used in this paper the ground or
zero-phonon state in the orbital triplet should therefore
correspond to a situation in the dynamical regime near
6=0; the experimental results could not be explained
by coupling to either mode alone.

A problem that does not seem to be any further
resolved by this work is that of the ground vibronic
state of the excited orbital triplet of V++ in MgO.
Sturge" discussed measurements he made on the effect
of stress on the zero-phonon line in the singlet-triplet
transition. He proposed an interpretation in terms of an
effective Hamiltonian incorporating the effect of a dis-
tribution of static trigonal distortions. Ham" showed
that the results could also be explained if the ground
state consisted not of a single T2 state, but also of T2
and T& states nearly degenerate, with another T2 state
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Phys. Rev. 171, 1024 (1968).
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H. M. Crosswhite and H. W. Moos (Wiley-Interscience, Inc. ,
New York, 1967), p. 357.

about 40 cm ' up. A look at Fig. 2 shows that this
condition is not even approximately satisfied anywhere
on it (in V++ the orbital triplet is a Ts one, so 1 and 2

should be interchanged on the figure for this ion). Also,
Ham's explanation requires that both the T2 states be
equally narrow. On our model, relaxation and coupling
to many modes would probably broaden the higher
states considerably.

The work of Watkins' on the positively-charged
vacancy in Si presents another possible application. In
this center the ground state is an orbital triplet with a
spin of one-half, and the spin-resonance spectrum is that
appropriate to the three tetragonal distortions, indicat-
ing that 6 is large and negative. However, relaxation
studies indicate that the effective-energy barrier
between the tetragonal distortions is rather small
compared with the Jahn-Teller energy. If we assume
that this barrier represents the height of the saddle
points in the Opik-Pryce calculation, this implies also
that 6 is small compared with the Jahn-Teller energy,
and the coupling to T2 modes of vibration should not be
entirely neglected. We have tried to describe this center
in terms of the parameters that emerge from this theory,
and in particular to account for the effects of stress in
altering the g values. The results have been inconclu-
sive so far, and are not worth further discussion here.
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