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Generalization of Resonant Scattering Calculations

D.L. Huber
Department of Physics, University of Wisconsin, Madison, Wisconsin 53706
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Previous calculations of the differential cross section for the resonant scattering of monochro-
matic light in gases are generalized. The connection between the integrated and coherent cross
sections and the absorption line shape is displayed.

In a recent paper, ' we have outlined a calculation of the differential cross section characterizing the
resonant scattering of light by the atoms in a gas. In Ref. 1, the collisions of the scattering atom with
its perturbers were treated in the impact approximation. The purpose of this paper is to generalize the
theory to make it applicable to a broader spectrum of experimental configurations. We do this by re-
writing the cross section in such a way as to specifically display its dependence on the potential charac-
terizing the interaction between the scattering atom and its perturbers. In addition, we derive expres-
sions for the integrated and coherent cross sections which may be useful in making comparisons between
experiment and theory, 2

The starting point is Eq. (4.1) of Ref. 1, as modified by Eq. (4.2) of the same paper.
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Here, A denotes a product of the squares of the matrix elements of the dipole moment operator, w, is the
resonant frequency, w, and w, are the frequencies of the incoming and outgoing photons, v isthe lifetime in
the upper state as determined by both radiative and nonradiative processes, 8w, (¢) is the frequency fluc-
tuation associated with a single perturber, and N is the number of perturbers. If the potential energy as-
sociated with the interaction between the perturber and the resonant scatterer is written v(7,,) then the
average appearing in (1), when written explicitly, takes the form?
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where (s) is the average speed of the perturbers relative to the scattering atoms, and V is the volume of
the system.

Since the frequency of the scattered photon, w,, is close to w,, we can obtain an expression for the fre-
quency-integrated intensity by replacing w,w,® by w,* in Eq. (1) and then integrating over w, from minus
infinity to plus infinity, We obtain the result
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After averaging, the bracketed factor in (3) is a function only of the difference (t'—¢’’). Because of this
we introduce the variables x=— (#'+#’’) and y =(¢'- #'’), and rewrite the double integral in (3)
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Integrating this expression by parts leads to the result
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where we have written A explicitly as a product of matrix elements.* Here f(w,) is the normalized line-
shape function
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Equation (4) has a simple physical interpretation. _ The factor 1G1€,+dIf)1%f(w,) is a measure of the
probability that a photon is absorbed, while [{i|&, - al )12/y isa measure of the probability that the atom in
the upper state returns to the ground state by emitting a photon. ®

Asnoted previously, © the cross section for phase coherent scattering is obtained from the ensemble av-
erage of the induced dipole moment operator. In the present analysis it takes the form
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By first introducing the unit step function and then writing 6(x) as an integral, i.e.,

6(x)=1, x>0; #6(x)=0, x<0,

0(x) = (1/2m) [ due™  fu~ie), @®)
where the limit € -0+ is understood, we can rewrite (7) as follows:
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In obtaining (9), we have made use of the symbolic identity
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where P denotes the principal value. The results displayed in Eqs. (4) and (9) are the appropriate gener-

alizations of the findings reported in Sec. 4 of Ref. 1.

Moreover, the functional dependence of the co-

herent cross section on f(w,) is indicative of the fact that the real and imaginary parts of the electric sus-
ceptibility are connected by Kramers-Kronig relations.”’
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“The notation for the matrix elements is the same as
in Ref. 1.

SA result similar to Eq. (4) is obtained if the target
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atoms are in motion provided f(w;) is interpreted as a
line-shape function which folds in both Doppler and col-
lision broadening.
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"The relationship between the coherent cross section
and the electric susceptibility tensor is discussed in Ref.
6.
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A difficulty recently pointed out in O’Malley’s theory for dissociative attachment can be re-
moved by employing the truncated diagonalization method.

1. INTRODUCTION

The theory of dissociative attachment presented
by O’Malley! seems particularly convenient for
many applications. Recently, Chen and Mittle-
man? pointed out a difficulty which occurs in this
theory and proposed an alternate procedure. It
is the purpose of this paper, first, to remove the
difficulty in O’Malley’s theory, and then, to make
an observation about Chen and Mittleman’s pro-
cedure.

The reaction considered is

AB+e-A+B™.

The process is envisioned as the approach of an
electron to a stable diatomic molecule with the

formation of an unstable AB™ ion. The AB™ ion
can then either eject an electron and the system
returns to reactants,or the AB~ can dissociate

to an A atom and a B~ ion. (Only reactions are
considered in which B~ is stable with respect to

ejecting an electron.) If this mechanism is valid
and if only one negative-ion electronic state is
involved, acurvecrossing ~ betweenthe neutral
and ionic potential curves — must occur in some
sense. This follows, since at the initial inter-
nuclear separation when AB™ is formed, this ion
is unstable with respect to AB, and at the final
internuclear separation the system is stable.

By considering the AB~ curve as representing
the eigenenergy, not of the full electronic Hamil-
tonian but as an eigenenergy of a projected elec-
tronic Hamiltonian, O’Malley arrives at an ionic
curve which can freely cross the AB +e curve.!>?

It is important to note that from this point of
view, the AB™ curve only partially characterizes
the resonance. The wave function which belongs
with this curve is one of possibly many zero-or-
der solutions of the electronic wave equation
which form an expansion basis for the final solu-
tion. By means of such a basis of electronic
wave functions parametrically depending on nu-
clear coordinates, a coupled set of partial dif--



