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A calculation of electric and magnetic susceptibilities and shielding factors for closed-shell
atomic systems based on relativistic Hartree-Fock-Slater (RHFS) electron theory is presented .
Numerical results are given for the electric dipole and quadrupole, and for the magnetic
dipole and octupole cases for closed-shell atoms and ions from Z=2 to Z=92. Comparison
is made with previous nonrelativistic uncoupled Hartree~Fock calculations and with

experiment.

I. INTRODUCTION

An applied electric or magnetic multipole field
induces an electric or magnetic multipole mo-
ment in a closed-shell atom or ion. This induced
moment is proportional to the applied field, for
weak fields; the proportionality constant being the
electric or magnetic susceptibility.! The induced
electric or magnetic moment gives rise to a sec-
ondary field which has the spatial symmetry of
the applied field. Thus, at the nucleus of a
closed-shell atom or ion, the applied multipole
field is shielded (or enhanced) by a factor char-
acteristic of the atom or ion.?2

It is the purpose of this paper to study these
atomic susceptibilities and shielding factors from
the point of view of relativistic electron theory.
The importance of relativity in this study is two-
fold; to account automatically for atomic fine
structure and to allow for the rapid motion of the
inner electrons of heavy atoms. A useful con-
sequence of the relativistic approach is that elec-
tric and magnetic effects can be treated in par-
allel; thereby simplifying the theoretical discus-
sion.

We describe the external applied field by a
scalar potential or by a (Coulomb gauge) vector
potential®
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Because of the assumed spherical symmetry of
the atom or ion, it is sufficient to consider the
M =0 component of the applied field. At large

distances from the atom, the induced field be-

haves as follows:
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The constants o y and x g are the electric and mag-
netic susceptibilities?; they have dimensions of
length to the (27 + 1) power.

Near the nucleus, the induced field reduces to

¢>J1-—'y ¢., as r-0;
JTd
(3)
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The dimensionless proportionality constants y
and 0y are the electric and magnetic shielding
factors.5 A negative value of either constant

represents an antishielding effect.

We describe the atom or ion by a relativistic
Hartree- Fock-Slater (RHFS) product wave func-
tion. The unperturbed Hamiltonian is a sum of
single-electron terms of the form®

H°= o +p +pm +V(r), (4)

where T and D are the electron coordinate and mo-
mentum vectors, and & and 8 are the usual Dirac
matrices, V(r) is a self-consistent potential con-
structed using a Slater averagé for the exchange
interaction.

Single-electron orbitals are designated by a
principle quantum number #, an angular momen-
tum quantum number k=% (j+ %) for j=I+% and an
angular momentum projection quantum number .
These orbitals satisfy a central-field Dirac equa-
tion

0. 0 _ 0. V]
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In the presence of an external field, H° is modi-
fied by the addition of a term H' =e(¢;—a - Ay),
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where e is the specific electronic charge, and ¢y
and Ay are the multipole potentials given in Eq.

(1). Replacing du0° = Vniom® +Pnm Enr®~ Epi®
+Ey;un's we find to first order in the perturbation

(HO—EnKO)ZPnKmlz_ (Hl_EnKml)d) % (6

o HY 0),

where E L=
nK nKkm

m nKm

Here we are neglecting any effect on the self-
consistent potential which arises because of dis-
tortion of the orbitals. It is this approximation
which leads to the relatively simple uncoupled
Eq. (6) above.

In the presence of the external field, the charge
density of the atomic subshell #, k is given by
Pk =Pk’ +Ppi’, Where py,, ', the induced charged
density, is given by

o l=eX) oTz,b 'ieoc. ("

The current density of a closed subshell vanishes
in the absence of an external field. In the pres-
ence of an external field, the induced current den-
sity for the shell n, k is given by

R OT&’zp tie.c. (8)

These induced charge-current densities serve as
the sources of induced electric and magnetic
fields.

In Sec. II, the functions g,,,," are decomposed
into angular momentum eigenstates and the in-
homogeneous Dirac equations (6), thereby reduced
to radial differential equations suitable for nu-
merical integration. The corresponding decom-
position and integration of the homogeneous equa-
tions (5) have been described previously by
Lieberman, Waber, and Cromer. "

The induced charge and current densities of
Eqgs. (7) and (8) are used to find the induced fields
) Jl and KJ‘. Examination of these induced fields
in the asymptotic region leads to expressions for
susceptibilities while the behavior of the induced
fields near the origin determines the electric and
magnetic shielding factors.

II. ANGULAR DECOMPOSITION

The unperturbed single-electron states can be
written

ic, e, @)
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where me(';) are angular momentum eigenstates
given by®

2 @ =2 COzTim =, i Yy, | @) (10)

Using the angular decomposition (9), the homog-
enous Dirac equations (5) for the unperturbed or-
bitals reduce to radial differential equations

(m+V-E_°)G +<i _5>F =0,
nKk " mk \dr v) mnk
(11)
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(d—T + ;)Gm{+(m - V+Eni< )FnK— 0.

These equations are solved numerically for the
self-consistent potential V(r), the binding ener-
gies E,,°, and for the radial functions G, () and
F, () using numerical procedures similar to
those described in Ref. 7.

A. Electric Fields

Given an applied electric field described by the
scalar potential of Eq. (1), one finds, using Eq.
(6), a first-order energy shift

E t=eC I
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where

i ((2.]+ 1)(2j'+1)> 1/2

Lemr'm' M= 47(2j +1)
xC(j'Jj;%O)C(j'Jj;m'Mm)HlJl,, (13)
with 1, = 1, I+1'+J even
(14)

0, I+I'+J odd

Clearly 177 together with the first-order energy
shift vanishes unless J is even. The integral
appearing in Eq. (13) is the expectation value of
7/ in the state 4,,,,,,° and is denoted by <7 >,,.
Assuming a first-order wave function
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nKkm Tk "k 'mkmJO
(15)
zSnKK :(T)QK " @)

hod b
L I(’V)Q—K 'm )

X =
r

One may reduce the inhomogeneous first-order
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equations (6) to radial equations

d «'
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Equations (16) are solved numerically for Sy, ’
and T, .. for those values of k' allowed by the
selection rules in Eq. (13).

One easily proves that the induced current den-
sity in « () (and therefore the induced magnetic
field) vanishes. The induced charge density

Ppi () of Eq. (7) simplifies to

P B)=C, QI+ 1)U (Y 0(17)/72,

nK
with
U )= (2j+1)2i"+ 1A, AT
nk' ' 2J+1 %k 3L’
X(ansnxx'+FnKTnKK') ’ (18)

The multipole selection rules limiting k' are con-
tained in the factors II; y;’ and in

At =C2(jJj';30)/(2"+1) . (19)

Summing over subshells, one obtains an expres-
sion for the induced charge density of the entire
atom or ion.

pt(F)=C (27 + UMY, O(';)/'rz, (20)

with U(r)=2U ().
nK nK

The induced charge density gives rise to an in-
duced electric field with scalar potential

b0 ®=C ¥, Ot [T U6 ar

o _[;o'r, “I-1560 1], 21)

which has the angular behavior of the applied po-
tential.

As 7 -~  the second term in the bracket of Eq.
(21) vanishes; comparing the first term with the
definition of the electric susceptibility given in
Eq. (2), one finds

@, =- f0°°dw"u(r). (22)

For sufficiently small values of 7, the first
term in Eq. (21) is negligible. Comparing Eq.
(21) with Eq. (3) in the » - 0 limit, one finds the
electric shielding factor

')’J=—f0°°drr_J_1U(V). (23)

Calculations of oy and y,; are identical except
for the weight factors »J or #-J-1 occurring in
the integrals in Egs. (22) and (23).

B. Magnetic Fields

Inthe case of an applied magnetic multipolefield
of order J, the first-order energy shift is given
by

4k
1__ 2z L
Epkm = zeaJI_KmeJO[J(J+1)]1,2
x[“ar’'c F . (24)
0 nK nk

The amplitude factor ¢y occurring in Eqgs. (1) and
(24) is imaginary; the energy shift is therefore
real. For even-order magnetic multipoles, the
parity factor occurring in I_,y, g0 Causes
the energy shift to vanish.

Expanding the first-order wave function as
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one reduces the inhomogeneous equations (6) to a
set of radial equations of precisely the form given
in Eq. (16); the driving terms are now given by

=7JF - (rJ) G
n

K 5 /G,
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’VJG -(1'J) 5 ,F
nK

L nk kK’ nk’

nkk'J

where we have introduced the notation

J

@) =2 foodeJG F . (27)
nK o nK nk

One may now evaluate the induced charge and
current densities, It is easily established that
the induced charge density vanishes. The induced
current density can be obtained from Eq. (8).
Summing over closed subshells one arrives at

@ =a, 27+ VS0, @)/7, (28)

JJO

where
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The vector potential derived from the induced cur-
rent density of Eq. (28) is

- ] -
Ar=aY 50

o [P0 s Nar ), (29)

O [ sear

Comparing Eq. (29) with the definitions of mag-
netic susceptibility and shielding factor given in
Eq. (2) and Eq. (3), we see that

J o0 J
X;= 7o j; drv S(r), (30)
o0 -J-1
and 0J=-—fo arr S(r). (31)

III. NONRELATIVISTIC LIMIT

The nonrelativistic limit of the frequency depen-
dent electromagnetic susceptibilities has been
discussed previously for the dipole (J=1) case.?
It was shown that calculations of magnetic sus-
ceptibilities could be reduced to evaluation of ma-
trix elements of powers of 7; the corresponding
nonrelativistic calculation of electric susceptibil-
ities was found to be nontrivial even in the dipole
case.

It is interesting to examine the nonrelativistic
limit of static susceptibilities and shielding fac-
tors for magnetic multipoles of order J=>1. We
again find that the dipole case is essentially triv-
ial; whereas, for J>1, no simple nonrelativistic
limit occurs.

The limit is to be taken of integrals of the form

0 a
Jnmc"fo arv (GnKTnKK,+FnKSnKK,), (32)

where

a= J,
==-J-1,

for the susceptibility
for the shielding factor.

Using the Pauli approximation to Egs. (11) for
F,, and G, one easily shows

J 1 J-1
(r )nK'V%(J—ZK)('V >nK' (33)

The same approximation applied to the inhomo-
geneous equations (16) gives

1[/ad x') ]
TnKK'z-_Z%[<W+7 S it [ B9

where SnKK r satisfies

o 1 _dz_ K'(K'+1)>]
[(m_V_EnK)_Zm ar? T 2 Sn/cK'

J—K-—K'(J-l J-1 )
== \” -GKK,W >n;< GnK. (35)

Evaluation of Jy ki’ using these Pauli-approxima-

tion wave functions gives

. 1 ,a+1 a-k-k'
JnKK'N__Z% {r >nK+ 2m
Xfwdwfa_ 1G S . (36)
o nK nKk

The inhomogeneous Schridinger equation (35)
has simple solutions only in the dipole case J=1.
For a magnetic dipole the selection rules give

k'=k, —k+1, and we have two distinct cases:

(i) If k' =k or k' =— Kk +1, the driving term of
Eq. (35), vanishes, and the solution is trivial
Spkk’ =0; from Eq. (36) we, therefore, find

1 ,a+1
k! S~ g T -~

~

. (37)

(ii) When «’=—k - 1, the driving term of Eq.
(35) is simply G,,,/m. If we set E,°~E,.»°
=4yt (the fine-structure separation), then

SnKK' :Gn/c/(m An/clc') : (38)
Using this result in Eq. (36), we find
_ 1 Ta + 1> . a+1
,=——— __a+:
NKK 2m nK 2m2AnKK,
a-1
x {r >mc' (39)

The states n, k and n, — k — 1 have the same I
and are degenerate in the nonrelativistic limit.
If these subshells are both filled, the second term
of Eq. (39) gives no contribution on summing over
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k and k’, since Ak == Byt and the rest of the
summand is symmetric in k and k’. For atoms
and ions with filled nonrelativistic subshells the
contribution of the mtegral k! is - (ro+ 1) «/ 2m
for all allowed values of ’. Usmg the fact that

i Y] )2 _
225,,27" + 1)k +K”) A; =1, (40)

it is easily verified that the nonrelativistic limit
of the magnetic dipole susceptibility is given by
the Van Vleck equation’
-2 ; 2

XNR=™ T 2 2T +1XP?) (41)

nK
In a similar way, the magnetic dipole shielding
factor reduces to the formula of Lamb?

v(0)
me? ?

Y
3

O'NR (42)

where V(0)=e 23(2j +1)<r>nl<
nk

is the electron potential at the origin.

For an atom or ion, which has a filled subshell
n, k but no electrons in the subshell n, — k-1, the
second terms of Eq. (39) gives an additional con-
tribution to the susceptibility

a (27+1)(27 +3)

nk  6m 4(j +1)mAn, K, k-1

AX (43)

The shielding factor in this case is corrected by
Ae - (25 +1)(2+3) _1_>
nk 6m 4(j+1)mA 3 nk’

n, Ky -K-1

These contributions are quite large, in general,
because of the small size of the fine-structure
separation Ay x _g-1 in outer subshells.

(44)

IV. FINITE NUCLEAR SIZE

Interest in atomic shielding factors results from
their effect of reducing the apparent coupling of
of nuclear multipoles with external applied fields.
The magnetic dipole is of particular interest in
this regard since measurements of nuclear mag-
netic moments are sufficiently precise to warrant
inclusion of shielding corrections. Experiments
to measure nuclear magnetic moments involve
the interaction energy of the applied field with the
nuclear magnetic moment. For a nucleus de-
scribed by a state function ¥(fy,...,74) in 2 mag-
netic field B(r) the interaction energy is

t,)

= 3, LY T
E = p,Nfdrl d31fA‘IfT(r1,...,A

I

A
x2 g0 +g 8] -BE)UE,, ..., T,), (45)
i=1

where ppy= =eli/2Mc is the nuclear Bohr magneton.
The summation is over nucleons; gs(z) is the gyro-
magnetic ratio of nucleon 7, and gl(z) is one for
protons and zero for neutrons; 1; is the orbital
angular momentum, and S; is the spin. The inter-
action energy is considerably simplified in the
extreme single-particle model for even-odd nuclei
where the magnetic moment is due to a single
unpaired nucleon. In this approximation

E=-p [a*rpT(@)]g,T+g 8- BEWE), @6)
I N l s
where zp(r)zu(r)ﬂxm(r)/f
is the single-particle state of the unpaired nucleon.
The magnetic field is the sum of an external dipole
field B° and an induced field B!(¥) determined
from Eq. (29). One finds

Bi(f)=-al)B°-

where

aly)= f dr ¥ fO ar'v'S@»'),

3 (7
b(’r):i;f ar'r'S(r’). (48)

blr)7 BY)7, @)

Taking B° along the z axis and noting that Fel= 0,
the interaction energy becomes

Ey=- “NBO fd3rsz(F) [gllz +gssz]
X[1-a]y@)+p B [ aryT @

x§ +#P,(cos)b(r)b(r). (49)

Using the states described in Eq. (46) the first
term is easily evaluated to give

E == BBl - [Larurr)alr)], (50)
where ﬁ “Nng is the Schmidt value for the
nuclear moment, ° gy is the nuclear g factor, and
I I+8 is the nuclear spin. The second term may
be written

g

->-> S

E =;L'Bg—4l

i 1)f drw?(@)b(r). (51)

For a surface-current model which assumes
the odd nucleon at the nuclear surafce [u?(r)=6
X (¥ — R), where R is the nuclear radius] the inter-
action energy becomes

__ T .Ro
E--7-B [1 fRTgs(y)

1 % 3 1 (B
+(‘2‘ +g—f—]—m>}—e§ J;) dT’}’S(’}’)} . (52)
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It is convenient to consider the dipole shielding

factor as a sum of a major contribut_ign 4 and a

small correction 0. Writing Ey=— 1 -B°(1-0¢

- 80), one canmake the identification

o= [ 2 s, (53)

and 50~-~ —2—;? [Rarrsw).

Results of numerical calculations using these
equations for the magnetic dipole shielding factor
are given for several atoms and ions in Sec. V.
Similar equations can be developed for finite nu-
clear size corrections to higher-order shielding
factors. These corrections are small, however,
compared to other inaccuracies for higher-order
multipoles.

V. RESULTS AND CONCLUSIONS

In this section, we present numerical values of
the susceptibilities and shielding factors for a
number of closed-shell atoms and ions. Table I
gives these results for the magnetic and electric
dipole, the electric quadrupole, and the magnetic
octupole.

Values of the magnetic dipole shielding factor
computed using Eq. (53) are given in the first
column of Table I. As noted previously,® the fi-
nite nuclear size correction is negligible for light
elements. For example, the §0 contribution to
10% 0 is — 0.86X10~7 (which is negligible) for Ne,
and - 0.0039 for Hg (or about — 0.25% of the un-
corrected value).

The second column of Table I gives the nonrel-
ativistic values of the shielding factor (oyR) com-
puted with the Lamb formula Eq. (42) but using
relativistic wave functions in evaluating the ex-
pectation values. These nonrelativistic values
agree fairly well with the completely nonrelativis-
tic results of Dickinson'® for low atomic numbers
but show an increasing discrepancy with increasing
Z. The origin of this discrepancy is the relativ-
istic contraction of the inner electron orbits which
give large contributions to the shielding factor.

In addition to the “contraction” effect, there is a
“current” effect which arises from the use of the
Dirac current rather than the Schr8dinger current
as a source of the internal fields. As an example,
comparison of the results of Table I with Dickin-
son’s value for U(o=1.16 for Z =92) shows a 20%
correction due to contraction and an even larger
66% current effect. Relativistic corrections thus
increase the shielding factor of U by 100% over
the nonrelativistic value. Similarly, comparison
of the values of ¥ and ¥ [computed using the
Van Vleck formula Eq. 1\&1 )] shows that the current
effect increases with atomic number in suscepti-
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bility calculations, also.

A nonrelativistic computation of magnetic dipole
shielding factors, which takes electron-electron
correlation into account by using Hylleraas-type
wave functions in the Lamb formula, has been
given by Glick!! for heliumlike atoms and ions.
Comparison of his results for He (0=5.9935%1075)
and Lit+ (0=9.5459 X1075) with Table I shows that
relativistic corrections are of the same order of
magnitude and sign as correlation effects for these
low Z elements.

It should be mentioned that for the helium se-
quence, relativistic Hartree wave functions,
rather than RHFS, have been used, since compu-
tations with the Slater average exchange term
seriously underestimate the helium binding energy.
Even with this modification the computed binding
energy of the negative hydrogen ion of 1.258 eV
is rather poor. However, the shielding factor
does not appear to be too sensitive to this since
the value given in Table I is in fair agreement
with that of Glick, H™ (0=2.4670x107%).

The magnetic dipole shielding factors and sus-
ceptibilities, column three of Table I, for several
sequences, e.g., that beginning with un-ionized
carbon, appear to be abnormally large. These
sequences have closed relativistic subshells which
are open in the nonrelativistic limit; in carbon,
for example, the 2p,,, (k=1) state is filled, but the
2055 (k =~ 2) state is empty. The large contribution
comes from the terms given in Eqs. (43) and (44).
The accuracy of these contributions depend on
how accurately the fine-structure separation is
determined numerically. Since this separation
may not be determined accurately for the outer
atomic electrons these values may be unreliable;
they are included only as an indication of the large
contributions of such subshells.

The magnetic dipole susceptibility has been
measured for the noble gases. !> The experimental
values corresponding to the theoretical values
given in Table I are He (3.35+0.13), Ne (11.56
+£0.231), Ar (32.08 unweighted), Kr (48.15+0.66),
and Xe (75.62+1.16). The two sets agree within
experimental error except in the case of He.

The nonrelativistic values of the magnetic dipole
susceptibility xyg are computed using the Van
Vleck formula, Eq. (41), but evaluating the
matrix elements using relativistic wave functions,
The close agreement between the fully relativistic
and these nonrelativistic values indicates that the
susceptibility is due to the outer subshells which
are nonrelativistic. The individual subshell con-
tributions given in Table II confirm this conclu-
sion, since 92% of the susceptibility of Hg is due
to electrons bound by less than 10 eV.

The electric dipole shielding factor is of little
experimental interest since the nucleus has no
permanent electric dipole moment. However, on
general theoretical grounds, '* one has
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TABLE 1.

Magnetic octupole

102 o3

Electric quadrupole

Electric dipole

B

Magnetic dipole

108y

Y ¢3]

o

6
10 XNR

108y

2

10 NR

10% o

-252.1

11099

-65.58 4.487

2.792
1.615

2.469
2.378
2.304
2.240
2.182
5.364
4.879
4.539

59.11

59.02
51.86

46.60

1.083
1.105
1.127
1.149
1.172
1.106
1.129
1.151
1.174

1.542
1.585
1.634
1.684
1.737
1.587
1.636

1
2
3
4
5

79 21

Au

—74.67
-32.35
-16.91

6140
4511

1.546
0.7423
0.4206
0.2636
10.06

-60.20
-55.17
-50.88
—-47.24

51.93
46.67

80 21

81

Hg

1.074
0.7750
0.5898
9.129
5.187
3.439

21

Tl

ATOMIC

3706
3222

42.52

42.46
39.05

82 21

83

Pb

-9.911

-184.7

39.12

21

Bi

-708.4
-193.3

—~88.73
-75.21

75.46
64.55

75.37

0
1

22

80
81
82
83

Hg

—-61.68

3.528
1.739
1.006

54.72
14.72

64.48
57.07

22

Tl

-29.34
-16.57

12.55
113.9
-140.0

-~66.82
-60.78
1367

57.15

1.686
1.739
2.055
2.103
2.153
2.205
1.914
2.038
2.173

2
3

22
22
23

Pb
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2.470
10.10

4.274
4.507

51.54

51.47
58.06

Bi

178.3

0
1
2
3
0

82

Pb

14.93

14.16
103.1

926.6

4.616

4.222

54.06

23
23

83

Bi

—2.362
-5.079

—285.0

6.525

720.0
591.4
—-438.8

2.898
2.043

7.906

3.986
3.785

50.29
46.88

84
85
86

Po

155.3

3.532

12.25 =802

23
24

At

4.546
4.101

94.05

93.71

1.248
1.297

—-65.66
-36.31
-32.21

7429
5341
4374

2.840
1.303
0.8569

—242.4
-177.5
-143.9

3.095
1.750
1.141

3.786
3.534

59.64
51.00

72.14

71.96
59.50
50.89

1.347
1.399

2.319

2
4
6

24
24
24

88
90
92

g€ b

B=y,=(Z-1)/z, (54)

where I is the degree of ionization, and Z is the
nuclear charge. The computed values given in
Table I are not generally in agreement with the
theoretical values. This is an unfortunate con-
sequence of the use of the uncoupled equations,
which the present relativistic calculation shares
with previous uncoupled nonrelativistic calculations.

The He-sequence results presented here for the
electric dipole and electric quadrupole shielding
factors and susceptibilities are in good agreement
with the previous uncoupled nonrelativistic calcu-
lations summarized by Dalgarno. ¥ Furthermore,
the values given in Table I are in fair agreement
with the results of previous authors for the electric
dipole and quadrupole susceptibilities, and the
electric quadrupole shielding factors of many
heavier atoms and ions. Previous calculations
which used Hartree orbitals gave similar values
for shielding factors but the susceptibilities tended
to be considerably higher than the values reported
here. For negative ions, however, the values
quoted in Table I dre considerably larger than the
corresponding nonrelativistic values given by
Sternheimer!5; F~ (- 22.53), C1~ (- 56.6), Br~
(-123.0), and I~ (- 138.4). Examination of Table
II shows that over 97% of the electric dipole sus-
ceptibility, and 99% of the quadrupole susceptibility
is due to the last three subshells which are bound
by less than 1.25 Ry. It is also these subshells
which are computed least accurately. The electric
dipole susceptibilities of the noble gases have been
measured by Cuthbertson and Cuthbertson'®; He
(0.6055), Ne (0.3963), Ar (1.646), Kr (2.486), and
Xe (4.049) in the units of Table L

The magnetic octupole shielding factors and sus-
ceptibilities are given in the last two columns of
Tables I and II. Negative shielding factors in-
dicate antishielding or an increase of the field at
the nucleus due to the electron cloud. The octu-
pole shielding factor tends to increase with atomic
number. The Hg sequence shows a change of
sign between Tl and Pb. This is because the con-
tributions of the inner orbits remainapproximately
constant while the two outer orbits give contrib-
utions of opposite sign which shift in magnitude.
Examination of Table II shows that the contrib-
utions of the inner orbits to the octupole shielding
factor of Hg are important whereas only the last
three orbitals contribute appreciably to the octu-
pole susceptibility.

We summarize with the following comments: (i)
RFHS wave functions give magnetic dipole suscep-
tibilities for the noble gases above He which agree
with experiment. Relativistic corrections are
small and evenfor the heavier elements it suffices
to use relativistic wave functions in the Van Vleck
formula. (ii) In the evaluation of magnetic dipole
shielding factors, current corrections are more
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important than the relativistic contraction of the or-

bits. Total corrections are as much as 100% for
uranium and are as important as correlation ef-
fects for helium. (iii) The uncoupled theory used
here is too simple to give good values of the elec-
tric dipole shielding factors and susceptibilities.
A similar statement probably holds for the electric
quadrupole results also. The results presented
are generally in good agreement with previous un-
coupled calculations and have the virtue that all
values were computed in the same manner using
RHFS wave functions. (iv) No comparison of the
magnetic octupole results is made, either with
experiment or with previous calculations since no
measurements of the shielding factors or suscep-
tibilities or previous calculations of these quan-
tities are known to the authors.

VI. NUMERICAL PROCEDURE

In presenting results such as those given in
Sec. V, it is perhaps appropriate to comment on
the numerical techniques!” used and on the ac-
curacy of these techniques.

In outline, the numerical procedure involved
the following steps: (i) Solve the unperturbed
Hartree-Fock problem using numerical methods
analogous to those described in Ref, 7. The solu-
tion consists of aset of unperturbed wave functions
Fy, and Gy and a binding energy Ey,° for each
electron together with a RHFS potential V(r). (ii)
Generate the driving terms K.y and L, .y for
the inhomogeneous first-order equation (16) using
the results of (i) in Egs. (17) or (26). (iii) De-
termine the first-order wave functions S, » and
T, kit Py solving the inhomogeneous differential

n
equations (16). (iv) Evaluate the integrals
,+F T ar,

a
[ @G s
NK NKK NnK MKK

in the electric case or

;ora(G T

/+F S )d?’,
NK MNKK nK

nkk'

in the magnetic case, where a=J or —=J -1, From
these integrals the subshell contributions to the
susceptibilities and shielding factors can be eval-
uated as detailed in Sec. II. (v) Accumulate the
partial contribution for each subshell to give the
susceptibility or screening factor for an entire
atom. (vi) Repeat steps (ii)-(v) for each separate
multipole J, electric or magnetic.

The equations of Sec. II are modified slightly
in the magnetic dipole case because of the fol-
lowing numerical problem. Large contributions
to the shielding factors and susceptibilities for
the filled subshell (z, k) are almost entirely can-
celed by contributions from the closed subshell
with the same 7, (i, - k— 1). These cancellations,
of course, cause a loss of numerical accuracy.

These large terms were already apparent in the

nonrelativistic calculations of Sec. IIl. Examin-
ing the nonrelativistic limit calculations, we are
led to write

(55)
T =T '+FnK'/AnKK"
whenever «’=-k—1; Ay, being the fine-structure
separation. The functions S, ,» and Ty satisfy
Eqs. (16) with the driving terms replaced by

anuc’l :Knmc’l * GnK'/m’

(56)

LnKx’l = LnKK’l * FnK’

/m.

The contributions from Gt/ Akt and Fypt/Dyxy?
give the large contributions to the susceptibilities
mentioned above. The contributions from these
terms cancel on summing over « and —k — 1. That
we are left with small residual values from §nm<'
and Ty’ which do not cancel significantly can be
seen by inspecting the magnetic dipole columns of
Table II. A similar modification is made in the
electric quadrupole and magnetic octupole cases.

As a practical measure of the numerical accuracy
of techniques used we solve a special case ana-
lytically and compare the results with the corre-
sponding numerical computations. The particular
case considered is the magnetic dipole withn=1,
k=k'=-1 for a Coulomb potential V(r)=-aZ/7.
Analytically, one has the following partial con-
tributions to ¢ and x:

0=202Z(4 -y - 2¢2)/% 2y - 1),
(57)

x=(4y* =1)(1+y)/18aZ?m3,

where v =[1~ (@Z)?]¥2. The results of this calcu-
lation are presented as the exact values given in
Table ITI. The corresponding results generated
following steps (i)-(iv) above for Z=1, 10, 54,
and 80 are presented in the numerical columns of
Table III.

On comparing the numerical and exact values,
it should be noted that integrand of the integral
for the shielding factor has an algebraic singularity
at the origin, behaving as r2y -2, The singularity
is integrable for physical values of Z but becomes
more severe as Z increases. For y<3 (Z> 118.68),
the integral does not exist. The singularity ac-
counts for the declining accuracy of the numerical
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TABLE III. Comparisons of exact and numerical results for the k=«’=—=1 contribution to the magnetic dipole
shielding factors and susceptibilities for some H-like ions.
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2 2 6 6
10° o 10 NR 10° y 10 XNR
H Exact 0.0011836172 0.0011833966 2.6374821 2.6376226
numerical 0.0011836155 0.0011833965 2.6374820 2.6376226
Ne Exact 0.012087744 0.011865285 0.026154850 0.026295062
numerical 0.012087731 0.011865284 0.026154850 0.026295061
Xe Exact 0.11542485 0.069527470 0.00068826146 0.00082114612
numerical 0.11542391 0.069527462 0.00068826152 0.00082114610
Hg Exact 0.34948198 0.11660124 0.00020371189 0.00032656009
numerical 0.34940287 0.11660124 0.00020371187 0.00032656003

values of the integration as Z increases. The

singularity is not present for a finite nucleus since

the exponent 2y — 2 is replaced by 21«1 -2=0 for
all «.
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