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We have formulated the statistical mechanics in terms of the S matrix, which describes the

scattering processes taking place in the thermodynamical system of interest. Such a for-

mulation is necessary for studying the systems whose microscopic constituents behave ac-

cording to the laws of relativistic quantum mechanics. Our result is a simple prescription

for calculating the grand canonical potential of any gaseous system given the free-particle

energies and S-matrix elements. When applied to a nonrelativistic gas, it gives a simple

prescription for calculating all virial coefficients. Simplified relativistic gas models are

considered as examples of application. A general form of the Levinson's Theorem for any

number of particles follows immediately from our formalism. Its applications in statistical

mechanics are briefly discussed.

I. INTRODUCTION

In this paper we present a formulation of sta-
tistical mechanics in terms of the S-matrix ele-
ments, which describes the scattering processes
taking place in the thermodynamical system under
consideration. The purpose of such a formulation
is to be able to calculate, at least in principle,
the equation of state of a relativistic system. By
a relativistic system we mean a thermodynamical
system whose microscopic constituents behave ac-
cording to the principles of relativistic quantum

mechanics. At present, the S matrix is the only

quantity that can be obtained from the relativistic
quantum mechanics. Therefore, to study the
thermodynamical properties of relativistic sys-
tems, an S-matrix formulation of statistical me-
chanics is indispensable.

To our knowledge, there has been no general
statistical mechanics formulated for interacting
relativistic systems. Noninteracting systems,
i.e. , ideal gases, are in principle trivial to an-

alyze. On the other hand, the statistical mechan-
ics of interacting nonrelativistic systems has a
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long history of development. Among the many for-
malisms and methods developed are two which
have been widely applied to practical problems,
and will play an important role in our subsequent
analyses. The first is the method of virial expan-
sion. ' It was developed long ago and was found
useful by chemists in calculating the equation of
states of dilute gases. The second is the more re-
cently developed method based on the field-theory
formalism, sometimes referred to as the "tem-
perature-Green's-function method. "' With the dia, —

grammatic technique of field theory incorporated,
it is widely used in solid-state and low-tempera-
ture physics.

There is an interesting and well-known result
in the virial expansion theory. That is, the second
virial coefficient may be expressed in terms of
two-body scattering phase shift. ' This result is
also derived by Goldberger using the more modern
method of scattering theory. ' It suggests that an
S-matrix formulation via the virial expansion
should be possible.

However, the (quantum-mechanical) viriai ex-
pansion theory virtually ends at the second virial
coefficient. As is illustrated in Ref. 1, the usual
formulation in terms of W and U functions are so
involved that it is not convenient even for formal
discussion of virial coefficients higher than the
second. There exist lengthy analyses of the third
virial coefficient. 4 They are indeed elegant and
elaborate pieces of work for the special problems
involved but, due to the complexity of the tradi-
tional method, they can hardly be used for general
discussions. Only recently have there been some
attempts in developing a general theory of the vi-
rial expansion, but more modern methods in sta-
tistical physics do not seem to have been ex-
ploited. ' As we shall show, by using the language
of diagrammatics, the general discussion on vi-
rial coefficients becomes very concise.

An, important feature of the nonrelativistic sta-
tistical mechanics is that the interaction Hamil-
tonian plays an essential role. The method of the
temperature Green's function would be readily
applicable to relativistic systems were it not for
the absence of a meaningful interaction Hamil-
tonian in relativistic quantum mechanics. In
quantum electrodynamics, the interaction Hamil-
tonian is but an intermediate formal device to cal-
culate the S matrix. In fact, all the parameters
in the theory become meaningful only after the S
matrix has been put in the renormalized final
form. In weak interaction, the interaction Hamil-
tonian is purely phenomenological, and, for strong
interaction, there is no known interaction Hamil-
tonian.

Worse than having no interaction Hamiltonian,
we have not established relativistic quantum me-
chanics as such. It is, thus, very difficult to de-
velop a statistical mechanics based on relativis-

tic-quantum-mechanical first principles, which
do not exist at present. It is clear then, in order
to establish mathematically a relativistic statis-
tical mechanics, one has to make a judicious ex-
trapolation from the nonrelativistic formalism.

What we shall do is to use the diagram technique
of the temperature-Green's-function method as far
as we can, assuming the existence of an interac-
tion Hamiltonian. After getting the counting and
statistics straight, we eliminate the interaction
Hamiltonian by using the identities in the formal
scattering theory. In the final formulas, only the
S-matrix elements appear. Since the S matrix is
always defined, our results can be carried over
to relativistic systems upon minor modifications.
Such a procedure seems to be entirely justified.
The only concept in diagrammatics needed is the
connectedness and disconnectedness. The inter-
action Hamiltonian in the intermediate stages may
be viewed as a formal device to guarantee the
unitarity and symmetry properties of the S matrix.

The outline of the paper is the following: In
Sec. II, me discuss general aspects of the grand canon-
ical ensemble and other qualitative features of the
problem. Sections III and IV are devoted to the de-
tailed derivation of the S-matrix expansion for
mula for the grand canonical potential. The re-
sults are applied to the nonrelativistic virial ex-
pansion in Sec. V. The application to relativistic
systems is discussed in Sec. VI. Simple exam-
ples of explicit calculations and further details
are included in Sec. VII. In Sec. VIII, we derive
a general form of Levinson's Theorem for an ar-
bitrary number of particles. Its application is
discussed. In Sec. IX, we summarize and give
some concluding remarks.

This paper is self-contained. To understand
this paper, no knowledge of relativistic quantum
mechanics or that of temperature Green's func-
tion is required. A modest understanding of the
most basic features of Feynman diagrams will be
helpful. Some of the material in Secs. II and III
is well known but is included for completeness.
References to the original papers on this material
can be found in Refs. 1 and 2.

II. GENERAL FEATURES

The basic principles of nonrelativistic statis-
tical mechanics are mell known. In this section,
we show hom they can be generalized to study rel-
ativistic systems.

It is the relativistic quantum mechanics, mhich
governs the motion of the microscopic constituents
of the relativistic system, that makes the relativ-
istic statistical mechanics qualitatively different
from the nonrelativistic one. The principles of sta-
tistics, the idea of the entropy, and the laws of
thermodynamics are in general independent of
this microscopic detail. In nonrelativistic quan-
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turn mechanics, one speaks of the two-body poten-
tial which changes the motion of particles. In rel-
ativistic quantum mechanics, there is a much
greater variety of phenomena such as the creation
and the annihilation of particles. One must ex-
plicitly take into account the general features of
the electromagnetic, the weak and the .strong in-
teractions. The gravitational interaction is purely
macroscopic and will not be discussed here.

We shall first discuss the role of the conserva-
tion laws in constructing the grand canonical po-
tential A. It will be followed by a discussion of
how dynamical information is put in and of the no-
tion of the virial expansion.

A. Conservation Laws and the Grand Potential

We recall from nonrelativistic statistical me-
chanics that the grand potential 0 is given by

0=-P 'ln Tr exp[-P(H- pN)]. (2. 1)

The equation of state is obtained upon eliminating
p, from

Q=-PV, (2. 2)

0= —P 'ln Tr exp[-P(H- p, ,N, p, ,N, )]. (2—.3)

Now, if the reactions

(2.4)

Recalling the derivation of the grand canonical en-
semble, we notice that P and p play the role of the
Lagrange multipliers in maximizing the entropy
keeping the total energy and the total number of
particles fixed. P is then interpreted as the tem-
perature and p. , the chemical potential. Note that
the total energy and the total number of particles
are conserved quantities. We also recall that, if
there are two species of particles 1 and 2, the
grand potential has the form

p, , but not p, , and p,, because E, and N, are not
separately conserved due to the reaction (2. 4).
In general, given the set of conserved quantities
Ã„N„... , we assign a set of multipliers p,„
p» ... . The grand potential then can be con-
structed as

0 = —P 'ln Tr exp[-P (H- Z. p .N. )] .
g

(2. 7)

The equation of state is then obtained from

N. = —80/sp. .Z' (2. 3)

These results depend only on conservation laws
and are otherwise completely general.

When the energy of the particles in the system
becomes relativistic, the particle numbers are no
longer conserved. One, in general, has a mixture
of many kinds of particles. There are conserva-
tion laws observed in decay and scattering experi-
ments such as the conservation of the baryon num-
ber, the lepton number, and the electric charge.
They can be safely assumed to hold in any thermo-
dynamic system. When one assigns a multiplier
to each of the relevant conservation laws and sub-
stitutes them in (2. 7), one has the appropriate
grand potential. For example, in a model where
all but the strong interaction is turned off, the
grand potential is given by

0=-P 'ln Tr exp[-P(H- p, & —p S-p I)]8 S
(2. 9)

where P, $, and& are, respectively, the baryon
number, the strangeness, and the third component
of the isotopic spin. There could be situations in
cosmological problems where the thermal equili-
brium is reached locaQy in less than nanoseconds
so that one may use (2. 9) to start with and treat
the electromagnetic and weak interactions as per-
turbations.

are allowed to take place, we know, from the con-
dition for chemical equi. librium, that

(2. 5)

Thus,

0=-P 'ln Tr exp[-P[H-p, (N, +N2)]]. (2. 6)

The important feature illustrated above is that,
for every conserved (extensive) quantity, there is
an independent Lagrange multiplier. The total en-
ergy iS always conserved and there is always the
multiplier P. In (2. 2), N is conserved, and we
have p, . In(2. 6), N, +N, is conserved, and we have

B. Dynamical Information

The main task of statistical mechanics is to cal-
culate the grand potential given the dynamical in-
formation concerning the microscopic interactions.
For nonrelativistic systems, this information is
in principle fully contained in the two-body poten-
tial, which is treated in various forms of pertur-
bation theory. As was mentioned in the Introduc-
tion the most useful and now fashionable form
seems to be the temperature-Green's-function
method. ' This method employs the perturbation
expansion of field theory with the time variable
taken as imaginary running between 0 and —iP
[so that exp(- itH) becomes exp(- PH)]. The
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C. Virial Expansion

To obtain the nonrelativistic virial expansion,
one begins by writing the sum over the spectrum
of N in the trace explicitly, i.e. ,

0= —P 'ln Tr exp[- P(H —pN)]

ll-ll
( g PPNY tlH)-

N=O
(2.10)

where TrN is taken over states of N particles.
When one expands the logarithm in powers of e~&,
one obtains the virial expansion

n=-p ' Z ~„e"N.
N=1

(2.11)

When the system is dilute, i. e. , when the occupa-
tion number per state is small,

(2. 12)

the expansion is expected to converge rapidly.
The quantity e is the single-particle energy (in
the absence of interaction) of the state k. Even
when (2. 12) is not true, (2. 11) ca,n always be taken
as a formal power series in eI ~ =z:

(2. ia)

This power series in z defines a function in the
z plane that is analytic around the origin. By an-
alytic continuation, it is possible to obtain 0 in
the region where the power series does not con-
verge. For example, for the free Fermi gas, we
have the well-known result

n= —P 'Q In(1+exp[- P(e —p)] j,
which is the analytic continuation of

(2. 14)

Feynman-Dyson expansion can be made for
exp(- PH), and a diagrammatic formulation can
be set up. As was mentioned previously, the lack
of an interaction Hamiltonian makes it difficult to
apply this method to relativistic systems directly.

Dynamical information of relativistic interaction
is presently obtainable only through the S-matrix
elements, which describe, the scattering of phys-
ical particles. Therefore, it is necessary, in
order to calculate the equation of states, to write
the grand potential in terms of the S matrix.

The possibility of writing 0 in terms of S-matrix
elements is suggested by the fact that the second
virial coefficient is expressible in terms of the
two-body phase shifts. ' We shall briefly review
some of the basic features of the virial expansion
for completeness. For a more detailed discussion,
Ref. 1 is highly recommended.

( )N+1 -5/2 N
7

N=1
(2. 15)

D. S-Matrix Expansion

The physical basis for an S-matrix formulation
can be seen clearly from the theory of the second
virial coefficient. ' Let us mention some of its
relevant features briefly. Go back to (2. 10) and
consider terms up to N= 2. Expanding the logar-

with z = e . As a power series, (2. 15) diverges
for t z ) o 1, but (2. 14) is always valid.

In general, the analytic continuation of (2. 13)
may not give the correct thermodynamics for all
z. From the work of Lee and Yang, ' one knows
that 0 becomes singular on the real axis at z=z„
where z, is the position of the first phase transi-
tion. Whether or not one can (in physically inter-
esting situations) go into the complex plane and
continue around zo is simply unknown. It appears
that in the lattice-gas model, where 0 develops a
continuous distribution of poles on the unit circle,
the analytic continuation of 0 has only a limited
region of validity. '

As will be seen later our work in this paper will
be based on the expansion of Q in powers of one or
more z. Thus, our results are, in principle, ap-
plicable for any state of the system which can be
reached by analytic continuation from the region
around z = 0, but do not apply to other states which
may well exist in interesting cases. In practice,
of course, our formulas will be useful only when
the expansion in powers of z converges rapidly or
when one can at least partially sum terms to all
orders in z.

The quantum- mechanical calculation of the coef-
ficients AN is still in a primitive stage. The co-
efficient A, can easily be shown to be the ideal-
gas term. A, may be written in terms of the two-
body scattering phase shifts. The general fea-
tures of higher coefficients have not been investi-
gated. The main reasons seem to be the follow-
ing: First, in the traditional theory of the virial
expansion, there is no effective way of expanding
the logarithm in (2. 10). The method of U and W
functions is so complicated that a general discus-
sion becomes very difficult. Such difficulty never
arises in the temperature-Green's-function method,
which, of course, became available long after the
development of the virial expansion. The second
reason is that the derivation of A, in terms of the
phase shift is very difficult to generalize when
more than two particles are involved. This diffi-
culty, as will become clear in Sec. III, is
overcome when the method of formal scattering
theory and diagrammatic techniques are properly
generalized and utilized. General prescriptions
for calculating AN will be given.
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ithm, we have (ignoring bound states)

—p(n- n, )=A, e
-2Pp

PH -PHO-
A., = Tr, (e —e ')

= fdE e [dn/dE —(dn/dE)0], (2. 16)

where 0, is the grand potential for the ideal gas,
dn/dE and (dn/dE)0 are, respectively, the density
of two-particle eigenstates of H and that of Hp.
In other words, A., depends on the change of the
density of two-particle states due to the interac-
tion. Now, we notice that we are considering two
particles in an infinite volume. As long as the
interaction is of a finite range, the density of
states can only depend on the asymptotic part of
the two-particle wave functions. The details of
the wave functions in the scattering region contri-
bute only an infinitesimal part in the infinite vol-
ume limit. More precisely, the density of states
is determined by the boundary condition for the
wave functions at the walls of the box in which the
system is quantized. When the size of the box be-
comes infinite, it is sufficient to consider the
asymptotic form of the wave function when apply-
ing the boundary condition.

The asymptotic wave functions are completely
specified by the two-body scattering phase shifts,
(which may be obtained from the derivatives of the
S-matrix elements with respect to the energy).
Thus, we conclude that A., can be expressed in
terms of the S-matrix elements describing two-
body scattering. For further detail, see Ref. 1.

It seems clear that the above arguments apply
to AN for N& 2 as well. AN will depend only on
the asymptotic N-body wave functions, which are
completely specified by the S-matrix elements
describing the scatttering of N particles, as long
as N stays finite while the volume is let go to in-
finity.

It seems clear also that, for a liquid or a solid,
where an asymptotic wave function can hardly have
a precise meaning in general, it would be very
difficult to have a meaningful expression of 0 in
terms of S-matrix elements.

The above qualitative conclusions hold for rel-
ativistic systems as well. It remains to construct
a quantitative mathematical scheme that applies
to both relativistic and nonrelativistic systems.

Without any assumption, it follows from the ex-
pression (2. I) for the grand potential for a system,
in general, that

III. S-MATRIX EXPANSION

Guided by the general discussion in Sec. II, we
proceed to the mathematical details. For the sim-
plicity of discussion, we assume that there is one
species of particles interacting via a two-body po-
tential. The grand potential is given by

0= —P 'ln Tr exp[- P(H —p,N)]

= —p In+ e TrNe
-1 Pp N -PH

(3. 1)

It is often convenient but not essential for the dis-
cussion to consider terms with a definite N in the
trace.

There are two problems. First, in the argu-
ment of the logarithm in (3. 1), TrN e PH is of-
O(VN), where V is the volume ot the system.
There are delicate cancellations after one expands
the logarithm so that the terms remaining finally
are proportional to V. One must rewrite (3.1)
so that these cancellations are already taken into
account and only terms proportional to V appear.
This is a counting problem. The second problem
is to eliminate the two-body potentials so that only
the S matrix appears in the final expression. Let
us consider the counting problem first.

A. Counting Problem

viewed as a direct generalization of the virial se-
ries (2. 11). In view of what we just discussed
about the validity of virial expansion, we expect
that (2. 17) can describe relativistic gases only.
The problem of phase transition in a relativistic
system is, thus, out of the reach of our formalism,
which will be largely based on (2. 1&).

What we shall do is to establish a prescription
to calculate AN N ... in terms of the S-matrix el-

1 2
ements between states specified by the set of quan-
tum numbers (N„N„...). Such a prescription
cannot be derived froni first principles because,
as was mentioned in Sec. I, there are no estab-
lished first principles in relativistic quantum me-
chanics besides symmetry principles. We shall
proceed with the diagrammatics familiar in the
temperature-Green's-function method assuming
the existence of an interaction Hamiltonian. The
prescription in terms of S-matrix elements results
after eliminating the interaction Hamiltonian by
using identities in formal scattering theory.

Q= —P ' Q A e x(pPP. g.N. ). (2. 11)
2 i i

The sum is taken over all possible values of the
quantum numbers (N„N». ..). This may be

Our'approach here will be similar but not iden-
tical to that used in the temperature-Green's-
function method. To simplify the notation, let us
measure the .single-particle energy from the chem-
ical potential so that
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H H —pN,

H=H +V, V=ZV
i&j ij'

Tr e, (3. 2)

(3.3)

A diagram in general consists of mutually dis-
connected parts and the corresponding amplitude
is of the form

[c,(K )C (K ) ~ ~ ][C,(~,)c,(~,' "~ ] ".
m, factors m,

where V~j is the interaction between the particles
i and j. To evaluate the trace, one needs a corn-
plete set of states. We shall use the eigenstates
of H, . Let us label a single-particle state by the
label k. Then the eigenstates of H, are labeled by
the ordered set (z )= (kl, k2, ..., JpN), N = 1, 2, 3, . .. .

A diagonal element ( K!e PH! -K) may be inter-
preted as the amplitude of finding the state !z) at
the imaginary time ip given -the state !v) at
time zero. To obtain the trace, one sums all
these amplitudes. To eliminate spurious powers
of volume in 0, a diagrammatic representation
of these amplitudes is most useful. Let us write
exp(- PH) as a Feynman-Dyson expansion

00 P
( )"J d~ d, ' d7. .

0 $ 2 s
n=o

X
—( p -Tl )H0 —(rl —~2)HpVe 'Vo ~ eVg 8- rgH0

]

(3.4)

&& [C (x )C (x' ~ ~ ]n v n n
n

where the connected diagram C~ occurs m; times.
When we sum over the ~'s, we get

(3. 5)

(m, !~,! ~ ~ ~ m !)' '(TrC, ) '(TrC, )+ ~ ~

= exp Tr (C, + C, + C, + ~ ~ ). (3. 3)

x (Trc ) (3. 7)

The division by (ml! m2! ~ nz„!) is to avoid count-
ing the same amplitude more than once. Note that
we are regarding(x! e &!v) and (a'! e PH! g-')

as the same amplitude if I!," and z' differ only by a

permutation of labels. This is in accord with the
basic rule of statistical mechanics that each dis-
tinct configuration must be counted only once.

Summing over m„m„. .. , m in (3. 7), and then
n

summing over n we find

-10=-P lnTre (3. 5)

where p& ~l & ~2» r~& 0. The grand potential
is then expanded in powers of V~& when (3.4) is
substituted in the expression

Using (3. 5), we have

0 = —P Tr(C, +C,+ ' ')

= —P '[Trexp(—PH)] +0 . (3.9)

Every term in (3.4) has a diagrammatic represent-
ation. A diagonal element is then the sum of dia-
grams in which each particle returns to its initial
state after a time —iP. Figure 1 shows a typical
term. At this point, we must notice that we have
ignored the exchange effect due to the identity of
particles. In other words, terms like

&a,u„.. ., u ie imp„. .. , u )

are, by definition, not diagonal elements and
therefore, not counted in the trace. To avoid un-
necessary complications, we shall proceed without
these terms. Later, when the procedures of
counting and transforming to the S-matrix form be-
come familiar, these terms will be put in.

The subscript c denotes that only connected dia-
grams with the interaction acting at least once are
kept. 0 is the ideal-gas part of Q, i.e. , the sum

0
of one-particle diagrams

P'Tr e-
o 1 O.

In other words, 0 is the sum of all connected dia-
grams. Each connected diagram is proportional
to the volume. Thus, the elimination of spurious
higher powers of volume is completed.

It is straightforward to construct rules to calcu-
late these connected diagrams. However, we are
not interested in using these diagrams directly for
calculation. We proceed to the next problem,
i. e. , how to express [Tr exp(- PH)] in terms of
the S matrix.

B. Transforming to S-Matrix Elements

FlG. l. A typical term in the expansion of Q. The
imaginary time runs upward. The dashed lines repre-
sent two-particle potentials. The solid line denotes
free particles.

The diagrams in imaginary time which we just
discussed contain the statistical and dynamical
information in a mixed form. In other words, the
statistical averaging and the description of parti-
cle motions are not separated. Since the S matrix
contains only dynamical information and no statis-
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tical information, we must first disentangle
[Tr exp(- PH)] so that the statistical and dynami-
cal information appear separately. It turns out to
be very difficult to do this separation for each in-
dividual imaginary time diagram. However, for
the sum of diagrams, it is straightforward.

By inspecting the diagrams, one can write down

the sum of connected diagrams involving a given
number of particles in terms of the form
Tr(e P —e PHo) (apart from the trivial free-
particle term). H' is the Hamiltonian with some
interaction terms switched off. For example,

for N=2, (Tre P ) = Tr(e —e 0), (3. 10)

for N=3, (Tre ) = Tr[e —e

Q (e- p(Ho+ Vf& e p O) ]. (3. 11)

Figure 2 shows these examples in terms of dia-
grams. The rule is simple. One just subtracts
out the disconnected parts from the total. We no-
tice that only the form Tr(e pH- e p o) appears
with various kinds H' . For example, H'=H and
H =Hp+ Vij, respectively, in the first and third
terms in (3.11).

To isolate the parameter P, we define the resol-
vent operator G(E) of Has a function of the complex
variable E, and similarly Go(E), by

G(E)=(E-H)-", G,(E)=(E H, ) ', -(3. 12)

Thus, Tre -PH
27ri

(3. 13)

wher'e the counterclockwise contour encloses the
spectrum of H. Equation (3. 13) can also be writ-
ten as an integral along the real axis

G'(E) = (E —H')-', (3. iS)

for any Hamiltonian H'. Of course, (3. 14) holds

(b)

FIG. 2. The connected diagrams expressed as dif-
ferences of the sum of all diagrams (square boxes) and

disconnected diagrams.

Tre = fe-Im TrG(E). (3. 14)

The argument of G(E) is understood to have an im-
aginary part iq. The quantity q is let to approach
0+ after the volume is let go to infinity. The range
of the E integral extends over the spectrum of H.

Similarly, we define G' as

when H is replaced by any H'and G by the corres-
ponding G' .

It is well known that the series expansion for
G, i.e. ,

G= Q G,(VG, ) (3. IS)
n=o

'
can be represented by diagrams. Equation (3. 16)
is simply the Born series in the usual perturba-
tion theory. The diagrams are geometrically
identical to the imaginary time diagrams. The
sum of connected G diagrams can be written
as combinations of terms of the form (G'- G, )
similar to the form (e P -e P o) encountered
previously. Corresponding to (3. 10) and (3. 11),
for example, we have, for N = 2

(3. i7)

and for N=3,

(TrG) = Tr[G —G0 —Q (G.. —G )],
i&j

(3. iS)

(3. 17) and (3.1S) are also depicted by Fig. 2.
Gf& is, of course, (E —Ho —Vjj ), It is clear
then that

) = f' -. I (»G(E)) . (3 i9)

T(E) = V+ VG(E)V, Q(E) = G(E)G, '(E),

S(E) =Q (E*)Q(E), where V=H H, . (3.20)-
Note that we are using the symbol 0 here for

GG0 ' to conform to the notation for the wave
matrix in scattering theory. We are using the
same symbol to denote the grand potential since
it is standard in statistical mechanics. The
proper meaning of 0 should be clear from the
context involved. We list some identities which
can be derived easily from the definitions in
(3. 20).

In other words, the sum of connected imaginary
time diagrams is simply an integral transform
of the connected diagrams for G. This is obvious
in view of the fact that the integral transform is
linear and the two kinds of diagrams have iden-
tical geometric structures. G(E) now contains
no statistical information.

It remains to express (TrG)e in terms of the S
matrix. Since (Tr G)e is a linear combination of
terms of the form Tr(G'- Go) with various G"s,
we shall start by analyzing Tr(G —Gg.

In the following, we apply techniques familiar
in the formal theory of scattering to rewrite
Tr(G —Go) in terms of the S matrix generated by
the interaction Hamiltonian V =H- Ho.

We define the operators T, 0, and S, which
are functions of the complex variable E, by
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G =QG =G +G TG,0 0 0 0

T = VQ = V+ VG T = V+ TG V,0 0

Q=i+GV=1+G T,0

Q =1 —GV,

(s. 21)

(3.22)

(3. 23)

(3. 24)

of S. Substituting S = Q Q [see (3. 20)] in
(3. 31), we have

TrS —S =TrQ 0 —0 08E

(s. 32)

G =G

Q$=Q

G =G, T=T
0 0

g -=G G.
0

(s. 25)

Using (3.24), (3. 23), and (3. 22), one has

o 8E 8E o8E

The star means to take the complex conjugate of
the variable E, i. e. , EM, The dagger denotes
the Hermitian conjugation. Using (3. 24) and

(3.22), we find that

GT —G T= —2GT8 8

8E 0 08E (3.33)

Substituting (3.33) in (3. 32) and utilizing the fact
that G —G =G TG, one has0 0 0

S=Q Q=1+(G —G )T,o 0

S =Q Q =1 —(G —G )T.
0 0

A less trivial identity is

(s. 26)

(3. 27)
TrS S = —4iIm Tr(G —G ),0 (3. 34)

which is exactly (3. 31). Using (3.34) and (3.14)
we have

T T=T (G--G )T
0 0

Tr(e —e ) = JdEe (4wi) TrS

(s. 36)
= T(G —G )T = V(G —G )V, (3. aa)

w hich may be regarded as the unitarity condition
or the optical theorem in operator form. When E
approaches the real ax s fr ab e Go Go
approaches a 5 function:

G —G = —2ri6(E —H ).
o 0 0 (3. 29)

We shall, in the following discussion, take (3. 29)
as the definition of 6(E —Ho). The variable E on
the left-hand side of (3. 29) is allowed to approach
the real axis only after the infinite volume limit
is taken. Thus, in a more appealing form, we
have

S=1 —2wi6(E —H )T,

S '=I+2mi6(E —H )T .
0

(s. so)

Note that S is not the same operator as S . One-1

has (vfSj)a ) =(vfS ' Ja ) only when both (e) and
(v ) are eigenstates of H0 with the same energy.

Armed with the above identities, we now pro-
ceed to establish the important identity, i. e. ,

—4ilm Tr[G(E) —G (E)]0

=Tr S — S —= TrS S. 3.318E 8E
We shall verify (3.31) directly via the definition

This equation and (3.34) play an essential role
in all subsequent discussions.

So far, S is an operator function of E formally
given by (3, 30). How is S related to the S
matrix describing the actual scattering process-
es? From scattering theory, ' we know that the
S-matrix element SKK & describing the scattering
from the state (

v') to the state I e) is given by

.=( ~S(E, )r '). (3.37)

Those matrix elements (el S(E) I x') satisfying
the condition E =EK& will be called "on-shell"
elements of S. The on-shell elements form the
physical S matrix. It is more convenient to
speak of the on-shell T-matrix elements appear-
ing in (3. 36). The matrix element (Kt T(E')) g')
is on-shell if EK =E ~-—E. Thus, the element
(&l S(E) tv') is on-shell if the corresponding T-
matrix element is on-shell.

We now verify that indeed only on-shell ele-
ments appear in (3.35). Let us first express S
explicitly in terms of T. By (3. 30), we have

TrS S= —2wi Tr6(E —H )(T+ T )

—(2')' Tr6(E H)T 6(E —H )T-. (3.38)f 9

I- 2vi6(E i —E )T,(E,). (3.36)KK K KK K

Equation (3.30) then shows that
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Let us label the states in such a way that the
total energy, i. e. , the eigenvalue of H„ is one
of the labels, and let it be written out explicitly.
It follows that the S-matrix elements are always
expressed in terms of Tzz(E).

The first term of (3.38) is manifestly on-shell
since the 5 function picks out only the states with
energy E. The second term of (3.38) is com-
plicated by the two-way differentiation & /&E.
Consider the term with 8/&E acting to the right.
We have

~(z E ) & E dd (E)
&

6(z —E )T dd s(E).

(3. 39)

The sum over labels other than the energy label
is understood. The T' s are in general slowly
varying functions of E, E, and E, so that E
and E may be treated as continuous variables
like E Using . properties of the 5 function, (3.39)
may be written

Z 4(Z-E')T (E), [4(E E")T (E-)[+E)
ElEft

(3.40)

E= —4(Z —E )(4 „T (E))4(E —E )TEE(E)

TrS S = —i Tr(V'+ 9 )+ Trg q'.
1 ~ 9 t. 9

(s. 45)

As the reader might have noticed, after putting
the S in (3. 35) on-shell, the E integration covers
only the spectrum of H, and can no longer include
the bound-state spectrum of H. Indeed we have
overlooked the bound states contained implicitly
in (3. 35) as poles of T(E). These poles actually
offset the 6 function 6(E —H, ). A special treat-
ment is necessary to bring out these implicit
poles. In order not to complicate the discussion
further at this stage, we shall leave the bound-
state problem to the end of Sec. IV. Let us sim-
ply ignore bound states until then.

After going a long way in establishing (3.35)
and putting S on-shell, we now use it to express
the grand potential in terms of the S matrix.
Since, as was illustrated before, t Tr exp( —PH) ]
is a linear comQination of terms of the form
Tr(e-P —e " ') with various H', (3.35) can be
applied repeatedly, each time substituting IP for
II, and S' for S, where S' is the S matrix gen-
erated by H' —H, . Combining all terms, one
gets simply, using (3. 9),

(Tre ) = JdZe (de() TrS S),E . -1 -1 8

C BE c'

(3.46)

—5(z E')r (E)6-(z-E"), Z' .(E).
(Tr((, ) = —P(& —0 ).

C 0' (s. 47)

S =1 —2wi6(E H)T (E), - (3.42)

which is effectively the S matrix.
Use of the same symbol S should not cause any

confusion. To save writing in the subsequent
discussions, we introduce the new notation

(3.41)
Do the same for the term with E)/BE acting to the
left. One obtains a term like (3.40) with S/BE
instead of 9/BE and a term - R, which cancels the
A in (3.40). Therefore, only the form Tzz(E)
appears in the final expression. Our conclusion
is then that, in (3.38) the operator may be re-
placed by the "on-shell operator"

In (3.46), S includes matrix elements of all pro-
cesses involving any number of particles. The
subscript c again indicates that only the connected
diagrams are kept. To see just what we mean
by all these, let us look at how the terms in (3.46)
involving three particles are obtained and expressed
in diagram form.

Substituting (3. 35) in (3. 11), we have for N = 3,

(Tr e ) = fdze (4wi) '

XTrs~ S
&E

S —Q S. .
&

S. . ~, (3.48)
( IY Ie

ij ~E ijp '

where S is the full three-body S matrix and Sij ls
the S matrix generated by Vij . We have

& —= V'(E)=—2mB(E —H )T (E),0 EE
(s. 43)

S. . =1-i&.. .
gj gj (3.49)

-=& (Z) = 2m6(z H0)T' zz(-z). -

Thus, we have

S=l —iE, S = 1+i V'

and the result we just obtained is

(3.44)

&ij describes the scattering of particles i and j
but leaves the remaining particle moving freely.
The usual:diagram representation for V'ij mill be
a ladder sum for the pair ij and a free line for
the remaining particle. These are clearly dis-
connected diagrams.

For the full T matrix, me write
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c=& +Z &c . . zjz&j
(3. 50)

where &~ is the completely connected part. With
the help of (3. 38), (3. 48) may be expressed in
terms of &~ and ~zj. We have

(Tr S S) =-is Tr (v' +f )c ~E 3 c c

~ Z Z ~, . . . (i,~)~(i', )'). (3. »)zj~E z j
z &jz &j

The first term in (3. 51) can be simply represented
by connected T-matrix diagrams [see Fig. 3(a)].

The second term can also be expressed diagram-
matically. We use a dashed line to indicate where
& j&E is [see Fig. 3(b)]. Let us call these dia-
grams "second-type" diagram and call the ordinary
T-matrix diagrams the "first type". Equation
(3. 51) simply sta, tes that all connected diagrams
of both types are to be summed. This rule is
easily generalized to cases where more than three
particles are involved.

To summarize, we have, for the grand potential

a counting procedure, which would be extremely
difficult without the use of diagrams. We would
like to emphasize that no details of diagrams
even entered into our discussion except in ex-
amples. The only notion that appeared was that
of connectedness. Nor is the detailed form of
II, and V relevant. Also note that the role of the
particle number N is no more than that of a label
classifying diagrams. For the sake of clarity,
we have not included the exchange effect due to
the identity of particles. Neither have we shown
how bound states are included. The final rules
for calculation can be given only after we settle
these questions, to which we now turn our atten-
tion.

IV. EXCHANGE EFFECT AND BOUND STATES

The results of Sec. III must be properly ex-
tended to include bound states and the exchange
effect due to the identity of particles. As will
be seen, such an extension is particularly cru-
cial for relativistic generalization.

A. Exchange Terms

We shall consider the case of identical fermions
only. For a system of bosons or of mixed spe-
cies, one simply changes the appropriate minus
signs to plus signs.

Let the operator A be defined as
0 = 00 ——fdE e (4ni ) (TrS —S ), (3. 52)~E c' A=+5 P, (4. 1)

where 0, is the grand potential for the ideal gas,
and

TrS 8 = Tr —z V'+ g +V T

(3. 53)

is the sum of all connected diagrams of the first
and the second types.

What we have accomplished so far is a clean
separation of the dynamical part, which is now
expressed in terms of the S matrix, from the
statistical part, which now appears via e- PE
We first expressed 0 in terms of connected im-
aginary time diagrams and then transformed
them into connected diagrams representing scat-
tering processes. The whole analysis is really

-+- -+ -+-

(a) (b)

FIG. 3. Circles represent connected T-matrix dia-
grams. (a} Completely connected three-body & matrix.
(b) Diagrams of the second type for N=3.

where I' is a permutation of particle labels.
6p = a 1 depending on whether P is an even or an
odd permutation. The sum is taken over all N f

permutations, if A operates on an X-particle
state. To include the exchange effect, Tre
must be replaced by

(4. 2)

The counting procedure given in Sec. III B must
be modified. Going back to our imaginary time
diagrams, we see that, in addition to the purely
diagonal terms, there are exchange diagrams
[see Fig. 4(a), for example). Note that, since
A commutes with V, which is totally symmetric
in labels, there is no need for modifying the
Feynman-Dyson expansion (3.4) in the interme-
diate states.

The exchange diagrams always look connected
because there are particle lines crossing each
other. We can, therefore, look upon the permu-
tation as a special kind of interaction, which we
shall call the "exchange interaction. " The de-
finition of connected diagrams is now extended
to include those joined by exchange interactions.
Note that, for the exchange interaction to have an
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(o)

(b)

N II It

+ ~ ~ ~ ~

By inspecting the diagrams, one can write down
the sum of connected diagrams involving a given
number of particles in terms of the form

IP — H,TrA'(e —e '), apart from the trivial free
particle terms given by (4.4). For example,
for N=3,

(Tr Ae ) =Tr [A(e —e ')
c 3

(c)

+ -+ --+-- -+- -+- --+-- - -+-- -+-
(,

—p(HO+ l'zj), —pH0)
Ui&j

(d)

FIG. 4. (a) Typical diagram involving exchanges.
(b) Connected diagrams for a free gas. (c) Three-
body exchange diagrams of the first type (the T-
matrix diagrams with exchange) . (d) Three-body
exchange diagrams of the second kind.

effect at all, there must be some overlapping
between the single-particle wave functions being
exchanged. This fact effectively states that the
exchange interaction is of a "finite range. "
From this, one concludes that the contribution
of connected diagrams, under the new extended
definition, is always proportional to the volume.

With these modifications, the previous counting
procedure goes through exactly the same way and
one arrives at (3.9). To see how the exchange
diagrams work, let us consider the example of
V=0, i.e. , the free Fermi gas. The exchange
diagrams are shown in Fig. 4(b). For a given N,

it is easy to show that there are (N-1)! permu
tations which leave none of the elements of (1, 2,
3, .. . , N) unchanged, and that 5~ = (- ) for all
these permutations. Since

By (3.9), we have

1 g ( )
N-1 -lg -pepN

free P N k

g ln(1+e k) =—0,. (4. 4)

N N. k~, k2, . '' 'kN

where Nt is to avoid counting the same amplitude
more than once, and. since only particles with the
same k are affected, we have

(Tr Ae ') =(-) N Z e P k . (4. 3)
C

(4. 5)

[A', H'] =o. (4. 6)

For example, in (4. 5) we have [A, H] = 0 in the
first term and [A,&, H, + V~& ] = 0 in the second
term. The interaction term is always totally
symmetric in any subset of N particles, and
therefore, commutes with all permutations act-
ing on that subset of particles.

~e recall that, in establishing (3.35), the only
property of the trace which we utilized was the
invariance of products of operators under cyclic
permutations. This property is not affected
when the operator A is inserted because A com-
mutes with H Hp and therefore with T, 8, 0,
and G. Thus, one simply inserts A in the traces
on both sides of (3.35) and obtains

T A(
-PH -PHO)

= faze (4 xi) TrAS S. (4. 7)

The arguments in Sec. III B putting S on-shell
are not affected by the presence of A either.
Going through everything in Sec. IIIB with A
carried along, we finally arrive at

where Azj is the A operator operating on the par-
ticles i and j only. The first term in (4. 5) is the
full three-yarticle term with the free part taken
out. The second term, which includes all dis-
connected diagrams, describes the interactions
within a pair. The third term is the connected
free-particle term.

In Sec. IIIB, the essential step was to establish
(3.35), i.e. , to express Tr(e PH-e PHo) in an
S-matrix form. Similarly, our task here is to
express TrA(e P —e- PH, ) in an S-matrix form.
An important fact is that one always has

The subscript 0 now indicates the free gas with
exchange effect included. Equation (4. 4) is a
well-known result.

To transform the imaginary time diagrams into
the 8-matrix form, we proceed the same way as
in Sec. III B, with the exchange diagrams included, .

n = n ——fdZ e (4vf) (TrAS S),0 P 8E c'

(4. a)
corresponding to (3. 52). 0, is now the free-par-
ticle grand potential with exchange effects inclu-
ded, and [corresponding to (3. 53)]
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(TrAS S)
&E e

This process is reflected by the existence of
poles of

=(TrA[-i —, ( r+ V )+ C, V]), (4. 9)

is the sum of all connected diagrams of first and
the second types, which now include exchange
diagrams. Again, using N=3 as an example, we
have diagrams shown in Figs. 4(c) and 4(d) in
addition to those in Fig. 3(a) and 3(b).

&. ~Duad States

So far we have ignored bound states, or com-
posite particles, which may form as a result of
interactions. The bound states manifest them-
selves as poles of certain matrix elements of
G(E) and T(E). These poles are not in the spec-
trum of H, . As was pointed out previously,
these pole terms are easily lost upon putting the
operator S on-shell because of the 5 function
5(E —H, ) unless one is extremely careful in var-
ious limiting processes. It is necessary to re-
formulate the problem in such a way that these
pole terms are kept explicitly. This problem is
sufficiently complicated so that we shall ignore
the exchange diagrams first for simplicity and
put them in later.

Let us go back to the beginning and consider
the N-particie term (Tr~e PH)z If th. ere are
bound states of N particles, the matrix elements
of G(E) = (E —H) ' will have simple poles at
EH. (P), where P is the total momentum of the
states sandwiching G(E), and EJI (P) is the .ener
gy of the ith bound state. These poles contribute

—PEE (P)
Q. e (4. 10)

p - ip

to the grand potential, as is easily seen from
(3.13). One can, therefore, explicitly separate
these terms out from the beginning and redefine
the E integrals in (3. 13) and (3. 14) so that the
lower limit of E is above the largest of EE (P)
for a given P. Equation (4. 10) may be viewed
as the contribution of free composite particles
labeled by i. If one adds up all such terms from
N = 2, 3, 4, ... , together with Q„one has the
grand potential of the free elementary and com-
posite particles.

When one or more of the subsets of the N par-
ticles form bound states, one encounters scat-
tering processes involving composite particles
in the asymptotic states. There appear poles in
the matrix elements of G(E) and T(E) to account
for these processes. For example, consider the
case of N= 3. If a two-particle bound state ex-
ists, there will be processes like

(p,'p,'p.' I G(E) lp,p. p. & .

H +V =H H =H +v, V =V-v
Q Q ' Q 0 Q' Q Q' (4. 11)

where Q is any channel label, vQ is responsible
for the composite particles in the channel Q. We
shall always label the all-free channel by 0.
Thus vp 0 Vp V Let us also define

G =(E-H )-', (4. 12)

0 =GG
Q Q

0 =G G.
Q (4. iS)

One easily verifies that

0 =1+G V, 0 =1 —G V
Q Q Q Q Q

(4. 14)

Analogous to the definition S =0* '0 in Sec. III,
we define

S =0* '0 (4. 15)

For fixed p, +p, , p, , p,', and p', +p'„at E = e&
x(p, +p, )+ep, andat E=e-I +e&(p', +p', ). Here
e H(p ) is the two-particle bound-state energy at
momentum p. These poles are also outside the
spectrum of H, .

To study the effect of composite-particle scat-
tering processes, let us first classify the asymp-
totic states into channels. For example, in the
three-particle case where there is one two-body
bound state, there are 4 channels, i.e. , 1,2
bound, 3 free; 1,3 bound, 2 free; 2, 3 bound, 1
free; and 1,2, 3 all free. If there exists two dif-
ferent two-body bound states, there will be 7 chan-
nels.

In the infinite volume limit, any two states in
different channels are orthogonal, since, as can
be checked easily, their scalar product vanishes
at least like 0( V '~'). This fact suggests that we
extend the set of free-particle states to a larger
set including the asymptotic states in all channels.
In each channel, the part of the interaction Hamil-
tonian which is responsible for the composite par-
ticles should be included in the free Hamiltonian
operating in this extended set of states. When the
trace is taken over the extended set, one then
should automatically pick up those pole terms we
missed before, and get a formalism in which a
composite particle behaves just like a different
particle. We proceed to carry out this program.

We define HQ, VQ, vQ by

(1, 2) bound+3 free -1 free+(2, 3) bound. Thus, by definition, S = 8„. Note that 8 ~p con-
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tains pole terms describing scattering involving
channels other than n and P. For example, S«
has poles describing composite particles, as has
been discussed. What we shall do is to look at
one pair of channels n, P at a time and ignore pole
terms describing channels other than n and P.
More Precisely, we consider (n(SnP (P), where
(n), IP) are any states in the channels n and P,
respectively. We suppress all other labels of the
states. Let us now establish the equation

Again, Gp commutes with I p ) ( p I, and

Gp V Q Gp=G —Gp. (4. 20)

Substituting (4. 19) in (4. 17), using (4. 20), we get
(4. 16). Equation (4. 16) may be viewed as an ex-
tended version of (3.31). It remains to define a
T matrix operating on the extended set of states.
Substituting (4. 14) in (4. 15), one finds

Z (PIS In) BE (n(S IP)4' np n BE

=-lhnZ (P(G —G IP).
p p

(4. 16)

S =(1 —G V )(1+GV ).

Considering the case n =P first, we have

8 =1 —G VQ +G Q V
T

QQ Q Q Q Q Q Q

(4. 21)

Some clarification of notation is needed before we
proceed. The matrix elements of G(E) have vari-
ous pole terms corresponding to various channels
as discussed previously. The rule is that, in
(n( G(E) I P), we ignore all but those pole terms
describing the propagation from channel P to chan-
nel n. Thus, G n I p ( = 0 if n o p, and Qn G I n )(n (

= G. The sum over all other labels in (4. 16) is
understood. Substituting (4. 15) in the left-hand
side of (4. 16), we obtain

=1+(G —G )T
Q Q QQ

where OQ =GQ 'G and TQQ is defined by

T
T =V Q =0 V

QQ Q Q Q Q

More explicitly,

(4. 22)

(4. 23)

. Q (PIQ Q In), (n(Q Q IP )

=(4vi) Q [(p(Q,B
Q Ip)

+(P (Q, ' Q (P }]. (4. 17)

S =1 —2vi 5(E —H )T
QQ Q QQ

anologous to (3.30).
For no p, we have

S =1 —G VQ +G Q V.T

We define

(4. 24)

(4. 25)

We have used the fact that

Q Q (n)(n(Q -'=Q GG -'(n)(n(G G-'

T =G 'GG ', nWp.
n n

From this definition

(4. 26)

= Q G(n )(n(G '=GG '=1,
Q

(4. 18)

-1 T -1VQ =Tp —Gp, Q Vp-—Tp —G

(4. 27)

since Gn commutes with (n )( n( and ZnG(n)(n(
= G. By (4. 14), we have

and (4. 25) becomes

S =G G ' —2mi5(E —H )Tn n n n
(4. 28)

-1T
Q Q =(1 —

Gp Vp) Qp

8

BE P PBE P P

8 8
= —(1+G V Qp) —

Gp
—

VpQp

We are only interested in the matrix elements
(n (Snp (P ), which appear in (4. 16). The first
term of (4. 28) gives (n(G~nGP "(p). Since Ip)
is an eigenstate of Gp, Gtn operates on I P) di-
rectly. According to our rule under which (4. 16)
is established, Gn IP ) must be droPPed for n W P.
Thus, we shall drop the first term in (4. 28). Com-
bining (4. 28) and (4. 24), we have, for all n, P,

2= —2Gp Vp Qp. (4. 19) S =5 —2vi 5(E —H )T
np np n np' (4. 29)
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with T~p defined by (4. 23) and (4. 26). By the
same arguments, we have

S — =6 +2~i6(Z-ff )Z (4. 30)

The notion of connectedness of diagrams is not
modified by the existence of bound states. Leav-
ing out the disconnected diagrams on both sides of
(4. 16), we have, including the N-particle bound-
state contribution,

(4

(4. 31)

where we have used the old notation TrNG for
taking the trace over all states of N particles.
Equation (4. 31) is then related to (Tre I )c, via
(3. 19).

The proof that the S in (4. 31) may be replaced
by the physical 8 matrix goes exactly like that
given in Sec. III B [see (3.38) —(3.42)]. Of
course, on-shell means now on the energy shell
of the particles, elementary or composite, in the
channels involved.

To summarize: We have first singled out the
contribution of freely moving composite particles
[see (4. 10)], then we have collected the pole terms
of G which describe the scatterings involving com-
posite particles in the asymptotic state. The con-
clusion is then that Eq. (3.46) stays the same for-
mally. We have now a multispecies system. Qp

includes the contribution from the free particles
of all species. The 8 matrix includes elements
for all possible scatterings of particles in the
system.

Finally, we put in the exchange diagrams to
account for the identity of particles.

There are three kinds of permutations. Those
of the first kind exchange particles within a given
composite particle. Because the internal wave
function is properly antisymmetrized (or symme-
trized), the exchange terms, together with the di-
rect term, give a factor N t if there are N parti-
cles in the composite particle. This N. cancels
the (N!) ' in the original graph counting, which
forbids counting the same amplitude twice. The
net result is that one can ignore the exchanges of
this kind and simply treat the composite particle
as an individual particle.

The permutations of the second kind exchange
particles in different composite particles but al-
ways keep composite particles as units. For ex-
ample, when one exchanges two hydrogen atoms,
one exchanges the protons and, at the same time,

exchanges the electrons [see Fig. 5(a)] . Under
the permutations of this kind, the identical com-
posite particles behave like identical elementary
particles. The hydrogen atoms in the above ex-
amples behave like two elementary bosons. Our
previous discussion on exchanges of elementary
particles apply here, too.

Those of the third kind involve exchanging a con-
stituent particle of a composite particle and other
particIes which are not constituents of that com-
posite particle. For example, the two electrons
of the two hydrogen atoms shown in Fig. 5(b) are
exchanged, but not the protons. This kind of ex-
change diagram arises from the fact that, due to
the finite size of the hydrogen atom, it is not pos-
sible to construct a field operator for the hydrogen
atoms that obeys the commutation rules of a Bose
field. However, these exchange diagrams are
clearly part of the T matrix for K-K scattering and
do not require any special consideration. For ex
ample, there is a repulsive interaction between
two hydrogen atoms due to the exchange of elec-
trons, and it is included in the K-K scattering am-
plitude.

We can now put our expression of the grand po-
tential in its final form, i.e. ,

0=& ——fdE e (47ti) (TrAS S) . (4. 32)

Qp is the free —gas term, which is the sum of the
free-gas terms of all species of particles, each
obeying either Bose of Fermi statistics. The
second term involves the matrix elements of all
scattering processes. It is the sum of all con-
nected diagrams of the first and second types
discussed in Sec. IV, including the exchange dia-
grams. All the particles, composite or not, are
treated on the same footing.

We have thus eliminated the interaction Hamil-
tonian completely. The only objects appearing
in (4. 32) are the energies of the free particles,
their statistics and quantum numbers, and the
S-matrix elements. We would like to emphasize
that it is crucial, in the expression for 0 for a
relativistic system, to treat all particles on the
same footing. This is because in relativistic
quantum mechanics, there is no way to tell about

(b)

FIG. 5. The thick lines represent protons and, the
thin lines, electrons. The ladders represent hydrogen
atoms. The dashed lines denote the Coulomb potential
responsible for the binding. (a) Exchange of two hy-
drogen atoms. (b) Exchange of the electrons as a term
in the T matrix for the scattering of two hydrogen atoms.
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the elementarity or compositness of particles.
The only thing one can say along this line is
through the S-matrix elements via the Levinson's
Theorem, which we shall discuss later. Equation
(4. 32) is easily generalized and applied to rela-
tivistic systems. Before doing that, we apply
it to study the virial expansion first.

write the S matrix in the c.m. frame.
For a given N, the energy due to the c.m. mo-

tion is P'/2(Nm), where P is the total momentum
of the particles involved in that channel. For a
given channel, it is convenient to measure the
total energy from the lowest-energy level in the
c.m. frame. We define & by

V. VIRIAL EXPANSION E =P'/2(Nm) —B + e
Nn (5.&)

In this section, we put the nonrelativistic virial
expansion into the S-matrix form, and, at the
same time become more familiar with the details
of (4. 32).

For definiteness, consider a system of fermions
E. Suppose there exists a set of n, bound states
of 2 fermions F, , and a set of n, bound states of
3 fermions F,~, etc.

To calculate the grand potential, we must
classify and list the terms in the trace. Prefer-
ably, the terms are listed in descending order
of their contributions to Q. Let us first write
the characteristics of the single particles:

n2

= Z ~ . &'&B . &'&

Nn . ai z1=1

n3

+ Q m . &'&B."&+.. . ,&i i (5.3)

where BN~ is the total binding energy of the chan-
nel Nn. Ini(f) is the number of Ffi's in the
channel. Since the S-matrix elements are inde-
pendent of P, (4.32) becomes

F, fermion, N = 1, energy = e =p'/2m
p

(5. 1)
= V Q g A exp(Pi&, N PB -)X '(Nm),

2E, , boson, N=2,

, ( )'
p./4 B ( )

'p i where

(5.9)

Z 1 2 f n2j

E, , fermion, N=3,
(3) ',

/5 B (3)
'p

z 1
p ~ ~ ~ n3)

(5. 2)

(5.3)

8
A, =f dee . , TrN As

8
~, (510)Nn, 4mi

X '(M) = J d' p(2)»' exp(- pP '/2M)

= (M/2~P)3~'. (5.11)

N=2, F+F, (5.4)

N=3) F+F2 ) E+E+F,z (5. 5)

N=4, 2E + E, , E2 + E2,

F+F+F+F, etc. (5. 6)

In a scattering process, the c.m. motion in-
volves no dynamics. We should therefore sepa-
rate its effect from the dynamics explicitly, and

and so on. B Bi ~
~ '. . are the binding en-

Z

ergies. Every particle carries a quantum number
N, the fermion number, which is a conserved
quantity. Note that in (5.1)—(5.3) we measure the
single fermion energy from zero, instead of from
p, as was done in Secs. III and IV, because we
want to see the p, dependence explicitly.

We now list the scattering channels in the order
of increasing N:

The trace TrNn in (5.10) is restricted to the chan-
nel N& in the c.m. frame. The intermediate
states between S ' and S can, of course, be in
channels Np with p a n. ANn is a dimensionless
quantity. Because of the & integration, the tem-
perature dependence of AN& will not be exponen-
tial. The dominant temperature dependence is
thus the factor

exp(P&l&, N) exp(PB ) . (5.12)

For a dilute gas, where the occupation number per
state is much less than 1, e~~ is roughly of the
order of magnitude of the number per state.
Equation (5.9) is then a power series in e@, i.e. ,
the virial expansion, rapidly convergent for a di-
lute gas. Note that the factor e& Nn makes chan-
nels with large binding energy more important.
The virial series will start converging when (5.12),
not just ePpN alone, becomes small.

For example, consider a hydrogen gas at a
temperature low compared to B, the binding en-
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ergy of a hydrogen molecule. The term due to
channels with n, atoms and n, molecules has a
factor

exp(pi1n, ) exp[p(2i1 + B)n,]. (5.l3)

Thus, the virial expansion will not converge
unless 2i1 + B is negative. Since PB is assumed to
be large, n, may be set to zero and one effectively
has a virial expansion for the molecular gas, i.e.,
an expansion in powers of e+~, where p, '= 2p, +B.

It seems that (5.9) and (5.10) provide a simple
scheme for calculating the higher virial coeffi-
cients which were never available before.

VI. RELATIViSTIC SYSTEMS

A. General Formula

As was stated in Sec. II, for any system, rela-
tivistic or nonrelativistic, the grand potential
takes the form

II= —PlnTr exp[- P(H —Q. p, .N.)],
2 2

(6.l)

where (N„N, . . . ) is the set of conserved quanti-
ties, and (p„p,„.. . ) is the set of corresponding
Lagrange multipliers, or generalized chemical
potentials. The result (4.32) is readily general-
ized upon replacing p, , N by the sets (p, g2. . . )
and (N„N, . . . ). As was discussed in the Intro-
duction, the spirit is that, since only physical
particles and S-matrix elements remain in (4.32),
it may be taken as valid in general even though it
is established via a nonrelativistic procedure.

The classification of channels follows very much
the same procedure as given in Sec. V. Before
considering the quantum numbers explicitly, we
shall first factor out the c.m. motion as was done
in Sec. V.

Consider a channel with a given set of quantum
numbers (N„N„.. . ) =K, and labeled by an addi-
tional label &. Suppose there are n particles in
the channel. The sum over states takes the form

n

J . I iII [d2p. (2w) ']
z=1

(6.2)

jD .d 'p. (211) '(m ./e. ) . (6.2)

in the momentum representation. Let rnid be the
mass of the ith particle and &i= (mi'+pi')'" be
its energy. To facilitate the Lorentz transforma-
tion to the c.m. frame, we change the normaliza-
tion of the plane-wave state pi from unity to ei/mi.
Then the S-matrix elements become invariant and
the sum (6.2) is replaced by

El (P2 l2) li2 (6.6)

Then, (w'/E')5 (E —E')= 5(w —so') and dE'(d/
dE') = d211'(d/dw'). In this way, one can obtain
from (4.32), that

—13(O —0 )= Vg a ePP SI
0 v v

(6.7)

where p, =(p„p,„.. .), Ot =(N„N„.. .), v= (X, o')
xi1Ã= g.piN, , n stands for the other labels re-

Z

quired in fixing a channel, and

a = jd'P(21t)' j 'duse x[p- p(P'+111')' ']

x(4rl)-' (Tr AS-' —S
V 8~ c (6.6)

The trace Trv is taken in the c.m. fram~ over the
channel v. Carrying out the P integral, we have

a = (211'p) ' j dw 111'IC (pw)(41t'i)

x Tr AS' —S (6.9)

K, is a modified Bessel function. The lower limit
of the se integral is the rest energy of the particles
in the channel, i. e. , the sum of the masses, which
we denote by Mv. When the temperature is much
lower than M~, it is easy to see from (6.8) that
(6.7) reduces to the nonrelativistic expression
(5.9). Or, one can use the approximation

K, (P11l) =(—,
'

2'P211)
I/2 -Pso

(6.10)

in (6.9) to obtain (5.9). Note that here, ge and all
the other energy variables all include the masses
involved while only the kinetic energy is included
in the e of (5.9).

x (m. /&'. )]&(Z.p'. ) d2P(zo/E), (6.4)

where (e2, pz ) is the energy momentum of the ith
particle in the c.m. frame and the 5 function is to
secure that the total momentum in the c.m. frame
vanishes. The other parameters in (6.4) are de-
fined as

P=p. p. , 211 =Q. ~.', E=(M'+P')"'. (6.5)2' 2

Thus, (E, P) is the energy momentum of the n-
particle cluster and se is the mass of the cluster.
Equation (6.4) can be proved by induction. The
n= 2 case may be checked by straightforward al-
gebra. It is left as an exercise for the reader.
Ix we write a variable E' in terms of a new vari-
able zv' by

We now assert that

II.d'p. (2 ) '( ./ .) = [II.d'p'. (2 ) '

B. Classification of Channels

To illustrate the qualitative features of our re-
sults, let us ignore the weak and the electromag-
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=n m +n m +n-m-. (6.11)

netic interaction, and discuss a gas of strongly
inter acting particles.

We denote the baryons collectively by B, their
antiparticles by B, and the various mesons by m.

Only stable particles are included. The unstable
particles show up in the resonance scattering of
stable particles, as will be discussed in Sec. VIC.
For simplicity, we will imagine that all the
baryons have a common mass MB and that the
mesons have a common mass m„.

The conserved quantities appearing in the gen-
eral formulas (6.1) and (6.9) are (B,I, S)= R, i.e.,
the baryon number, the third component of the
isotopic spin and the strangeness. Corresponding
to St, we have the chemical potentials (p,B, pf, pg)

Let us first classify the channels by the
baryon number. (a} B= 0, with v, 2v, 3m, 4v, . . .,
any number of m's; BB, BB+ any number of m's;
2(BB), . . ., etc. In other words, all channels in-
volving any number of 7t's and equal numbers of
B's and B's (b) .B=1; all channels in (a) with
one more B (c) .B=—1; all channels in (a) with
one more B, etc. Obviously, for B= +n, one
adds to (a) nB or nB, n = any positive integer.

The baryon number is analogous to the fermion
number N in our previous discussion on the non-
relativistic system. The qualitative difference
between B and N is that N is always positive while
B can be negative. More important, the appear-
ance of arbitrary numbers of m's and BBpairs
result in an infinite number of channels for each
fixed B.

How do these qualitative differences diminish as
one passes to the nonrelativistic limit'? What is
the expansion corresponding to the power series
of e P in the nonrelatlvlstlc systemv The answer
to these questions becomes clear when we note
that the masses are the lower bounds of energies
and that the nonrelativistic chemical potential p.

is measured from the fermion mass. In other
words, we can make the connection p.B= p, +mB.
For a channel with n„mesons, nB baryons, and

nB antibaryons, the lower bound in energy is

to be kept. For P '«m„, the mesons also drop
out of the scene. One is left with the baryons
alone. The sum (6.7) is thus a series in powers
of exp[- p(mB —pB)], i.e. , in powers of e~P.
Thus, we see that when the temperature is much
lower than the masses of particles involved, we
get back to the nonrelativistic virial expansion.

It is then clear that the expansion (6.V), which
is the relativistic generalization of the virial ex-
pansion, is a series in powers of

exp(-Pm ), exp[-P(m + p )],B

and exp[- p(~B —g )]. (6.14)

The convergence of this series is unclear since the
S matrix involving many particles is unknown.
However, it seems clear that it must be summed
formally to infinite orders if I p, B I &mB. In other
words, when the gas becomes highly degenerate,
it is necessary to know the S-matrix elements in-
volving an infinite number of particles. When

I p, BI &mB, and the temperature is not much higher
than m~, one may get a reasonable approximation
by keeping only the channels involving a few par-
ticles.

Let us now look at the role of the other two quan-
tum numbers, i. e. , the isospin and the strange-
ness. Consider the former first. The term -pII
in the grand potential is formally identical to the
Zeeman term in magnetic systems. In other
words, p,I plays the role of a magnetic field, and
I plays the role of the magnetic moment. The
moments tend to line up along the field. Thus,
when p.I is larger, one will have a larger total
isotopic spin (i.e. , more v+ and protons than m

and neutrons}. When the sign of pf is reversed,
so is the total isotopic spin. The role of p, s and
s is entirely similar and will not be discussed.

We have illustrated some of the general features
of the classification of terms by considering the
baryon-meson system. When the electromagnetic
and weak forces are involved, new features appear.
The important ones are discussed in the following.

xexp[-p(m +p )n—], (6.12)

for this channel. In the limit

P '«m, m —p, «m (6.13)

we see that only those channels with nB= 0 need

It is clear, from (6.8), that we can define a new

energy variable E'by K —&min+ & and pull out a
factor exp(- Pemin) from a~. With the factor
exppp. BB, we have the factor

exp(- Pm n )exp[-P(m —g )n ]

C. Electromagnetic Interaction Alone

When only the electromagnetic force is involved,
the above discussion applies with e, e+, and y
playing the roles of B, B, and m, respectively. The
photon has no mass and one thus has to include
terms involving infinitely many photons. However,
since the coupling constant e is small, one can
use the perturbation theory for the S-matrix ele-
ment. To the order e", there can be no more
than n particles involved in the scattering except
for exchange terms, which can always be summed.
Thus, (6.7) seems to be applicable and effective.
Once the S-matrix elements to a given order in e
are given, the grand potential can be calculated
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to that order. We shall consider the lowest-order
terms in Sec. VI D. Note that there is no problem
in renormalization here because we only deal with
physical quantities. The renormalization is car-
ried out when one calculates the S-matrix ele-
ments. When both the strong and the electromag-
netic interactions are involved, the problem be-
comes very difficult. This is mainly because
there is no established theory of radiative correc-
tions to the strong S matrix.

D. V4ak Interaction

reaction e+ ve+ v» - » -e+ ve+ v& can take place.
In the resonance region, the amplitude is of order
unity. Evidently, the scattering amplitudes can be
neglected only after the resonance poles have been
removed. As the reader may have already
guessed, taking account of the resonance poles sim-
ply reinstates the muon as an elementary particle
which is to be treated on the same footing as e&s,
vers, and v» s. We will not explicitly show this
here but rather work out a simpler case.

For a nonrelativistic system, the two-body term
in the virial series (5.9) is easily shown to be

Neutrinos are involved in many weak processes.
Due to the weakness of these processes, neutrinos
will escape any system not too enormous in size,
and cannot be thermalized. Thus, when neutrino
emissions take place, one does not have a system
in thermal equilibrium. However, they may be
treated by perturbation theory to give parameters
such as the rate of change of the temperature and
pressure of a strongly or electromagnetically in-
teracting system. Such a perturbation theory is
yet to be formulated.

VII. EXAMPLES AND FURTHER DETAILS

We have discussed various features of the S-ma-
trix expansion of the grand potential assuming that
the S-matrix elements are given. In practice the
S-matrix elements are most often unknown, unfor-
tunately. In this section, we shall consider some
examples where over-simplified S-matrix ele-
ments are used in order to illustrate more explic-
itly the qualitative features of the expansion for-
mula. Further details of the general formula will
also be explored.

(7. 1)

where 5f(e) is the phase shift for angular momen-
tum l. Now if in the partial wave lp there is a
sharp resonance at e = e, then 5f,(e) rises rapidly
from 0 to p in a narrow region around ep. The
derivative of the phase shift will then be almost a
5 function, i. e. ,

——5 (e)=5(e —e ),
1 d
P dE' lp 0' (7. 2)

and the resonance will clearly contribute a term
e Po to -the virial coefficient. This is, of course,
identical in form to a bound state so we see that
at least in this case, a sharp resonance acts just
like a stable particle.

To see this in more detaii, consider a fictitious
system of spinless mesons z (mass I) and spin-
less baryons N (mass M). Suppose the scattering
processes are dominated by an s-wave gN res-
onance N* with a mass M* and a half-width I'. In
other words, we consider the process

A. Resonance Scattering m+N-N*- ~+ N (7. 3)

Consider a system of muons, electrons, and
neutrinos with only weak interactions. That is,
we neglect the electromagnetic interactions of
muons and electrons. Due to the extreme feeble-
ness of the weak interaction, one knows that the
equilibrium state can be adequately described by
a perfect gas, with the only real role of the inter-
action being to adjust the relative numbers of e's,
»~s, vers, and v»&s. The way in which this falls
out of our S-matrix formalism is not quite straight-
forward.

The problem here is that the muon is unstable,
and therefore, cannot be rigorously included in the
asymptotic states which define the S matrix. In
fact, one has to regard the muon as a resonance
in reactions like e+ve+ v» - e+ ve+ v&. However,
it is not hard to see how the above picture of a per-
fect gas emerges. We note that the amplitude for
e+ ve+ v» - e+ ve+ v» is negligibly small except in
a tiny region of phase space where the r esonance

only, and ignore all other processes. Equation
(7. 3) is depicted in Fig. 6. The kinematic pa-
rameters are defined as follows:

(m2 ~ $2)1/2 e (M2 + $2)l/2 e e + e (7 4)1 2t

2I'=211 fd2f2 (27/) 25(e' M*)(M/e-2)(2e, ) 'g' . (7. 5)

We have normalized the meson plane wave to 2e,
and the baryon plane wave to e2/M. Since

d(2/2ee)-2'= (f2/e')de'dn, (7. 6)

where dQ is the solid angle element in the k
direction, we have

where k is the momentum of N in the c.m. frame.
Let the N* decay matrix element be g. Then the
Golden Rule for the decay rate gives
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k

k -k der the total width 2I' of the resonance. To justi-
fy the approximation (7. 12) one must suppose that
the Boltzmann factor does not vary considerably
over an interval of length I'. Evidently this leads
to the condition

FIG. 6. N~ resonance scattering. Diagrams of the

first (left) and the second (right) types.

I"= (g 2/4m) (M /M + )k .

The invariant T-matrix element for (7. 3) is given
by

(7. 8)

Neglecting exchange diagrams, we have, follow-
ing the notation of (3.38)-(3.40),

(7. 9)

(7. 10)

Substituting (7. 10) and (7. 8) in (7. 9) and taking
(7. 7) into account to eliminate g, we have1,~ d I'

. Tr S —S = —Re——(e —M *+i I')
47I'l ~ E' df p

We now substitute ('l. 11) in (6. 7). When the res-
onance is narrow, one easily shows that (7. 11)
behaves like 5(e —M~). Thus, we have

-l3(Q- 0 ) =Z-J dec 5(e -M~)e ~ B.
— (P'+ e')

0 P

for a sharp resonance. At any reasonable tem-
perature the muon whose width is of order 10 '
eV certainly satisfies this criterion.

As another example of the importance of un-
stable states, recall that a heated gas of hydrogen
atoms with its associated radiation field is well
approximated by a perfect gas built out of photons,
electrons, protons, and the various states of
atomic hydrogen. In the usual treatment of the
problem, each atomic state is treated as a sep-
arate elementary object. In our S-matrix for-
malism, the ground state of hydrogen would enter
as a bound state but the higher levels would show
up as sharp resonances in photon-hydrogen scat-
tering.

Finally, suppose one were concerned with a
system of hadrons at temperatures such that pitons
and nucleons are the predominant constituents.
At this sort of temperature, the p-N interaction
will be dominated by the (3. 3) resonance N *.
This suggests a model where the nonresonant in-
teraction is neglected and the N* is treated as a
sharp resonance (even though its width is not
small). It should not be hard for the reader to
see that the result of this model would simply be
a perfect gas composed of p' s, N's, and N*' s.
We have not investigated the validity of such a
model in detail; hence we leave the p, N, N* gas
as a suggestion worth studying rather than a
theory. Questions concerning the consequences
of whether the resonances are elementary parti-
cles will be mentioned in Sec. VIII.

B. Summing the Exchange Diagrams

This result says that the resonance, at least
under above approximations, contributes to 0
like a free particle of mass M* w«&d. When
(7. 3) is replaced by a corresponding process with
antiparticles, one gets (7. 12) with g& replaced
by —

LLt, ~ as expected.
We leave it to the reader to convince himself

that a sharp resonance acts like a particle in
more general situations, e. g. , three-particle
scattering. The remainder of this subsection is
devoted to further physical examples of the role
played by unstable particles. Before proceeding,
however, we should give a quantitative meaning
to the words sharp resonance. In the example
discussed above, the resonant phase shift changes
by z in a region around M* whose length is of or-

Before we go to the next example, where we
study the lowest-order (in n) correction to the
free grand potential of the electron-positron-
photon gas, we first give a general prescription
for summing the exchange diagrams.

Consider the diagram shown in Fig. 7(a) where
one of the final particles, originally labeled by 2,
gets exchanged with two other particles 3 and 4.
We use the vertical dotted lines to connect the
same labels explicitly. Let us stay in the lab
frame and assume the particles are fermions.
In the momentum representation, the contribution
of Fig. 7(a) to Tr Aq' is

(7. 14)
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4 3 2 every single fermion state. For bosons, we use
(1-e pep) ' instead.

We now go to the c.m. frame as we did before.
Let

4 3 2

(a) (b) v = P/E (v. i9)

(c)

FIG. 7. Exchange diagrams. The vertical dashed
lines are only to keep track of which particles are ex-
changed with which. (a)-(c) Exchange diagrams treated
as corrections to the two-body term. (d) Typical dia-
gram of an (originally disconnected) T matrix connected
via exchange.

( )n -PE -nPe,

Summing over n, using the fact that

(7. 16)

1+ Z e '(-) =(1+e P ')
n=1

we effectively replace the two-body scattering
term by

(v. iv)

Q (1+e ') 2v6(e —e, —e, )T .
P&P2

(v. is)

This is for the exchange correction to one of the
particles, i.e. , particle 2. The same arguments
apply to particle 1 and the diagrams like Fig. 7(b).
In fact, one simply inserts a factor (1+e PeP) '-
for every single fermion state that is summed in
the trace. For the type 2 diagrams, additional
exchange diagrams like Fig. 7(c) occur. Thus,
in the sum over the free particle states connect-
ing 9'f and &, one also inserts (I +e p~p) ' for-

Again, the single-particle energy is measured
from the chemical potential. T is the on-shell
T-matrix element for the two-body forward scat-
tering (P„P2)- (P„P,). Note that P, =P» =P, . The
factor (- )' comes from the fact that the permu-
tation (234)-(342) is even. The factor —,

' comes
from the fact that 1 and 2 are identical particles.
If we make the variable change E —2c,-E to re-
move the extra 2e, in (7. 13), we must also change
the e PE factor to be integrated over later to

( )2e p e p 2 (v. is)
We have also pulled out the (- )' factor in (7. 13)
so that the remaining part of (V. 13) is exactly the
two-body scattering term without exchanging with
any other particle. It is easy to verify that, if n,
instead of two, particles are exchanged with the
particle 2 in Fig. V(a), (7. 15) becomes

be the velocity of the center of mass [see (6. 5) for
notation]. Also, let the Lorentz factor (1 —v') 'I'
be denoted by y. Thus, we have, writing out the
chemical potential explicitly

~+v'p ) —V
P P

(v. 2o)

(I+exp- p[y(e ~+v ~ p')- ~B '
P

(v. 2i)

in the c.m. frame.
Notice that we have only summed the free-

particle lines joined to a T matrix via exchange
but we have not considered separate pieces of T
matrices joined by exchange, for example, see
Fig. 7(d). We have not obtained a simple pre-
scription to sum this type of diagram.

C. Electromagnetic System

When only the electromagnetic interaction is
involved, we may take advantage of the fact that,
to O(en), the connected S matrix has only elements
involving at most n particles. As a second ex-
ample of application of the S-matrix expansion
formula, let us calculate Q to the second order
in e.

To secure charge neutrality, the total number
of e+ must be equal to that of e- in the system.
The difference of the electron number and posi-
tron number is a conserved quantity and to it
there corresponds a chemical potential LU, . The
charge neutrality condition implies that p, = 0.

The second-order processes are:

+ +
(a) e +e —e +e

(b) e +e 2y,

(c) e +y —e +y,

(d) 2e —2e

(7. 22)

To the second order, there is no diagram of
type 2, i. e. , it is sufficient to consider the term

8—i—TrA(&+S ), (7. 23)

since the terms in & ~(Y/ee) 9 are of the fourth

where p is the momentum in the c.m. frame.
The correction factor (1 ae Pep-) ' discussed above
must be written
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order or higher. The process (b) above will not
contribute to (7.23) and can therefore be ignored.

The diagrams for the T-matrix elements are
shown in Fig. 8. The charge neutrality implies
also that (al), (dl), and (d3) cancel exactly.
Since the exchanged photons in these diagrams
have exactly zero energy and momentum due to
the fact that we are calculating only the forward
T matrix, each of these diagrams would be in-
finite. This is the electrostatic energy of the
system, which does not exist for a system with
no net charge.

The diagrams have all been analyzed in text
books. ' We simply write down the T-matrix ele-
ments following the rules of electrodynamics.
The evaluation of the trace involves the sum over
the spinor space and then over the momentum
space. Consider the former first. The contribu-
tion of Fig. 8(a2) is

where e denotes the photon polarization vector.
Figure 8(c2) gives the same contribution as (cl).
Since there is no advantage in this simple example
to use the c.m. frame, we shall use the lab
frame. The formula for the grand potential re-
duces to

trV'=2v5(E —e —e )(T +T )
Pg P2 8

+2v5(E —e —k) T,
p c

(V. 29)

-p(n- n, )

= —fdEe (2v) Re(d/dE)TrAV'+ O(e )
-PE -1 4

(7.28)

as was already mentioned. Collecting (7. 24)-
(V. 27) we have

T =e trA (p )y A (p )y (p +p ) . (7. 24)

We follow the notation of Ref. 8. The trace sym-
bol tr denotes the trace over the spinor space.
Equation (7. 24) is easily evaluated to give

T = —e'[m '+2(p +p ) '].

where ep = (P'+m')'I'. Putting in the exchange
corrections via the prescription given in Sec.
VII B, we have finally

d'P Id'P2(2m) '(m/e )(m/e )
1 2

pe pe
(e '+ 1)(e 2+ 1)

Figure 8(d2) gives

2 Td = 2e tr A (p, )y & (p2) y (p,-p2)+ 1 p, + 2

(v. 28)

—.'T =e2+ tr J (p)g

x[S (P+k)+S (P —k)]g = e'/m, (7. 27)

=e [~ +(p -p ) ].1 2

Figure 8(d4) gives the same contribution as (V. 24).
Figure 8(c1) gives

x2e'[(p, —p, )-'+(p, +p, ) '+m ']

d'pd'k(2v) '(m/e )(2k) '2e'/m

(eP P+1)(e —1)
(V. 30)

In the nonrelativistic limit, the term (p, —p, )
dominates since

(Pl-P ) '=[2m' —2(e e —p p )]
1 2

= -(p, -p, ) ',
(a2)

(ci) (cz)

(b)
and the other terms are of O(m ') or O(m ').

We have not investigated higher-order terms.
On physical grounds, we expect terms involving
n'+(Inn)m as well as powers of n. When posi-
tronium states are involved, the S-matrix ele-
ments will almost certainly contain inn. One
also expects the plasma oscillation to play a role.
The nonrelativistic electron-gas theory suggests
that an z2lnz term will appear.

(di ) (d2) (d3) (d 4)

FIG. 8. Second-order scattering diagrams in electro-
dynarnics. (a) e+e scattering. (b) Pair creation and
annihilation. (c) Compton scattering. (d) e e and e+e+
scatterings.

D. Apparent Divergences in Certain Diagrams

In using the momentum eigenstates, i. e. , the
plane waves, as the basis states, one encounters
forward scattering matrix elements that diverge.
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This unpleasant feature already occurs in the
three-body terms. For example, Fig. 9(a), which
is a special term in the connected 3-particle T
matrix, gives a contribution to Tr( 1+ 9"f) propor-
tional to

Re Q 5(E —e —e —e ) T»
p p p P], P2 P3

X (E —e —e —6 +l'g ) Tgs ~

P 1 P2 P3
(7. 32)

25

I2
(a) (b) (c) (cI)

(e)

FIG. 9. Terms with singular denominators in the T
matrix. (a) Three-body forward T-matrix term which
has a singular denominator for the intermediate states
in the momentum representation. (b) -(d) Singular
terms of the second type owing to the appearance of the
term (a) in the T matrix. (e) Singular five-body term
in the forward T matrix.

The intermediate-state energy is forced to be the
same by momentum conservation. Thus, the en-
ergy denominator blows up as (7. 32) shows. Sim-
ilarly, Figs. 9(b)—9(d) are all divergent due to the
occurrence of the forms 5(x) (x+iq) ', 5(x)b(x),
or (x+i7i)-'(x —iq) '. In diagrams involving four
or more particles, worse divergences occur for
the same reason. See Fig. 9(e), for example.

These divergences are spurious. It can be shown

by straightforward but rather lengthy algebra that
these divergent terms cancel one another when they
are combined.

Physically, these divergent terms may be attri-
buted to the infinite extension of the plane waves.
For example, Fig. 9(a) describes the scattering
of 2 and 3 after 2 intera, cts with 1. However, par-
ticle 2 is under the influence of 1 all the time since
the plane wave of 1 is infinitely extended. Thus
particle 1 behaves like a background medium. The
effect of a medium includes shifting the energy of
the particle propagating in it and giving it a width
as well. Such an effect is incompatible with the
physical picture of a sequence of two scattering
events implied by Fig. 9(a). It is not surprising
that, if one expands a propagator or a 5 function
with an energy shift in powers of that energy shift,
one will have very singular terms. The over-all
6 function multiplying the T matrix is not intended
for such singular terms.

It seems clear that these apparently divergent
terms will be manifestly absent if one removes
the infinite extension of the wave functions. If
one uses wave-packet states, the sequence of scat-
terings can always be defined with no ambiguity.
However, wave-packet states are not eigenstates
of Hp and are, the refore, inc onvenient in prac tice .
A reasonable choice seems to be the set of angu-
lar momentum eigenstates. For example, ' in the
three-particle case, we can use eigenstates of the
angular momentum (l, m) of the pair (l, 2) in its
center of mass, its c. m. energy v, the total angu-
lar momentum (J, M) in the c.m. frame of the
three-body system, and the total c.m. energy e'.
This way, the intermediate states of Fig. 9(a)
will be summed over, and no divergence occurs,
since the integration over e' smears up the en-
ergy denominator. Explicitly, in the c.m. frame,
(7. 32) becomes

f de'd v'de "dv" r (e —e' )
J, M, l'nz'l "m"

x (O'Ml'm'e'v'
I T» I JMl "m "e"v')

&& (e —e"+i@) '( JMl "m "e"v"
I T„}JMl'm'e'v') .

(7. 33)

The sum over the total momentum is suppressed.
Although the angular momentum basis may seem
to be inconvenient for formal discussion, it is
convenient, and in fact most often used, for more
detailed analysis and actual calculations. '~"

We have thus shown that, by properly choosing
the basis states, the diagrams in Fig. 8 are well
behaved. However, we would like to emphasize
that scattering processes described by these dia-
grams do form a special class in contrast to those
which do not give trouble in the momentum repre-
sentation. These will play an important role in
multiparticle scattering because, as Figs. 8(a)
and 8(d) indicate, a particle can travel, between
two scattering events, over a distance long com-
pared to the range of the force, and therefore
effectively. provides an interaction of a much
longer range. In other words, two clusters of
particles can interact by exchanging a real particle.
This long-range interaction is important because
the probability for all the particles to cluster with-
in the range of force is very sma, ll. It seems that
these processes have not received extensive study
so far, mainly because of the scattering theory
involving multiparticle initial and final states is
not extensively developed yet and also the detailed
analyses on three-body scattering so far have
employed the angular momentum basis.

The assertion that one can use the on-shell T
matrix in the angular momentum representation,
in spite of the fact it is undefined i.n the momentum
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representation, may seem questionable. How

does one know that the limit g - 0 can be taken be-
fore the s™mationover the angular momenta'?
This limit is supposed to be taken last.

The answer seems clear if we note that the
total angular momentum is a conserved quantity
just like the baryon number. We can project out
the subspace of a definite angular momentum from
the beginning, when we consider the imaginary
time diagrams, where no q-0 singularity occurs.
Then one transforms the formula to the S-matrix
form as before for each angular momentum sub-
space. Thus, the question of the q - 0 limit never
occurs.

Finally, let us verify explicitly in the following
example that it is completely valid to use the on-
shell 7™atrixin the angular momentum repre-
sentation.

Consider the three-body term (7.32) in the c.m.
frame. For simplicity we let the two-body poten-
tial V(r) be the contact potential g5(r) and con-
sider only the term proportional to g'.

The quantity of interest in the momentum repre-
sentation is

a=Id P,d P.d f, &(p, +p, +p, ) f«e

Now, we calculate the quantity a using the angu-
lar-momentum-basis states

'JMM. '"'=[' "'" '"]'"~MM '"'
(7. 36)

where the energies 6'y E'2 f3 are ass™edfixed,
and R is the set of Eulerian angles specifying the
orientation of the triangle formed by the three mo-
menta. These basis states have been discussed by
Omnes. "

In terms of this new basis set, we have

a= —,
' g Idled"de,

JMM

8
&& fdEe '—5(c —E —E—e' )

'(J'MM & I2(T+7 )IJMM e)

=-', p-'Q (21+1)f de, de, de,

&&2~f-,'dx J dpP (x)ReT(p p'), (7. 39)
0

x „(pI,, (G,, -G,)-.'g'(G, +G, )Ip)

= p f d p.d p, J dee

X [ —2g 6 (E —e' —E'2 —E')] (7. 34)

where we have chosen the z axis along p„and
p„p, lying in the xz plane. By definitions,

A A

P, P3 =A.

where (G, —G,)/2' is the expression for 5(E —H, )
before q tends to zero. The symbol Ip) stands for
Ip„p„p,). The 5 function comes from the fact
that

ReT(p, p')=g P(e, —e, —e, —2p,' ~ p, ) '. (7.40)

Note that T is on-shell. Using (7. 40), (7. 39) be-
comes

(PI(G. —G,) (G.+G.) Ip&

6 ~ p(p IG() —GOIp) =2''i5 (f —e' —62 —f') .

(7. 35)

The limit q-0 is taken in the last step. For s™
plicity, let the mass of a particle be 2, so that
eg= p~'. Thus, (7. 34) becomes

a=-,' p 'Q (2'+1)(2w)'g'

x f da, d&, exp[-2p(e, +e,)] f' d'.
0 O

(7. 41)

x(exp[- 2p'(e, e,)'a] —exp[2py(e, e )»'])

X

[(1 —x) (2X'-1 —x)J"'

a=p-'-,'(2m)'g'f dade e
-2 (e+e )

0

x/exp[-2P(e, )e'~'] —exp[2P(e, e')' ]). (V. 36)

The integrals are well defined for each J.
As long as we stay away from the point X =1,

the sum over J gives zero because, if we sum
over J,

We have taken into account that

e2.=(-pi —ps) =ei+e3+2(ei'3)»'A

P (m+1)P (x) =26(x- 1),
J J (7.42)

and have integrated over p, p3.

(7. 37) which vanishes for @41~ Therefore, it is only
necessary to integrate over X from 1 —6 to 1,
where 5 is very small. To extract the contribu-
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g=-,' P 'Q (u+I)(2v)'g'

x fdic, , de, .exp[- 2P(e, +&,)]

x ]exp[- 2p (e,e )'~'] —exp [2p (e,e,}' '])

x kf ' dxP (x) (7.4s)

tion from A. =1, we let the path of the x integral
go from —1 to 1 and then from 1 to —1 but under
the cut extending from —~ to 2A.' —1. Then we
divide the integral by 2. The result, after inte-
grating over X, is

sum over states weighted by the Boltzmann factor,
which is 1, over these levels simply gives the
phase-space volume occupied by these levels. The
phase-space volume cannot be changed by the inter-
action. Therefore, (8. 2) must vanish. The free-
particle term already includes this phase-space
volume. The composite particle plays no part.
This result should hold when more than two parti-
cles are involved.

We proceed to generalize the Levinson's Theo-
rem to the scattering involving an arbitrary
number of particles. With our formalism, this
can be done very simply

I et us go back to the forlnula (4. 31), which is

which is the same as (7. 36). We have thus illus-
trated that it is perfectly legitimate to use the
on-shell T matrix in the angular momentum re-
presentation at least in a simple but nontrivial
case.

VIII. LEVINSON S THEOREM

We shall establish a general version of the
Levinson's Theorem, which gives much physical
insight into the 8-matrix formula for the grand
potential.

In the theory of two-body potential scattering,
the Levinson's Theorem states that

n +-[& ( ) —& (0)]
1

Bl ~ l l

=n +- f de —6 (e) =0,1 00

Bl g 0 de l
(8. 1)

where 5l(e) is the lth phase shift at the c.m. ener-
gy e, and nBl is the number of bound states with
spin l. The generalization of (8. 1) to three-body
scattering has been done by Wright. '

The Levinson's Theorem simply states that the
total number of states is not altered by the pres-
ence of the interaction. This will become clear
later, if not clear already.

Consider the two-body term of a given angular
momentum l in the virial series (5. 9). We have

Qe + f, dec —& (~),
Bl ~ -Pe 1 d

md' l
(s. 2)

where —EBl is the binding energy of the bound
state B. We have used the relation(i@I' Sl'le)
=exp[2l5l(e)]. At temperatures p '» em~, where
d51(e)/de = 0 for e & emax, e, and exP (—PZB I)
may be replaced by unity in (8. 2), which then
vanishes by (8. 1). The physical interpretation
of this result is clear. Equation (8.2) is a cor-
rection term to the free-particle grand potential due
due to the interaction, which shifts the energy
levels below a certain upper bound em~. When
the temperature is much higher than emax, the

1——Im(Tr G) = (4mi) (Tr S S)
-1 -1 B

m N c BE c

+Z.Z-6(z-z (p)), (s. s)i P Bi

where we have suppressed the channel labels of
(4. sl).

Recall that (Tr~) is a, linear combination of
terms of the form

Tr (G'-G ), {8.4)

where G'= (Z —H') ', with various H" s. For ex-
amples, see (3. 17) and (3. 18). The total number
of states in the phase space is

.Tr, = —f—Im TrG'(Z)dE 1 dE (s. 5)

for any relevant II', since the total phase-space
volume is independent of the interaction. In view
of (8.4), we must have

1——fdZIm[Tr G(Z)] =O.
7r N c (s. 6)

Restricting to a given total momentum and a
given set of conserved quantum numbers X, (8. 6)
and (8. 3) give

r + f dr(4rr') '(Tr AS —S =0, ( . 7)
C

Q=Q
0 clem (s. 8)

where e is the c.m. kinetic energy and Tr~ is
taken over the states labeled by A. , including chan-
nels involving composite particles as in (4. 31).
We have included the antisymmetrization or sym-
metrization operator A to denote that exchange
connected scattering diagrams are to be included
as described before. Eq. (8.7) is a general form
of the Levinson's Theorem in nonrelativistic
quantum mechanics. Using (8. 7), one easily shows
that (5. 9), the virial series, gives simply
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in the infinte temperature limit, where Qaelem
is the grand potential of the gas of free elementary
particles.

The relativistic generalization of Levinson's
Theorem may be written

where sais the c.m. energy and M~ is the minimum
of the sum of masses of the particles in the scatter-
ing states over which the trace is taken. nd~ is
the number of discrete levels, and n & the number
of elementary particles labeled by X. These ele-
mentary particles are supposed to stay even if
there were no scattering. They can be stable or
unstable. Of course, (8. 9) is not derived and
cannot be derived from the present-day relativistic
quantum mechanics. It is simply a guess based
on the nonrelativistic Levinson's Theorem. It has
the correct nonrelativistic limit and contains only
physical quantities well defined relativistically and
is, therefore, probably valid in general.

Under certain approximations and further plau-
sible assumptions, the Levinson's Theorem can
tell us a great deal of qualitative information. For
example, consider the baryon-meson gas. The
atomic nuclei are very much composite particles
and that part of interaction which is responsible
for them should only be responsible for scatterings
at energies comparable to the binding energies of
nuclei. We thus expect that, by the Levinson's
Theorem, when the temperature is much higher
than the nuclear binding energy, the contribution
to the grand potential due to the nuclei vanishes.
One only has to deal with the scatterings of nuc-
leons and mesons at higher energies.

The conclusion (8. 8) should also hold for a
relativistic gas at infinite temperatures. Note
that what a large temperature does is to make the
Boltzmann factor a constant over the range of the
energy integral so that the Levinson's Theorem
can be applied. To some extent, an extremely
high-fermion degeneracy can do qualitatively the
same thing. For example, consider the baryon-
meson system with p& -. As a result of sum-
ming the exchange diagrams, the Boltzmann fac-
tors exp[- P(e —pg)] are effectively replaced by
the Fermi fac ors [expP(e —p&)+1] '. The Fermi
factor is unity for Ep ranging from zero to near VB
and damps out beyond p,&. Thus, the energy in-
tegrals encountered in the S-matrix formula for
0 have a unity weighting factor up to near p,~,
the Levinson's Theorem again says that composite
particles and their scatterings can give no contri-
bution except near and above the Fermi level g&.
In other words, one simply has a free Fermi gas
of elementary particles if the phenomena pertinent
to the particles near and above the Fermi level
are ignored. This is what one would expect intu-

itively. The grand potential of an extremely de-
generate free Fermi gas of elementary particles
depends essentially on the phase space volume
bounded by the Fermi level. This volume is un-
changed when the interaction is turned on. Of
course, we know from the nonrelativisitc theory
of degenerate Fermi gases that almost all of the
interesting phenomena occurs near the Fermi
level. Our qualitative conclusion here is simply
that the same is expected for the relativistic case.

The above examples are meant only to be rough
estimates based on the Levinson's Theorem.
Quantitative applications of this theorem are yet
to be studied and are expected to be very fruitful
in statistical mechanical problems.

IX. SUMMARY AND DISCUSSION

We have developed a simple and general pre-
scription for calculating the grand potential
given the free-particle energies and the S-ma-
trix elements. This prescription seems to be
the only one existing that makes sense within the
framework of the present-day relativistic quan-
tum mechanics. In its nonrelativistic limit, it
provides a tractable prescription for calculating
the higher virial coefficients. Our analysis has
been based on the diagrammatics combined with
the formal scattering theory. The main step
was simply the transformation of the imaginary
time diagrams into diagrams for the scattering
matrix elements. The set of conserved quantum
numbers provides a natural scheme for classi-
fying the free-particle states and the S-matrix
elements between them. We have worked out
simple examples to illustrate the qualitative fea-
tures of the general formula. The Levinson's
Theorem comes as a bonus result of our formal-
ism.

As we have pointed out before, for this S-ma-
trix formulation to be useful for practical cal-
culations, one needs an effective way of obtain-
ing multiparticle S -matrix elements. Of course,
one does not, at present, know much about the
multiparticle S -matrix elements. Only recently
has there been some work done on nonrelativ-
istic three-body scattering calculation. We ex-
pect that the third virial coefficients of simple
gases can be computed using the prescription
given here in the near future. It seems that the
multiparticle scattering problem is by itself a
very interesting and important problem and it
should deserve more attention.

Although the S-matrix formula for the grand
potential is completely general, the physical pic-
ture behind it is clearly that of a dilute gas with
scattering events occurring here and there.
When the density becomes higher, we expect from
our knowledge about nonrelativistie systems,
that in general the collective motions will become
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significant. Then the dilute-gas picture is no

longer a convenient one. Special techniques must
be developed to make partial sums over infinite
number of S-matrix elements. Since no such
technique is feasible within the scope of relativ-
istic quantum mechanics, we feel that the sen-
sible thing to do is to study the S-matrix formula
in more detail in the low-density region and then
make extrapolations to higher densities.

We have analyzed only the grand potential, from
which all thermodynamic properties can be de-
rived. To formulate the hydrodynamics, one of-
ten needs transport coefficients in addition to
thermodynamic parameters. The transport co-
efficients, such as the electrical conductivity and

the viscosity, are related to the statistical aver-
ages of the product of current operators via the
Kubo formulas. In other words, they are re-
lated to the current correlation functions, usu-
ally at the long wavelength and low-frequency
limit. The nonrelativistic formulation of the
current correlation functions is well known.
We have not attempted its relativistic general-
ization.
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