
l87 SERIES EXPANSION IN MANY-BOSON PROBLEMS

IV and V on convergence of the iteration procedure
and uniqueness of the solution for S'(k)/S (k).

The condition (B4) is also satisfied by the exact g(~)

functions of charged boson gas at high density and the
hard-sphere boson system at low density.
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The electrical resistivities of several polyvalent alloy liquids were calculated from the
pseudopotential form factors and Percus-Yevick hard-sphere structure factors of Ashcroft
and Langreth. Good agreement with experiment was obtained by choosing hard-sphere di-
ameter ratios other than one in four of the five systems. It is concluded that the hard-sphere
structure factors with the Ashcroft pseudopotential form factors can give better agreement
with experiment than have previous calculations.

INTRODUCTION

Tomlinson and Lichter' have reported the vari-
ation of electrical resistivity with temperature for
certain compositions of molten Cd-Bi, Cd-Sn,
Cd-Pb, In-Bi, and Sn-Bi. In that paper, the ob-
served electrical resistivity was explained by
using a fluctuation scattering model where the
electron concentration varied with alloy composi-
tion. The deviation in electron-to-atom ratio
from the normal valence was then shown to cor-
relate with the excess free energy of mixing. In
this paper, the isothermal electrical resistivity
of these same alloys is calculated by using the
pseudopotential method; in this case, the con-
duction electrons are considered to be scattered
by a weak potential due to the collection of screened
ions.

An expression for the electrical resistivity of a
liquid binary alloy using pseudopotential form
factors and structure factors (or interference
functions) was written by Faber and Ziman. '
Keating' had shown that the partial structure fac-
tors necessary for writing the electrical resis-
tivity were available from experiment. However,
most available structure factors have been cal-
culated from experiments after certain approxi-
mations, 4 or are available for a limited number
of alloy compositions. ' Recently, Ashcroft and
Langreth' and Enderby and North' have written
partial structure factors for liquid alloys by find-
ing the Fourier transform of the solution of the
Percus- Yevick equation for a mixture of hard
spheres. These structure factors were then ap-
plied to the calculation of the resistivities of sev-

eral liquid alloys by Ashcroft and Langreth. '
In this approach, the resistivity depends upon the
effective core radius of the constituent potentials,
the total packing fraction, the ratio of hard-sphere
diameters, and the composition.

Using the notation of Ashcroft and Langreth, we
have calculated the electrical resistivities of
liquid alloys of the systems Cd-Bi, Cd-Pb, Cd-Sn,
Sn-Bi, and In-Bi. The results are compared with
the experimental values of Tomlinson and Lichter, '
Roll and Swamy, ' Matuyama, "Verhoeven and
Lieu, "and Takeuchi and Endo. "

THEORY

The electrical resistivity of a liquid alloy was
written by Ashcroft and Langreth' as

4 3g 1

p =,
k

Z*J (XV,'(y)S„(y) + 2[X(1-X)]'i'

&& V, (y)V, (y)S„(y)+ (1 —X)V, (y)S„(y)}y dy,

whe~e V&(y) is the electron-ion pseudopotenttal
form factor for component i, Z* is the effective
valence, X is the mole fraction of component 2,
Sf~(y) is the partial structure factor, and y is the
wave number divided by 2k@.

In these calculations, the pseudopotential form
factor proposed by Ashcroft"~" was used. For an
alloy, this'is written

V.(y) ={X'cos(s.y)/[y'+A'f(y)])Z. /Z,

where X' = 1/~aok
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s. =2k Bc i50

and f(y) is the Lindhard screening function.
Bc is the effective ion-core radius which serves
as the adjustable parameter for the pseudopoten-
tial. It may be set from appropriate experimen-
tal information (for example, the Fermi surface
or ionization energy). In this instance, it was
determined by the known electrical resistivities
of the pure liquid metals at the melting point.

The partial structure factors were calculated
using the Ashcroft and Langreth' representation
obtained by Fourier transform of Lebowitz's"
exact solution to the Percus- Yevick equation for
a mixture of hard spheres. In their notation, the
partial structure factors are written as
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FIG. 1. Calculated and experimental electrical resis-
tivities for liquid Cd-Bi and Cd-Pb alloys at 325 and

327 ' C, respectively, Experimental points are from
Tomlinson and Lichter (Ref. 1) and Roll and Swamy

(Ref. 9).
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TABLE I. Core radii (Rc) in A used to calculate the
pseudopotential form factors, hard-sphere radii (20) at
melting temperature, and atomic radii (R).

Metal

Bi
Cd

In
Pb
Sn

R

0.803
0.744
0.708
0.793
0.703

po
1

1.56
1.36
1.44
1.52
1.46

1.54
1.49
1.63
1.75
1.51

where Cf&(y) is the direct correlation function and

¹zis the number of i atoms per unit volume.
These correlation functions are Fourier trans-

forms of the correlation functions in real space,
C~&(i'). Details of these functions may be found in
Ref. 6. The partial structure factors used here
differ from those written by Faber and Ziman' or
Halder and Wagner, ' as was shown by Enderby
and North. '

The procedure for calculation of electrical re-
sistivity was first to determine the core radius
Ac by solving for the resistivity of the pure metal
at the melting temperature when the packing frac-
tion il was equal to 0. 456 (see Ref. 8). Table I
shows the values determined. Then g was chosen

for the resistivities of the pure metal at arbitrary
temperatures. Finally, values for the resistivity
were calculated at 10% composition intervals with
various values for the ratio of hard-sphere di-
ameters ~ and compared with the experimental
data in order to choose the best 0. for each sys-
tem.

RESULTS

The results for the calculated electrical re-
sistivity for Cd-Bi at 325 'C are shown and com-
pared with the experimentally determined values
of the electrical resistivity by Tomlinson and
Lichter' in Fig. 1. The packing fraction for the
alloy was obtained by taking a linear average of
the two components at each composition. Ash-
croft and Langreth' pointed out that the q cal-
culated by comparison of the working tempera-
ture and the liquidus temperature using dt)/dT
for the components, does not differ significantly
from the linear combination of the pure com-
ponent packing fraction. Two calculated curves
are shown: one for o, = 1, another for n = o'B./
OCd= 0. 78. The latter is in general agreement
with a standard deviation of V/q, but does not
reproduce the asymmetry of the experimental
points.

The calculated resistivity for Cd-Pb at 325 G
is shown for n = 1 and n = o Cd/opb = 0. 9. The ex-
perimental points are those of Roll and Swamy. '
There is good agreement when n = 0. 9 (see Fig.
1).
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FIG. g. Calculated and experimental electrical resis-
tivities for liquid Cd-Sn and Sn-Bi alloys at 325 and

C, respectively. Experimental points are from
Matuyama (Ref. 7) and Verhoeven and Lieu (Ref. 9).

Similarly, the Cd-Sn system is shown with cal-
culated points for ~ =1 and o. =0. 9 at 325'C.
Here ~ is the ratio of the hard-sphere diameter
of cadmium to the hard-sphere diameter of tin,
and the result is consistent with the trend of ionic
diameters as one descends in a given column of
the periodic chart. It can be seen in Fig. 2 that
good agreement is obtained when z = 0. 9.

Tomlinson and Lichter" previously pointed out
that the system Sn-Bi is virtually an ideal thermo-
dynamic solution and that the observed electrical
resistivity correlates well with a fluctuation scat-
tering model derived from statistical mechanics.
One would expect that a substitutional structure
model, i.e. , where atomic volumes of each con-
stituent are equal for a particular composition,
would work well with this system. However,
this is not the case. In Fig. 2, the calculated
electrical resistivity at 300 C is shown for z =1,
that is, for equal atomic diameters, and for
o, =0. 8 which fits the experimental data. The ex-
perimental results are discussed in more detail
in Refs. 1 and 16.

The equal-volume assumption worked well for
In-Bi at 300'C, a system which has an enthalpy
of mixing estimated to be —440 cal/g atom" and
a size difference of 15%"(see Fig. 3). This is
the converse case to Sn-Bi since the substitution-
al model works well in spite of nonideal size ef-
fect and heat of mixing.

Examination of the liquid-alloy data tabulated
by Hultgren et al. "and Wilson" showed no cor-
relation of n with excess free energy, size dif-
ference, or electronegativity.
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FIG. 3. Calculated and experimental electrical resis-
tivities for liquid In-Bi alloys at 300 ' C. Experimental
points are from Takeuchi and Endo (Ref. 10).

DISCUSSION

We have calculated the electrical resistivity
for liquid alloys of Cd-Bi, Cd-Sn, Cd-Pb, Sn-Bi,
and In-Bi using the pseudopotential form factor
of Ashcroft and the Percus- Yevick hard-sphere
structure factors of Ashcroft and Langreth. The
form factors have one adjustable parameter, the
core radius, which was chosen to give the experi-
mental electrical resistivity of the pure com-
ponent at the melting temperature when the pack-
ing fraction was 0. 456. The packing fraction for
any arbitrary temperature was chosen by ad-
justing the packing fraction to fit the experimen-
tally determined resistivity of the pure compo-
nent at that temperature. Finally, the electrical
resistivities for various compositions of alloys
were fitted to experimental data by varying the
ratio of the hard-sphere diameters of the con-
stituents. The results for an alloy are then de-
pendent upon the packing fraction g, the ratio ~
of hard-sphere diameters, and the composition X.

For pure metals, g was set at 0.456 and the
core radius of the potential Rz was varied until
the calculated and experimental resistivities
agreed. The hard-sphere diameter was fixed,
since it is the cube root of 6q/mN, and N was de-
termined as in Ref. 1. In Table I the hard-sphere
radii are compared with the atomic radii" for the
five elements used. One sees that the hard-
sphere radii are generally lower than the atomic
radii.

The values for Bz shown in Table I are consis-
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tently larger by 2%%uo than those of Ashcroft and
Langreth. ' We suppose that this is due to a dif-
ference in the numerical integration technique.

Table D shows the packing fractions of the pure
components and the calculated o,/o', for the alloys
investigated, where the order of o, and 0, was
determined by the calculated z ~ 1, and o was
found by matching the experimental alloy resis-
tivities.

Ashcroft and Langreth did not publish a value
for the core radius for cadmium. Using the pro-
cedure described above, we calculate Rz =0. 744 A.
When one calculates V(y) using this core param-
eter, a potential similar to that of Animalu" is
obtained, but crossing the y axis at y = 0. 77 in-
stead of 0. 87. The behavior of the resistivity
with changing core radius is shown in Fig. 4. It
is interesting to note the strong dependence of the
calculated resistivity upon the core radius.

The partial structure factors for 50 at. % Cd-Bi
calculated to fit the electrical resistivity are
shown in Fig. 5. It was observed that the Cd-Cd
peak is dominant for XCd - 0. 3

CONCLUSIONS
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FIG. 4. Calculated electrical resistivity of cadmium
plotted versus the core parameter &~ of the pseudo-
potential.

It was found that good agreement between the
calculated electrical resistivities and experimen-
tal data was obtained when the hard-sphere diam-
eter ratio was ~ = 1 for In-Bi, 0. 9 for Cd-Sn and
Cd-pb, 0. 8 for Sn-Bi, and 0. 78 for Cd-Bi; how-
ever, for the last system, the asymmetry of the
experimental points was not reproduced in the
calculated values.

It is apparent that for all cases except In-Bi,
using the resistivity model of Ashcroft and Lang-
reth, better calculated agreement with experi-
mental values was obtained by allowing variation
in atomic volume. One could conclude from this
information that structure information in resis-
tivity models seems to be required.

The hard-sphere model does not fit the asym-
metry in experimental data for Cd-Bi. One could
guess that similarly the model will not work well
for systems such as Cd-Sb. " This points out the
need for three diffraction experiments in liquid
alloys.

This leads us to conclude that the Ashcroft and

TABLE II. Packing fractions and calculated hard-
sphere diameter ratios.
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We have formulated the statistical mechanics in terms of the S matrix, which describes the

scattering processes taking place in the thermodynamical system of interest. Such a for-

mulation is necessary for studying the systems whose microscopic constituents behave ac-

cording to the laws of relativistic quantum mechanics. Our result is a simple prescription

for calculating the grand canonical potential of any gaseous system given the free-particle

energies and S-matrix elements. When applied to a nonrelativistic gas, it gives a simple

prescription for calculating all virial coefficients. Simplified relativistic gas models are

considered as examples of application. A general form of the Levinson's Theorem for any

number of particles follows immediately from our formalism. Its applications in statistical

mechanics are briefly discussed.

I. INTRODUCTION

In this paper we present a formulation of sta-
tistical mechanics in terms of the S-matrix ele-
ments, which describes the scattering processes
taking place in the thermodynamical system under
consideration. The purpose of such a formulation
is to be able to calculate, at least in principle,
the equation of state of a relativistic system. By
a relativistic system we mean a thermodynamical
system whose microscopic constituents behave ac-
cording to the principles of relativistic quantum

mechanics. At present, the S matrix is the only

quantity that can be obtained from the relativistic
quantum mechanics. Therefore, to study the
thermodynamical properties of relativistic sys-
tems, an S-matrix formulation of statistical me-
chanics is indispensable.

To our knowledge, there has been no general
statistical mechanics formulated for interacting
relativistic systems. Noninteracting systems,
i.e. , ideal gases, are in principle trivial to an-

alyze. On the other hand, the statistical mechan-
ics of interacting nonrelativistic systems has a


