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The ground state of a many-boson system is studied within the range of the Bijl-Dingle-
Jastrow-type description when the radial distribution function g(r) differs little from its as-
ymptotic value. The treatment of the problem is based on the development of power series
in 0.= 1-g(0) for all physical quantities which depend on the particle density. The n-particle
distribution functions p ) are evaluated to order G. as functionals in the g(r) function for
n=3 and 4 using the cluster-expansion procedure outlined by Abe. These results are used in
connection with the improvement of the ground-state description when the wave function is
not the optimum choice. Using p ' function obtained, the Bogoliubov-Horn-Green-Kirkwood-
Yvon equation is solved, also to order G.', for the two-particle correlation function tt, (r), and
the first two leading corrections to the hypernetted-chain (HNC) approximation are obtained.
The variational calculation along with the series expansion for 4, (r) yields formulas for the
ground-state properties, including some corrections to known results. For a charged boson
gas, numerical values of %L(r), p ', p, and the ground-state energy are computed using the
Gaussian approximation for g(r), and the results show that the errors associated with the
HNC approximation are small. A brief discussion is presented on the method of determining
the general expansion coefficients of the correlation functions of p( ) in terms of g(r).

I. INTRODUCTION

In recent years, the theoretical study of a many-
particle boson problem has been approached with

a great variety of approximation methods. In
particular, the variational procedure based on the
Bijl-Dingle-Jastrow (BDJ) type of correlated trial
wave function of the form
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N
4, = 11 exp-, &(r.. )

i&j

For n=2, Eq. (3) yields the normalization condi-
tion~

N il/2
x 11 exp'u(r )dr

mn 12' ' 'N~ where p =N/n =p&'&(1),

p f[g(r) 1—]dr = —1, (4)

has been widely used to calculate the ground-state
properties of a system of N bosons interacting in
pa, irs through a radial potential. ' While it is a
formidable task to minimize the expectation value
of Hamiltonian directly with respect to the varia-
tional function 'll (r), a slightly different approach
in which the radial distribution function g(r)
serves as an indirect variational function is par-
ticularly useful, since it is convenient to describe
the ground-state and low-lying excited states of
the system in terms of g(r), which can be deter-
mined from experiments. Nevertheless, this
indirect variational method suffers from lack of
our sufficient understanding about the expression
for the correlation function 'lt (r) as an explicit
functional in g.

The problem is, however, amenable to solution
if the deviation of g(r) from its asymptotic value
unity is small (i.e. , in the uniform limit), since
the deviation at the origin n = 1 —g(0) can be used
as an expansion parameter for %t(r) and other
quantities of interest. ' In this paper, we present
an extensive analysis of the many-boson system
using the method of series expansion in powers
of o. for physical quantities which depend on the
particle density, such as the ground-state energy,
the mean number of particles in nonzero-momen-
tum states, the correlation function%L(r), and
n-pa, rticle distribution functions.

and g(r„)=p"'(1, 2)/p'

are the number density and the radial distribution
function, respectively. The simple notation
p(n)(1, 2, . . ., n) =p(1, 2, ... , n) =p(n) will be used
hereafter.

The expectation values of the kinetic and poten-
tial energies per particle are given by

Pfv~( ) vg( )d (5)

(PE }= rp fg(r)v(r)dr .

g(r„)v, e(r„)= v,g(r„)

p
——,f [p(1, 2, 3) —p'g(r„)g(r„)) vp. (r„)dr,

(7)

The function%. (r) in Eq. (5) arises from the use
of the BDJ-type wave function (1). The best varia-
tional ground state is determined by minimizing
E =(KE)+(PE) with the aid of a relation connecting
'll(r) and g(r) The u. seful connection is ordinar-
ily given by one of the following three approximate
forms:
(i) Bogoliubov- Born- Green- Kirkwood- Yvon
(BBGKY) equation'

II. BASIC RELATIONS

We consider an extended uniform system of N
bosons interacting in a cubic box of volume 0
through a two-body potential v(r). Many impor-
tant properties of the system can be described
in terms of n-particle distribution functions

in conjunction with the Kirkwood superposition ap-
proximation'

p~(1, 2, 3) =p'g(r12)g(r23)g(r31);

(ii) Hypernetted chain (HNC) equation'

p (1, 2, ..., n)
(n)

=N(N-1) ~ ~ (N-n+1) f 4'0'dr
n+1, n+2, ..., N,

(2)

which satisfy the sequential relation

p (1, 2, ..., n-1)(n-1)

e(r) =lng(r) ——. „ f e
t,2'') p

x ['-""]'-dk
s(u)

where S(k) =1+p fe [g(r) —1]dr

is the liquid-structure function;
(iii) Percus- Yevick (PY) equation' )'

(10)

fp (1, 2, . .., n)dr(n) ee(r)=)~(r) —)n I) r
( fe

ik-r
2g p
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x — —)-- ——dk[1 —S(k)]' Equations (17) and (19a) imply that the momentum-
distribution function is of the form

In the uniform limit, defined by the condition
ll-g(r)l«1, it proves convenient to introduce
the dimensionless variable s = (np)' 'r and the
dimensionless expansion parameter n = 1 —g(0).'
The new functions in s space are defined by

n(k) = —4 NW(k)[1 —S(k)] +Nqtq(k), (19b)

where P(k) is not determined in our present anal-
ysis, but we surmise that (t)(k) = 0 on the ground
that it satisfies

g(r) =1 —nG(s),

y(s) =e(r) .
G(o) =1,

In terms of Fourier transforms

v(k) = f e V(r) dr,

Eqs. (5) and (6}become

(KE) 1 h 2(ap) "3.
4(21(}3 2m

x f q'Z(q)F(q)dq,

~ ~
F(q)= f e G(s)de=1 —S(k),

Z(q) = f e'q g (s)ds =-nW(k),

(12)

(»)

(14)

(15)

(16)

(17)

f y(k) dk = f y(k) k'dk = O,

and p(k) = 0 in the Bogoliubov approximation (Sec.
p). lt is, however, to be noted that Eq. (19)
cannot be used in the realistic problem of liquid
He, in which case W(k) is not believed to exist.

III. THREE- AND FOUR-PARTICLE
DISTRIBUTION FUNCTIONS

Equations (9) and (11) are simple approximate
forms for the correlation function 'll(r) as func-
tionals in g; they are widely used in the quantum
theory of many-particle systems, and also in the
classical theory of imperfect gas or liquid, in
which case %, (r) = —v(r) jk~ T. A formula for
'll, (r) with better accuracy may be obtained by
solving Eq. (7), which is exact but contains
p(1, 2, 3). The general expression for the p&3&

function has the form
(pE ) 1 (2p

2(2v)3 P(1, 2, 3) =p (1, 2, 3)e (2o)

x f F(q)v(n' 'p' 'q) dq (18)

N h2(np)"'
moving 4 (2v) 2m
frame

2

x) (tT+ ( )„, v) q(q)q'(q-)qq,

N h'(o(p)
4(2~)3 2m

x f q'Z(q)F(q)dq

hence the mean number of particles in states of
nonzero momentum is immediately found to be

N —N, = Q n(k) =—,f Z(q)F(q)dq
k40 (19a)

'Npf ~(r)[1--g(r)] dr .

Denoting the mean number of particles in zero-
momentum state by N„we observe from Eq. (17)
that the mean kinetic energy in a moving reference
frame (with velocity —v) is given by

and Abe' has shown how to exhibit A(1, 2, 3}as an
explicit functional in the hole function

h(r) =g(r) —1,

by deriving the first two leading terms in the for-
mal series expansion in powers of p. In terms of

hjj = h(rfj ) Abe s result appears as

A(1, 2, 3) = p J h„h„h„dr,

+ p h24h45h35 h14h15 + h14h25+ h15h34}

3
1

+ 14h24 34 15 25h35 45 ~ h 2
+ (p

i=1 i4
(22)

The most serious difficulty in the Abe-type den-
sity expansion is the fact that this expansion is
not really a true power seris in p, since the ex-
pansion coefficients are functionals in the hole
function which depends, possibly strongly, on den-
sity; thus, the condition for the validity of the ex-
pansion does not necessarily require low densities.
To overcome such a difficulty, we rewrite the p
expansion with r=s/(np)' ', h(r) = (2G(s), and ob-
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tain a new series expansion in powers of z. Equa-
tion (22) with terms of order p and p' gives the
new expansion correct only in the first term
which is of order n'.

In this section, we want to obtain the formula
for A(1, 2, 3), correct through order n', by in-
cluding terms through order p' in the p expansion.
The derivation is based on the standard cluster-
expansion formalism as in the classical statistical
mechanics of an imperfect gas. Since the algebra
is somewhat lengthy, we give only the result in
the form"

A (1, 2, 3) = —n'A, (1, 2, 3) —n'A (1, 2, 3)

is not the optimum choice. In principle, the pro-
cedure of the derivation of p'4& as functional in G
is the same as in the case of p&'&; to order ~' the
result is

p(1, 2, 3, 4) =p (1, 2, 3, 4)

xexp — n B 12 34+0 n
n=2

4 4
Pe'(i)k)exp(- E e 22

i&j&k n=3
—n A (1, 2, 3)+O(n'), (23)

where the coefficients A„A„and A, are given
explicitly by Fig. 1 in a diagrammatic representa-
tion. The meaning of the diagrams is the same as
in the case of the ordinary cluster integrals. Here,
each bond represents a G factor, solid circles
represent an operation of integration over the
fundamental volume zN of the s variable, and
open circles represent the particles 1, 2, and 3.
Each diagram is in fact a sum over all possible
distinct arrangements of the labels 1, 2, and 3 on
the open circles.

With the explicit results given by Eq. (23) and
Fig. 1, we can show that the p") function (20)
satisfies the sequential relation (3) for n = 3:

1 —nG(s») =
(& 2), fp(1, 2, 3)ds, , (24)

1

with an error term of order ~4. The approxima-
tion p&(1, 2, 3) fails in Eq. (24) in the first order
in o..

We now turn to the consideration of the four-
particle distribution function p(l, 2, 3, 4). This
function is as important as p(1, 2, 3) in many in-
stances in the study of many-boson systems. In
Sec. VI, we shall see how p&'&, in addition to p "&,
is used to improve the approximate description of
the ground state when the BDJ-type wave function

A a(1,2,3)

= p'g(r») g(r») g(r„)g(r») g(r„)g(r„),

8 (1, 2, 3, 4)= Q A (zjk)+8 '(1, 2, 3, 4),ni&j&k

where B,' = 0 and B,' and B~ are given by Fig. 2 in
the diagrammatic representation. The meaning of
the diagrams is the same as in Fig. 1, with the
obvious exception that in each diagram open circles
now represent particles 1, 2, 3, and 4.

The two simple approximate forms

p(1, 2, 3, 4) =p (1, 2, 3, 4), (26a)

4
p(1, 2, 3, 4)= II p+)(ijk) p'p (1, 2, 3, 4),

(26b)

correspond to B =0 and Bn = 0, respectively.
Equation (26b) was first introduced by Fisher and
Kopeliovich" to improve the Kirkwood superposi-
tion approximation (8).

A little algebra shows that Eq. (25) generates
p(1, 2, 3) in the sequential relation (3) for n = 4:

& (1, 2, 3, 4) e 0(e )) p p (1, 2, 3, 4),

(25)
p (1, 2, 3, 4)

A 3(1,2,&)

A4(I, 2, 3) + +
42 42

+-L~ +-

(N 3) ' fp(1,—2, 3, 4) dr~ =p(l, 2, 3),

Bs (1,2,3,4) = — +

84 (1,2,3,4) = — + +

(27)

+ 1

2

FIG. 1. Diagrammatic representation of A„(1,2, 3)
for n=2, 3, and 4.

FIG, 2. Diagrammatic representation of B (1, 2, 3, 4}
for n=3 and 4.
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the error term being of order n'; E[ls. (26) fail
in E[l. (27) by terms of order o, and n', respec-
tively.

Finally, we remark that the general recipe for
determining the coefficient of p" in the expansion

of the correlation factor of P('+) [as in Eq. (22)]
is given in Appendix A, and thus the general co-
efficients A~, B~, etc. , can be obtained through
a change of the expansion to the s space.

IV. SOLUTION OF BBGKY EQUATION

With p(l, 2, 3) given by E(ls. (20), (23), and Fig. 1 as an explicit functional in G, we can now proceed
to the solution of the BBGKY equation (7), which in s space assumes the form

3

T,{g(s»)—in[1 —aG(s„)]}=f[G(s„)+ g n D (1, 2, 3)+O(o. )] '7 p(s»)ds,
n=1

D,(l, 2, 3) =A, (1, 2, 3) —G(s») G(s»),

D,(1, 2, 3) =A, (1, 2, 3) —A, (1, 2, 3) [G(s»)+ G(s»)],

D, (1, 2, 3) =Ad(1, 2, 3) —A3(1, 2, 3) [G(s»)+ G(s»)]+A, (12 2,3)[G(s») G(s») —&A, (1, 2, 3)) .

(28)

Appendix B discusses the uniqueness of the solution of Eq. (7) with P(l, 2, 3) =P (1, 2, 3).
It proves convenient to transform Eq. (28) from s representation to [I representation through the re-

peated application of the Fourier integral theorem. After some algebra, we obtain

n o( F(q) " (T.(T,z(q)=
1 F( )

Z F (q) —
(2 ), 1 ( -) J,' z(q, )[1—F(q, )]F(q, —q)dq,

Q'

, ' Z(q, )[ —E(q,)]F(q,)F(q„)E(tT—2)( , +F(FT—2)) dFT,

(2g)9 2 Z(ql) [ F(qi)]F(q»)F(q»)F08 I) I ( )
F(q2)

F(q)

x [F(q»)+F(q, ) —F(q»)F(q, )]+F((T,—(T)F(q,)[-1+F((T,-(T)+F(q»)+F(q, )+ —,'F((T, —q»)j +F(q, (I)

xE(q)E(q) [1—F(q, —2) —F(q„}]+ F(q, —tT)F(q )E(q„)[1—F(tT, —q ) ——,
' F(q„—q)])dq„, , (29)

with Fl (q) =F(q) . (so)

Introducing the power- series expansion

z(q)= 5 n"z (q),
n=l

(Sla)

and using identities (C1)-(G6) developed in Appendix G, we find from E[l. (29) the following explicit for-
mulas:

Z, (q) = —F(q) —F'(q)/[1 —F(q)],

z, (q) = - .' F,(q), —

Z, (q) = ——,'F, (q)+—,
' (2v)-' J F(q, ) F(q, ) F(q») F(j,—(I)F(q, —q)(ff»,

(slb)

(Slc)

(sld)
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Z~( q) = —4 F, ( q) + (2w) ' f F(q, ) F( q») F( q») F(q, —q )F(q, —q ) (F(q») F(q, ) [1 —F(q, —q )]

+ F(q, )F(q, —q) [1—2 F(q,) —4F(q, q„—)])dq„, (31e)

The inverse Fourier transformation of Eqs. (31) yields the solution expressed in s space, i.e. , 'g (s).
Thus, writing

~ M

'9 (s)=(2m)-' f e
'

Z (q)dq, (32)

we obtain 'y(s)= Q o. p (s),
n=l

(33a)

-fq s F'(q)
,( )=- ( )-

( ) 1 F( )
(33b)

&,(s) =- 2 G'(s),

'g, (s) = ——', G'(s) + —,
' f G(s, ) G(s, ) G(s„)G(s, —s ) G(s, —s )ds„

'g, (s) = —4G'(s)+ f G(s, ) G(s„)G(s„)G(s, —s) G(s, ) G(s, —s) [G(s,)+G(s„)]ds„,

(33c)

(33d)

—fG(s, ) G(s„)G(s, ) G(s, ) G(s —s) [G(s, —s) G(s, ) G(s )+ —'G(s, ) G(s, ) G(s~ —s)

+ 4 G(s„)G(s, —s ) G(s, )] ds„„ (33e)

The diagrammatic representation of 'jj (s)+G (s)/n for n=3 and 4 is given in Fig. 3. A method of deter-'n
minining diagrams appearing in the general coefficient 'JJn(s) is discussed in Appendix A.

In Eq. (33) the terms —Gn(s) jn of 'Jln(s) simply reproduce the approximate solution

&(r) = Ing(r), (34)

(35)

which comes from the crude approximation p(1, 2, 3) = p in Eq. (I). The inclusion of the first-order cor-
rection from Eq. (33b) yields the HNC approximation (9)

t fk. r- [I-S(h)]
(2 )' J

'
~(h)

which is in fact correct to order n, since there is no second-order correction term as is seen in Eq.
(33c). The improved HNC equation with the leading correction is, therefore,

'tt(r) =Ing(r) —,e
(

dk —~ p' f h(r, ) h(r, ) h(r, —r ) h(r, —r ) h(r») dr„,
27) p

(35)

and the similar formula with next-higher accuracy is obtained by including two integrals of the right-hand
side of Eq. (33e).

Equation (35) was first derived by means of a partial summation in the standard cluster-expansion for-
malism, ' and later rederived by Percus' using the method of a functional Taylor expansion. A number of
encouraging results have been obtained from its application to such systems as classical fluids and liquid
He, although the radial distribution function g(r) vanishes at the origin, so that the expansion parameter
a is not small but n =1. Thus, the series expansion in powers of a appears to converge fast even with
n =1. This is also indicated in Sec. VII by the smallness of the correction terms computed with a Gaus-
sian form for G(s).

We finally remark that functional derivatives of Z (q) and 'gn(s) satisfy the symmetry relations'2

'93(S) + ~ G (s)

+4(s) + -LG (s)4 +K
~ x v ~ vv

FIG. 3. Diagrammatic representatio~ of 'JJ„(s)+6 (8)/
n for n=3 and 4.
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5y„(.)/«(s') = 5~„(s')/5G(s),

18V

(37)

for n ~4, which can readily be shown from the explicit formulas given by Eqs. (31) and (33). For an arbi-
trary n, our analysis merely shows that the dominant terms of Z„(q) and '9~(s) [i.e. , —F„(q)/n and
—G (s)/n, respectively] have the symmetric functional derivatives .It is, however, conjectured, but not
proved, that Eq. (37) is correct for all n, or that

5 W(k)/5S(k') = 5W(k')/5S(k), 5%i(r)/5k(r') = 5%(~')/5k(r), (38)

where W(k) is the Fourier transform of 'L&(r) as defined by Eq. (15). In Sec. VI we show that the sym-
metry property given by Eq. (38) can be violated only if certain apparently improbable conditions are
satisfied. A more intensive analysis of the correlation function Z(x) is necessary to determine if the con-
jecture (38) is in fact true.

V. VARIATIONAL GROUND STATE

The expectation value of the Hamiltonian as an explicit functional in the liquid-structure function is now

readily obtained from Eqs. (17), (18), and (31) with k=(np)' '
q and S(k)=1 —E(q)

E = 2Npv(0) + i
k' ' — ———[1 —S(k) ) v(k) dk1 O'N f, [1 —S(k )] ' 4mp

8(2v 'mp S (k) O'k'

+
1 6 2 f kx2[1 —S(ki)][1 S{k2)][1—S(ki2)1 dk„

+
8 2, s J k, '[1 —S(k,)] [1 —S(k„)][1—S(k2,)][1—S(k, )]

xf —,
' ——,'[1 —S(k,)] [1 —S(k„)])df„,+ ~ ~ ~, (39)

in which we note that e does not appear explicitly in momentum representation.
By means of the functional series expansion of Eq. (39) we can show that the first-order change in the

integral E due to g$ —an arbitrary small change of the function S —vanishes if the Fourier transform of
the potential is given by

5202 h2
v(k) = 4, —1 +

8 2, —, f(k'+2k, ')[ 1 —S(k-k, )][1-S(k,)]dk,

2.

J(—,
' k'+k, '- & (k' +4k, '+k»')[ 1 —S(k-k, )] [ 1 —S(k, )]j

x [1-S(k 1Yi)][1 S{k»)][1—S{k2)]dki2 + ' ' = 0 (40)

and we can also find that the second-order term in &~ is positive.
Thus, Eq. (40) determines the optimum liquid-structure function

S(k)= So(k) + S,(k) + S2(k) + .

S,(k) = [1 + 4mpv (k)/O'k']

S,(k) = ' — — 1+,' [1-S,(k- k, )] [1-S,(k, )]dk,42m p
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38,3(k) S33(k) k,3 (I]:-k,)3
8,(k) =

28 (k) 2' )' 1 + k', +, ' [1- o(k-k, )]S,(k, ),dk,

+
( ), —, + --'- —— 1+,' +," [1-S (k-k, )][1-S (k,)]I

x [1 —8(k —f,)] [1-S (k,3)][1—S (k3)] dk, 3 (41)

and the minimum energy is found with Eq. (41) to be

+g +E + ~ ~ o

O'N I 3 1 —S(k)
Ep 3 Npv(0) —

( )3
k

( )
df

4w mp J Sok

S NE,=, , f k, '[1 —S,(k, )] [1 —So(k, )] [1—8,(k„)]dk„,

O'N t k'S, '(k) O3N

(4 )' J 8,'(k) dk+
6(2 ), , f k, '( —, —3 [1—So(k3)][1—So(kk3)])

x [1-8,(k,)][1-8,(k„)][1-8,(k„)][1 —8,(k, )] dk„, . (42)

Using the second line of Eq. (41), we may rewrite the leading term of the variational energy as

E = ,'Npv(0) —
2 —2, 2

+p (k) —e(k) dk,
2 2m 3) 2m

with ke(k) = [(O'k'/2m)'+ (O'k'/m) pv(k))v' (44)

reproducing Bogoliubov's formula for the ground-state energy. " Equation (44), which has been shown by
Bogoliubov to represent the energy spectrum of elementary excitations, reduces to Feynman's formula'

e,(k) = O'k'/2ms(k), (46)

if expressed in terms of S(k) =S,(k), showing the equivalence of the two formulas in the uniform limit. It
is to be noted that the relation between Eq. (44) [or (45)] and the excitation spectrum is not made visible by
our analysis alone.

The expression (19b) for the mean number of particles in state of momentum k(k 330) now becomes, with
the assumption P(k) = 0,

«(k) [1—S„(k)]' [1—S,(k)] I
1 k,*

) ( )[ ( )]IN 48 (k) 8(2)]')'p J 2 k' j

x [I- S,(k- I,)][I- 8,(k, )(]dk, + ~ ~ ~,
and, for small k,

(46a)

n(k) 1 8.(k)
48 (k) 6(2v)' O' Jk' [ 0( ')]

Rewriting Eq. (46a) in the zeroth-order approximation, we have

(46b)
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g (k)/N= [2s(k)] ' [k'k'/2m+ pv(k) —e(k)j, (47)

which agrees with Bogoliubov's result. " The integral representation of Eq. (12) for x= 0 in k space leads
to the formula for n as a function of p

n= f [I-S,(k)]ak—,f S,(k)ak+ ~ ~ ~ . (43)

We conclude this section with a brief discussion of the variational procedure used in deriving the energy
formula (42). In arriving at the optimum relation of S(k) to v(k) and p [i.e. , Eq. (41)], we have included
no terms associated with I agrange multipliers which take into account the restrictions imposed on S(k),
or, equivalently, on g(r) It. is, therefore, quite possible that the resulting energy value is even lower
than the true eigenvalue, and hence there does not necessarily exist a wave function corresponding to the
optimum choice of the indirect variational function S(k). It is to be remembered at this point that in gen-
eral we do not have a one-to-one correspondence between )I, and S(k). It seems infeasible to incorporate
the supplementary conditions on S(k) in the variational treatment, since we know only a few of a (possibly
infinite) number of necessary conditions, and a tractable set of sufficient conditions is not known as yet.

We may, however, remark that the known supplementary conditions, such as S(k) ~0, S(0)=0, S(~)=1,
and G(0) = 1, are satisfied without being incorporated explicitly in the derivation of S(k), and more im-
portant, our results agree with those obtained by Bogoliubov [Eqs. (43) and (47)] and by Feynman [Eq. (4u)],
although the methods appear to be substantially different. The interpretation of Eq. (42) as giving an
upper bound to the true eigenvalue of the Hamiltonian will be legitimate if Eq. (31) along with Eq. (41)
gives a convergent result for 'JJ(s) = %L (x), since the BDJ-type trial wave function (1) is generated through
the relation (33), and the functional form of the relation is not modified by the choice of the optimum form
for S(k). If the present analysis is applied to a charged boson gas at high density, Eq. (42) yields the
ground-state energy E=E,+ E„which agrees numerically with the exact result evaluated by Brueckner. "

VI. FREE-PHONON APPROXIMATION

While the description of a many-boson system in terms of S(k) is convenient, the exact determination
of the optimum S(k) is a difficult task in most cases. Thus, one usually works with an approximate S(k)
in calculating the ground-state properties, and consequently the problem of estimating the error intro-
duced with this approximation arises. In connection with this problem, Jackson and Feenberg" "de-
veloped a formalism, based on the free-phonon analysis, which gives corrections to such quantities as
S(k), W(k), e(k), and E, within the range of the BDJ-type wave function. The analysis starts with the
generalization of the radial distribution function

N(N- 1) N

12'()) 'l(p) J exp(l3 Z v"(ri.)e drg4
p 2&/

(49)

(50)where V*(r) = u(x) —(k'/4m)&"lt (r),
and 1(P) is the normalization constant with the properties f(0) = 1 and I (0) = Z. The corresponding gener-
alized liquid- structure function is

S(k; P) = 1+p f e' '[Z(~; P) - g (~; P)] ar,
and of special interest here is the quantity

s'(k)= [as(k; p)/ap] (52)

Quantities depending on P serve as generating functions and hence the emphasis of P is not on generaliza-
tion but on generating.

The corrections to S(k), W(k), and E/N are given by"

bs(k) = —2e, (k)&u(k)s(k)/e(k)[e(k)+e, (k)],

&W(k) = —2~(k)/S(k)[e(k)~ e, (k)],

Lh, z/N = —[( 7r)2'p] 'f [ (ke) (d(+k) —e(k)]af,

(53)

(54)
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where ~(k) = S'(k)/S(k)+ (a'k'/4m)[S(k) —1]/S(k), (56)

(5V)e(k) = [e,'(k)+ 2e,(k)(u(k)]"'
2

and eo(k) is given by Eq. (45). Equation (57) is the improved energy formula for elementary excitations.
The best choice of the BDJ-type wave function is characterized by

(o(k) = 0, (58)

and a11 correction terms vanish in this case. The essential part of the problem is to evaluate the function
S'(k), which may be expressed in terms of p&'& and p &4&, as

S'(2) = —„Je '*
d IS(~;S)-S(;2)])

N
= (N- 1) Z J e»V*(x )@02.d. rl2 -I'(0)[S(k)- 1]

i&j

= —
2 N[S(k}—1]p jg(r) V*(y)dr + pje g(r) V*(r)dF

~2N 'j e-»P(1, 2, 3}V*(r»)dr», + (2N) 'je 22P(1, 2, 3, 4)V*(r,4)dF», 4. (59)

It is to be noted that the first term of the right-hand side of Eq. (59) is proportional to N, but it is can-
celed by the contribution of the last integral arising from p [g(r») I]g-(r„), which is contained in p(1, 2,
3, 4, ) [ even with the simple approximations (26a) and (26b)].

The practical usefulness of Eq. (59) is limited because the functions p&'& and p&'& are not known exactly,
in general, as explicit functionals in g or S. We can, however, evaluate S (k) in the uniform limit, using
the explicit results for P~'& and P' & obtained in Sec. IG. As was done in solving the BBGKY equation in
Sec. IV, integrals of Eq. (59) are evaluated with the use of the Fourier integral theorem Afte.r consid-
erable algebraic manipulation, Eq. (59) becomes

S'(k) = X(k) — f X(k )[1—S(k, —2)]dk, +, , f(X(k, )[1-2(k„)]([1—S(k)]+2[1—S(k, —2)]—2]

+ —,'X(k„)[I—S(k, )] [I —S(k, —I )])[I —S(k, )][I —S(f, —k)] dl »+ ~ ~ ~, (eo)

where X(k) = S (k) p je V*(x)dr=S'(k)[pv(k)+(k'k'/4m)W(k)], (61)

and W(k) = Z(q)/n is given by Eq. (31) with the k, S(k) notation. If S(k) is generated by the best BDJ-type
wave function, Eq. (40) may be substituted for v(k) in Eq. (61), and Eq. (60) is found to reduce to

(63)

S'(k) = (ff'k'/4m)[I —S(k)]

in agreement with Eq. (58).
Finally, we consider the general case when o[ is not necessarily small. From Eq. (49) one recognizes

that W(k) is generalized to a function of P by

W(k; P) = p je [~(x)+PV*(r)]dr = W(k)+ P[p]d(k)+ (5'k'/4m) W(k)],

which, as a functional in S, depends on P only through S(k; P). Thus, the first derivative of Eq. (63) with
respect to P at ]3 = 0 yields an integral equation of the first kind for S'(k):

pv(k)+ (k'k'/4m)W(k) = JK(k, k')S'(k')dk',

with the kernel given by

K(f, k') = 5W(k)/»(k') .

(64)

(65)

Equation (64) would be difficult to solve unless the kernal K is symmetric, i.e. , unless K(k, k') = K(k', k)."
In the case of liquid He4, the actual numerical evaluation of S '(k) has been carried out by CamPbell" using
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the HNC and the PY approximations. His results show that in both approximations the obtained numerical
values of S'(k) differ very little from those given by Eq. (62).

We now rewrite the total energy, from Eqs. (17) and (18}, as

Z/X= ,'p—v(0) [2-(2m)'p] ' 1 [pv(k)+ (@'k'/4m)W(k)][1 —S(k)]du', (66)

and, in the same way as in Sec. V, obtain the necessary condition for the minimum energy

pv(k)+(@'k'/4m)W(k) =ff«(k', k)(h'k "/4m)[l —S(k')]dk'= fff(k ,'k)S'(k')dk', (67)

where we have used Eq. (62), which holds under this extremum condition. Equations (64) and (67) then
combine to yield

J [Z(k, k ) E-(k, k}]S (k )dr« = 0, (68)

from which follows the symmetry of the kernel SC as given by Eq. (38), provided that K(k, k )-K(k, k)
does not have a zero eigenvalue. Thus, the above analysis supports the conjecture (38) on the symmetry
property of K(k, k ) = 6W(k)/6S(k ), which is an interesting quantity.

VII. GAUSSIAN APPROXIMATION FOR A CHARGED BOSON GAS

In previous sections, we have obtained series expansions in powers of a for various important quantities
of a many-boson system. However, the expansion coefficients are of the form of cluster integrals, and
the actual evaluation of these integrals for a realistic function g(r), or S(k), is extremely complicated.
In this section, we consider the problem of a charged boson gas using the radial distribution function of
the form~a~20

2

g(~) = 1-ne (69)

and investigate the nature of the n expansion. The evaluation of all the integrals can be carried out in a
simple analytic way with G(s) = e- ~s', or E(q) = e—9'/4~.

In Table I we give numerical values of 'lf(s) through the fourth-order approximation for n = 0.5 and 1.0
using the notations"

= In[I-n G(s)],(o)

'y = y (s)+ ) c«& (s)+,n=1, 2, ~ ~ ~
(n) (0)

"
m ~ G (s)

m=1

While 'g appears to be a somewhat poor approximation, g = 'JJ differs little from g, or g re-(0) (1)= (2) . (4)

vealing the accuracy of the HNC equation (35).

TABLE I. Numerical values of —'g(s).

0. =0.5 n =1.0

0,1
0.2
0.3
0.4
0.6
0.8
1.0
1.2
1.4

«g (0)

0.6931
0.6627
0.5815
0.4730
0.3602
0.1760
0.0693
0.0218
0.0054
0.0011

cy (2)

1.499
1.464
1.367
1.233
1.088
0.8238
0.6305
0.5020
0.4169
0.3571

1.497
1.461
1.364
1.231
1.086
0.8229
0.6301
0.5019
0.4168
0.3571

&g(4)

1.496
1.460
1.364
1.231
1,086
0.8227
0.6300
0.5019
0.4168
0.3571

+ (0)

3.476
2.136
1.401
0.9287
0.3897
0 ~ 1438
0.0442
0.0109
0.0021

y (2)

5.078
3.707
2.922
2.384
1.685
1.266
1.005
0.8337
0.7142

5.056
3.687
2.905
2.371
1.678
1.263
1.004
0.8335
0.7142

g(4)

5.044
3.677
2.896
2.364
1.675
1.262
1.003
0.8335
0.7142
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TABLE IV. Numerical values of -E/N and e for the charged boson system.

187

$

n=2 (HNC)
-E '/N o

n=3
-z"'/e

n=4
—Z~4~/lV

p"'z
-s~+/~

0.01
0.03
0.1
0.3
1

3
10
30

24.95
10.94
4.422
1.929
0.7692
0.3238
0.1149
0.04034

0.0159
0.0360
0.0877
0.194
0.442
0.807
1.0
1.0

24.95
10.94
4.422
1.929
0.7696
0.3241
0.1150
0.04034

0.0159
0.0360
0.0877
0.195
0.443
0.811
1.0
1.0

24.95
10.94
4.422
1.929
0.7697
0.3243
0.1150
0.04035

0.0159
0.0360
0.0877
0.195
0.443
0.813
1.0
1.0

25.00
10.96
4.437
1.939
0.7764
0.3272
0.1154
0.04039

0.016
0.036
0.089
0.20

0.46
0.83
1.0
1.0

Numerical values of P(1, 2, 3) and P(1, 2, 3, 4) for n = l. 0 are shown in Tables II and III for two types of
configurations of the particles: (1) straight line, and (2) equilateral triangle or square. The notations used
in these tables are

P =P&(1, 2, 3)exp [- Z o. A (1,2, 3)],n K
=2

P =P (1, 2, 3, 4)exp [- Q o. J3 (1,2, 3,4)],(4)

where PIf.(1, 2, 3) and PK(1, 2, 3, 4) are superposition approximations given by Eqs. (3) and (25'), respective-
ly. We may observe that the relative corrections in bvo successive approximations are always larger in
the case of straight-line configurations, and hence these approximations should fail less seriously for the
equilateral triangle and square configurations.

Finally we list in Table IV the energies of the charged boson system and the optimum values of the vari-
ational parameter o, . Energies obtained using 'JJ ('I) are denoted by E(+), and E@)denotes the energy ob-
tained by solving the BBGKY equation (I) using the Kirkwood superposition approximation plf(I, 2, 3). The
mean-particle separation r~ = (3/4vp)'~' and the energy are given in a. u. (Bohr radius and rydberg). The
inspection of the results reveals thatleading corrections to E"'are negative and small, the largest first and
second corrections being -0.1 and -0.05%, respectively, both at rs =3.0. This seems to be anindication
that the error introduced through the use of the HNC equation (35)in computing the expectation value of the
Hamiltonian does notfalsify the interpretation of the computed energy as an uPPex bound onthe true eigen-
value. " On the other hand, a simple algebra shows that the leading correction to E+) in the o, expansion is
positive and not small [E(&) begins tofail at the second term]; note thatin Table IV, E(+ &E(~), the differ-
ence being 1% at xs =3.0. Consequently, the ground-state energy obtained using ply(1, 2, 3) in the BBGKY
equation should not be interpreted as an upper bound, unless it can be shown otherwise.
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APPENDIX A: EXPANSION RULES FOR
CORRELATION FACTORS

In Secs. III and IV, we considered the prob-
lem of expressing functions P~", P"&, and %, (x)
as functionals in the hole function h, and ob-
tained a few leading expansion coefficients for the
correlation factors', B, and &, as given in the

diagrammatic representation by Figs. 1, 2, and
3, respectively. To determine the general co-
efficient of the correlation factor for any n, we
introduce the following four rules for diagrams
appearing in the expansion: (1) Solid circles are
directly connected among themselves; (2) open
circlt:s are not directly connected among them-
selves; (3) each open circle is connected to at
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least one solid circle; (4) each diagram cannot
be obtained from a simpler diagram (having fewer
bonds) by replacing a bond with a diagram (having
two or more bonds).

Except for the condition (4) being much stronger
here, the rules are the same as those in Meeron's
expansion, "in which case coefficients are given
in terms of f(x) =e'tt(+)- 1. Thus, our new ex-
pansion coefficients are obtained from Meeron's
expansion by dropping diagrams which do not
satisfy the condition (4). As an illustration con-
sider a diagram representing the integral
fh, ~h24h»h„dr„. This can be obtained from
fh„h, 4h34dr, by replacing the bond h34 with

Jh»h, 4dr„and hence does not occur in the new
series for A(1, 2, 3). It may readily be seen that
diagrams appearing in Figs. 1, 2, and 3 are con-
sistent with the above rules.

When n = 2, the actual quantity given by these
new expansion rules is

1 ik ~ r[1-S(k)]'-~(r)+Ing(~) —
(2 ), e

~(~)

and the condition (4) is equivalent to: (4a) Each
solid circle is connected to open circles by at
least three independent paths, and each open cir-
cle is connected to solid circles by at least two
independent paths.

Finally, we remark that the expansion rules
presented here can be shown to be in agreement
with, and equivalent to, the prescriptions given
by Stell for classical systems. '4 He gives two
differentprescriptions, one for n =2 andthe other
for n~ 3.

= Xpg (x»)f [1 g(r»)] g(r») V,% (r») dr„(B2)
where X is a fixed dimensionless parameter.
Multiplying Eq. (B2) by V, lt(x»), and integrating
over r2, we find

fg(r„)[v,&(~»)]'dr,

=' l~ I pf Il -g(~..)ll«(~-». &( -)]

~ [g(~„)v,v(~») ]ldr dr & I&lpf Il-g(~.) ldr.

x f [g(y„)v,e(x„)]'dr, . (B3)

If we now impose the restriction"

g(x) & 1, (B4)

which shows that Eq. (B2) does not have non-
trivial solutions when X = 1 (i. e. , X = 1 is not an
eigenvalue), and hence the solution of Eq. (Bl) is
unique. The several inequalities employed in de-
riving (B5) may be strong enough to compensate
for the assumption of (B4). We have not, how-
ever, been able to prove (B5) without the con-
dition (B4).

APPENDIX C: IDENTITIES NEEDED IN
DERIVING EQ. (31)

Eq. (B3) immediately yields, with the aid of the
normalization condition (4),

(B5)

APPENDIX B. UNIQUENESS OF SOLUTION OF
BBGKY EQUATION

The radial distribution function (69) used in
Sec. VII is never greater than its asymptotic
value unity, and this condition has the conse-
quence that Eq. (7) [with p(1, 2, 3) =pA.(l, 2, 3)]

g(r„)v,~(~„)= v, g(r„)

+pg(~„)f[l g(r„)]g(r„)-v,~(r„)dr, (Bl)

g(~,.)v,& (~„)

has a unique solution. 2' In order to prove this we
observe from the theory of linear integral equa-
tions" that either the inhomogeneous equation
(Bl) has a unique solution [for a given g(r)] or its
associated homogeneous form has a finite number
of linearly independent solutions, in which case
Eq. (B1) has no solution or an infinite number of
solutions.

Let us consider the homogeneous form

We present here several typical identities em-
ployed in reducing the formulas for Zz(q) to
relatively simple expressions (31). The essential
part of the derivation of these integral identities
is to replace the factor q ~ q, by suitable equiv-
alent ones inside the integral signs, using certain
symmetry properties of the integrands (In thi.s
Appendix, equivalence in integrating over variables
q; is indicated by an arrow. ) Thus, we obtain

1 2 1f 2 I~ ~ &2 I 2from q q1= pq +2', - (q-q, ) - 2q,

(2n') 'J ', ' F(q- q, )F(q, )dq, = 2F, (q), (C1)

and, ' F(q, )F(q, )F(q»)F(q —q, )F(q —q, )dq»

', f ( F)q( F)q( —
F»q) ( Fqq, )F(q - q, )dq»,.

(C2)

W q = 2q Lq12+q2J-q. q2,

,'fq q,F(q, )F(q—-q, )F(q»)F(q, )d q„

= fq q,F(q, )F(q- q, )F(q»)F(q, )dq»,
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or

-'f q' q, F(q, )F(q- q, )F,(q, )dq,

= (2m) 'f q q,F(q, )F(qs)F(q„)F(q- q, )dq„; (C3)

from
] W fW W W g W W iW [W

3q. q.&
= 3q I,2+q.»+ q..i- q. q.- —.q ~q»+ q.~

= —.q,
.

q,.
s fq q2F'(&2)F(q q2-)F (&2s)F(&ss)F(&s)dq»s

= -,'-fq q, F(q, )F(q - q, )F(q»)F(q„)F(q, )dq», ,

or

s fq q,F(q, )E(q —q, )Fs(q, )dq,

= —,(2m)-s fq q,F(qs)F(q- q, )F(q»)Fs(q, )dq», (C4)

from

l~ ~ 1~ l~ ~ 1 ~ ~ l~ r ~ ~ w ~ ~ 1 1 2'q =~s'[q»+qsi q'q sq'L(q-q»+q s+qsl=sq

—,
' ~ ~' Zq —q, zq„sq, dq„

= —,
' fF(q - q, )F(q»)F(qs)dq»

or [qr-',) f', ' E(q-q, )E,(q, )dq, = ,'E, (q)-; (C5)

from

l~ ~ l~ I~ ~ ~ 1
3q qi = —.I ql2 + q.23+ q.3~

q'qs q' l(q- q )+q +q +q j= q,

—,-' F(q —q, )F(e»)F(ass)F(es)dq. ss

= —,
' fE(q - q, )F(q»)F(qss)F(qs)dq»s

or s(2s) ' — q' F(q-q, )Fs(q, )dq, =-,F,(q) . (C6)
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IV and V on convergence of the iteration procedure
and uniqueness of the solution for S'(k)/S (k).

The condition (B4) is also satisfied by the exact g(~)

functions of charged boson gas at high density and the
hard-sphere boson system at low density.
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The electrical resistivities of several polyvalent alloy liquids were calculated from the
pseudopotential form factors and Percus-Yevick hard-sphere structure factors of Ashcroft
and Langreth. Good agreement with experiment was obtained by choosing hard-sphere di-
ameter ratios other than one in four of the five systems. It is concluded that the hard-sphere
structure factors with the Ashcroft pseudopotential form factors can give better agreement
with experiment than have previous calculations.

INTRODUCTION

Tomlinson and Lichter' have reported the vari-
ation of electrical resistivity with temperature for
certain compositions of molten Cd-Bi, Cd-Sn,
Cd-Pb, In-Bi, and Sn-Bi. In that paper, the ob-
served electrical resistivity was explained by
using a fluctuation scattering model where the
electron concentration varied with alloy composi-
tion. The deviation in electron-to-atom ratio
from the normal valence was then shown to cor-
relate with the excess free energy of mixing. In
this paper, the isothermal electrical resistivity
of these same alloys is calculated by using the
pseudopotential method; in this case, the con-
duction electrons are considered to be scattered
by a weak potential due to the collection of screened
ions.

An expression for the electrical resistivity of a
liquid binary alloy using pseudopotential form
factors and structure factors (or interference
functions) was written by Faber and Ziman. '
Keating' had shown that the partial structure fac-
tors necessary for writing the electrical resis-
tivity were available from experiment. However,
most available structure factors have been cal-
culated from experiments after certain approxi-
mations, 4 or are available for a limited number
of alloy compositions. ' Recently, Ashcroft and
Langreth' and Enderby and North' have written
partial structure factors for liquid alloys by find-
ing the Fourier transform of the solution of the
Percus- Yevick equation for a mixture of hard
spheres. These structure factors were then ap-
plied to the calculation of the resistivities of sev-

eral liquid alloys by Ashcroft and Langreth. '
In this approach, the resistivity depends upon the
effective core radius of the constituent potentials,
the total packing fraction, the ratio of hard-sphere
diameters, and the composition.

Using the notation of Ashcroft and Langreth, we
have calculated the electrical resistivities of
liquid alloys of the systems Cd-Bi, Cd-Pb, Cd-Sn,
Sn-Bi, and In-Bi. The results are compared with
the experimental values of Tomlinson and Lichter, '
Roll and Swamy, ' Matuyama, "Verhoeven and
Lieu, "and Takeuchi and Endo. "

THEORY

The electrical resistivity of a liquid alloy was
written by Ashcroft and Langreth' as

4 3g 1

p =,
k

Z*J (XV,'(y)S„(y) + 2[X(1-X)]'i'

&& V, (y)V, (y)S„(y)+ (1 —X)V, (y)S„(y)}y dy,

whe~e V&(y) is the electron-ion pseudopotenttal
form factor for component i, Z* is the effective
valence, X is the mole fraction of component 2,
Sf~(y) is the partial structure factor, and y is the
wave number divided by 2k@.

In these calculations, the pseudopotential form
factor proposed by Ashcroft"~" was used. For an
alloy, this'is written

V.(y) ={X'cos(s.y)/[y'+A'f(y)])Z. /Z,

where X' = 1/~aok


