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Charge-Density Fluctuations in Spectral Line Broadening"'
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A method for describing the spectral line shapes for radiating atoms immersed in a plasma
is developed without neglecting ion-electron interaction and without the static-ion assumption.
Both the line center and the wings are investigated, and connection with previous work in

these regions is made.

I. INTRODUCTION

The spectral lines of radiating atoms immersed
in an equilibrium plasma are broadened due to the
perturbation of the atom by both the ions and the
electrons of the plasma (assuming for simplicity
a two-component plasma). The problem of pre-
dicting the line shape for such radiation is diffi-
cult in general, ' but is often simplified by re-
ducing the calculation to one involving independent
treatment of ion, electron, and atomic subsystems.
Recent work' 4 has accomplished this under the
following assumptions: (i) ions may be considered
as static, (ii) ion-electron interactions may be
neglected, and (iii) electron-atom interactions
may be treated by perturbation theory. The first
two assumptions allow the introduction of an ion
microfield function which yields the Stark broad-
ening due to the average static ion field. This is
not a weak interaction effect and may not be ob-
tained by finite-order perturbation theory. The
third assumption allows the electron broadening
to be calculated from a "collision" operator, or
"width and shift" operator calculated to second
order in the atom-electron coupling. The ions
and electrons are thus treated quite differently
in their interaction with the atoms, since the
strong static effect and weak dynamic, or "colli-
sional" effect are two quite different approxima-
tions. In order for this description to be useful,
the part of the line being described must be such
that the radiation occurs in a time short compared
to the time required for an ion to move significantly
(i. e. , across a Debye sphere). On the other hand,
the time of radiation must be long compared to
corresponding tim'es for electron motion since
static electron effects are not included in the colli-
sional approximation. For tunately, due to the large
ratio of ion mass to electron mass, these conditions
are met over an interesting portion of the line.

The description breaks down near the center of
the line since this region corresponds to radiation
over times long enough for the ions to move.
Also, in the line wings the static electron effects
begin to dominate, and again the theory fails. In
the following, these two regions of failure are in-

vestigated. The line center and the wings are
considered separately. Since the static-ion approx-
imation is quite good from the wings to a region
near the line center, it is desirable to retain the
ion microfield function while obtaining corrections
to the static broadening by including ion motion.
This is accomplished without assumption on the
ion-electron interactions, The result is formally
similar to previous work with the difference that
the collision operator depends on total field re-
tarded and advanced autocorrelation functions
rather than the corresponding electron field corre-
lation functions. In addition, there is a term in
the collision operator which tends to minimize
the static effect very close to the center and max-
imize it farther from the center. Similar results
are obtained in the line wings. There, however,
the microfield function is that for the total field
of the plasma, and therefore represents both
static-ion and static-electron effects. Again the
collision operator depends on the total field, re-
tarded and advanced autocorrelation functions
and a term which tends to adjust the total static
effects. It is shown that the exact static result
is obtained in the far wings.

The perturbation expansion for the collision
operator is shown to be, in both cases, an expan-
sion in the charge-density fluctuations. In terms
of the charge-density fluctuations, it is found that
the introduction of a microfield function leads to
the subtraction of the corresponding static charge
limit from the collision operator; that is, when
the ion microfield is introduced, the static-ion
part is subtracted out while in the case of the
electron-ion microfield, the total static charge
contribution to the collision operator is subtracted
out. This is expected since the static charge con-
tribution should not be counted both in the micro-
field and in the collision operator.

It is not known if the regions of validity of the
two cases considered here overlap, and hence a
form appropriate for some intermediate region
may be required. In any case, these results gen-
eralize existing theories for the line center and
wings to include ion-electron correlations, and
ion motion, thereby extending their limits. The
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real and imaginary parts of the collision operator
are related to each other using Kramers-Kronig
relations and to the exact dielectric constant for
a two-component plasma. It is emphasized that
practical calculations are possible in the random-
phase approximation. If ion-electron correlations
are neglected, the results here for the line center
differ from those of Ref. 2 only by the ion-motion
term which vanishes sufficiently far from the line
center. (Strictly speaking, correlations are ne-
glected in Ref. 2, but a uniform negative or pos-
itive background is assumed for each subsystem
to maintain charge neutrality. )

II. LINE-SHAPE FUNCTION

The spectral lime shape for dipole radiation from
an atom in a bath of perturbers is given by'

I(~)= f dte &d d(t)&

&dd(t) &
-=Trpd'd(t),

(2. l)

iHt -iatwhere d(f) is the Heisenberg operator e de
(in units such that 5=1), and d=eR, the electric
charge times the position of the atomic electron
relative to the nucleus (we assume a hydrogenic
atom). The brackets indicate an equilibrium en-
semble average over the system of atom and per-
turbers. ' Since the average is invariant under
time translations, and d is Hermitian, then

I(&o) =v 'Re f dte &d d(f)& . (2. 2)

I(~) =Re—f dte &d'D(t)&
7T p

a' (2. 3)

where now the brackets indicate an average over
only the atomic subsystem. In passing from Eq.
(2. 2) to Eq. (2. 3), it is assumed the ensemble is
the product of a canonical ensemble for the atom
and one for the perturbers. ' The operator D(t) is
the time-dependent atomic dipole operator, aver-
aged over the perturbers

(2. 4)

The transform in Eq. (2. 3) is performed, with the
result

I((o) =Re(i/~) &&D((u)) (2. 5)

where D(~) satisfies an equation of the form'

We briefly summarize the basic ideas in exist-
ing work which is the basis for the generalization
to be given here. Equation (2. 2) may be expressed
as

[- ito+g(~)]D(ar) =d . (2. 6)

V =1Ã
QP

(2. 7)

and Ep is the total electric field at the atom due
to all the charged perturbers

N q. (2. 8)

A coordinate system with the atom at the origin
has been chosen, and a&=we depending on the
charge of the perturber. Usually the plasma con-
sists of electrons and relatively heavy positive
ions. The broadening of the atomic lines by the
ions is then treated differently from that of the
electrons. The reason for this is that the average
velocity of the ions is much smaller than the aver-
age electron velocity, and, for frequencies great-
er than some minimum, the ions may be treated
as static (i. e. , the radiation occurs in a time
short compared to the time necessary for the
field to change). On the other hand, the same
conditions are not met for the electrons except
at considerably higher frequencies. The usual
calculations therefore assume static ions but not
static electrons, the electrons being treated in a
collisional approximation. In addition, interaction
of electrons and ions is neglected in order to fac-
tor the average over the perturbers into a product
of averages over electrons and ions separately.
This amounts to treating electron and ion broad-
ening independently. The resulting form of the
line shape is given in terms of an average ion
microfield distribution function Q(8),

(2. 9)

Here, &&i denotes an average over the ion subsys-
tem, and Ez is the electric field due to the ions.
The line shape is essentially contained in J(g, &)

J'(8, (g) =&d'D(&, ~))

The equation for D(8, ~), corresponding to Eq.
(2. 6), is obtained by expanding the operator
Z(~, g) to second order in the coupling between
the atom and electrons.

In the following, the assumptions of static ions

The form of 2(&) is then obtained by some approx-
imation procedure.

In the case of interest here, the perturbers con-
stitute a two-component plasma with over-all
charge neutrality. The coupling between the per-
turbers and atom is taken to be a dipole interaction, '
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and negligible ion-electron interaction will be elim-
inated. These assumptions arise in the procedure
of introducing the ion microfield function Q(ttI).
One might be tempted to eliminate the introduction
of Q(iF) altogether for this reason, but it is pos-
sible to show that, in the static limit, the use of

Q(g) is equivalent to summing contributions to
the line shape from all orders in an expansion of
the operator Z(~} in terms of the atom-ion cou-
pling . Therefore, it is desirable to express the
line shape in a form which retains the features of
the microfield function, yet does nest require the
above assumptions. Indeed, in treating the wings
we shall enrich the ion microfield function to in-
clude the static-electron effects as well.

Returning to Eq. (2. 5), we wish to calculate
D(~) in the form discussed,

(2. 10)

The most general approaches to the theory of
spectral line shapes have made use of either
Green's functions or Liouville operator tech-
niques. " For the purposes here, the latter appears
to be the most economical and transparent way to
proceed, and will be used throughout. Briefly,
the Liouville operator is defined by its action on
an arbitrary operator of quantum mechanics"

~

~

~

~ ~

p 2 Ni
in +,QV(q q )in iP

i

+ .'Z -V(q.in e

D(~) =i(((o —iI i&LI) ') dI p
(2. 16)

According to the discussion above, we wish to ex-
press the line shape in the form

1((g) =- Im—fd'gQ(g) J(g, ~),

or, using (2. 16)

Re(i /zz) (d(((o zL0 -z~i-) ')pd)

Here, Ni and Ne are the ion and electron numbers
(Nz=Ne = ~). It is important to note that electron-
ion interactions have not been neglected in Eqs.
(2. 15) but have been shared equally between He
and Hi. Finally, the potentials Via and Vea are
the dipole interactions, respectively, between
ions and atom, and electrons and atom.

Equation (2. 10) may now be written

Lf =z[H,f]; (2. 11)
(2. 17)

that is, the Liouville operator gives i times the
commutator with the Hamiltonian H of the quantity
on which it operates. Since &d/&t =i[H, d], we have
formally,

W'ith this in mind, we define two operators
X&'&(X, &u) and K&z&(X, &u) iri the atomic
subsystem by

(((g-iL i~ )-') =-( [u) —iL —iXL.
0 I p a ia

g(t) =e (2. 12) —zX'" (X a&)] ')
For the system considered here, the Liouville
operator is

L =L0+XL, L =I . +L, L =—L. +L (2 -13)
0 a p' I ia ea

(((g —iL —iM, ) ') -=([(g-iL —iXL
0 I p a I

corresponding to the decomposition of the Hamil-
tonian

H=H +H +M, H =-H +H. , H = V. +V
a p I' p e i' I ia ea

(2. 14)

A coupling constant X has been introduced for con-
venience. The free atomic Hamiltonian is H, "
and

Ne p
2 Ne

H =Z en + — QV(q -q )' n=l 2M. p~ ' 'tl

(2. 15)

The right-hand sides of these equations differ
only in the occurrence of I ia or II. The motiv-
ation for introducing these operators is that they
allow the introduction of a microfield function
without any approximation. Consider first the
equation with X~":

([&o - iL AL. - iX&'&(y, &)] ')
a ia ' p

= fd'g([5(g & )(~ zL--.zm-. -zSd'&(X, )]-')
i a ia '

p

= fd'g([5(g Z )(~-zL— —.z~L. (g)
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or, recalling that K'" is defined to be an operator
in the atomic subsystem

([(g - iL - i&)L. - iX' &2(y, (g)] ')
a ia ' p

= fd'g(e(h E-)) .[~-zL -zu. , (S)-zX&'&(&)., ~)] '.

(2. 19)

Here, Lz~(g) is obtained from Lz~ by replacing
E& by S. The second equality follows from the
fact that the ion field commutes with everything
in L and X"&(&)., ~). [Note that the presence of

L, rather than La in the left-hand sides of Eq.
2. 18) prevents the corresponding operation in

((~ - iL, - zM, I)- )p. ] A similar calculation is
possible for the equation containing X"'. De-
pending on which of the two definitions in
Eq. (2. 18) is used, the line shape is given by

I((u) =Im —fd'SQ" (g&)P"(g, (g),

(2. 20)

P"(g, ~) =-(d[~-iL -i&)L. (g)-iX'2&(&)., (g)] 'd),
a ia a'

or I(~)=-Im —fd'SQ'"(g)Pz&(g, ~),

Q&'&(g) =(e(g —E.—F ))
z 8 p

(2. 21)

8"(g, (u)-=(d[(u —iL —i&)L (h)- iV'&(&) (g)] 'd)

x(d[~ -iI -i&)L (g)] 'd),
a I a'

The results (2. 20) and (2. 21) are formally similar
to previous results by construction. However,
both Eqs. (2. 20) and (2. 21) are exact. The reason
for obtaining two expressions for the line shape
is that the first is amenable to perturbation theory
near the line center, whereas Eq. (2. 21) may be
treated by perturbation theory in the line wings.
This may be seen by noting that the microfield
function Q"' is an ion microfield function (although
averaged over the entire plasma), while Q"' is
the corresponding total field (ion plus electron)
function. Therefore, in the wings where static
electron effects become important, they are ac-
counted for in Q"', whereas these same effects
would have to be obtained from K'" to all orders
in X in the first formulation. %'e shall therefore
determine $C'" and X'" to second order in X and
use the formulation (2. 20) in the line center and
(2. 21) in the line wings. It will be shown in Sec.
III that X"&(&)., ~) 0 for large enough )2) so that

1 3lim I(~) = -Im —fd'SQ(g)

which is the exact static-ion- static-electron limit
for the far wings (sufficiently high frequencies
such that the radiation occurs in a time short
compared to the time required for either elec-
trons or ions to move significantly).

It remains to determine K"' and X"' from their
definitions, Eqs. (2. 18). As mentioned above,
X'"(&)., ~) is analytic in &). for ~ near the line cen-
ter, while Xtz'(&4. , z) is analytic in the wings. These
operators will be calculated here only to second
order in X, for comparison with previous work,
although extension to higher order is straight-
forward. A direct expansion in X of the left-and
right-hand sides of the first of Eqs. (2. 18) gives
[recall, for an operator A, (BA '/s&) )
=A z(BA/s&). )A ']

((w - iL, - i&)L. ) ')
ia p

=(~-iL ) '+i&).((g-iL ) '(I, ) ((u-iL )-'
a a I p a

—&).'((g —iL ) '(L ((u —iL, ) 'L ) ((g —iL ) '+O(&).')
a I ' I p a

and ([(g —iL —i&)L. —iX&'&(&), (g)] ')
a ia ' p'

[(u - iL —iV'&(0, (g)] ') -2([+ - iI, - iXt2&(0)]-'
a ' p a

~R'"
x(L. +ia 8X

0)[(g-iI, -iX(0)] '

&x"~"(L. + )[(g -zL -iV'&(0)] ') +O(&).') .
ia 8X a p

Comparing coefficients of X determines X"' to
second order in X:

X&'&(&)., ~) =z&'[(LPL ) -(L. Z I.. ) ],
-1 ~ . -1K—= ((u —iLO), K -=((g -iL )

(2. 22)

(2. 23)

Use has been made of the fact that (LI) =(Lzh)
=(Le~) =0. A similar analysis on the second of
Eqs. (2. 18) yields for X"&(&)., ~) to second order
in X,

244*' (2, (u ) = 42 [(IP4. ) - (2P I, ) ]. )2. 24)Ip Ip

The results (2. 23) and (2. 24) are similar to pre-
vious calculations. Here, however, the static-
ion approximation has not been made, and since

= [a) —zL —zX"'(0, (g)] '+ z&)([+ —zL - zXz'& (0, (g)] '

(&)
x (L. + s I

)[~-iL -iX' t(0&, ~)] ')
Za 8X y=0 a '

p

~ X+ 2X'z( [(o —zI, - zXz'&(0, (g)] '
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the averages are taken over the entire plasma, no
assumptions on the ion-ion, electron-electron,
or ion-electron interactions have been made. Ion
motion as well as electron motion is accounted
for in (LIKLf)p T.he operators X'" and X&" dif-
fer only in the subtracted term. It will appear
that the subtracted term in each case removes
from X(X, ~) the static part accounted for in the
microfield function. Since the microfield func-
tions are different in the two cases, the terms
subtracted from X differ.

III. CHARGE-DENSITY FLUCTUATIONS

i4(upyf (H p(f)H p ) -Q [e+e & Ip. p.
' Iv'v

x (H „H,g,(t))f i+e pv (H p ip(f)Hf ii )])&Ad

IJLl v Iv p, vv Ivv Iv v

- (same with t=0 in correlation functions. ) (3 3)

Here ~» is the difference ~ —(e& - e~); e& is an
eigenvalue of Ha.

The time dependence of H&&~(t) is determined
by the Hamiltonian for the entire plasma; Hf(f)
=e HptHIe p . Using the dipole interaction,
Eq. (2. 7), we find

X (X, (o)f=iX (Lf[K-SP]L )f,(2) . 2

(
iHot -iHot) (

iH, t f -iHot
)I I I I

(3. 1)

+(e 'fH e 'H&))+X (same with Ho H ).iHot -iHot 2

I I a'

The subscripts P have been left off the brackets
with the understanding that all future averages
are to be taken over the plasma, unless other-
wise stated. A matrix representation may be
obtained by taking matrix elements of Eq. (3. 1)
between two atomic eigenstates (of He),

~
p,) and

~v),

The form and analytic properties of V"(X, +)
and&"(X, z), as given by Eqs. (2. 23) and (2. 24),
will be considered in more detail. It will be
found that these operators are determined from
the advanced and retarded field-field autocorre-
lation functions. These in turn may be expressed
in terms of the space- and time-dependent charge-
density fluctuations in the system. It is convenient
to discuss the operators in terms of these fluctua-
tions since more general interactions between
plasma and atom are also expressible in terms
of them, and therefore the discussion is more
general than the dipole approximation used here. "
Also, as already pointed out, the microfield func-
tion and Z(~, 8) with X=O gives a static result,
so it is natural to discuss deviations from the
static result in terms of the intensity of the fluc-
tuations in charge density.

First consider V"(X, ~). The properties of this
operator may be seen by its action on an arbitrary
operator f in the atomic subsystem,

0

-Q [6 pd ~g'd pg gf dte» ((E'E(t)) -(E ))
pg VV pv v p,

V

+a,d, „d „f «e ~ & ((E(t) E) -(E))]) .
pp, vv v v p

(3.4)

The field E occurring here is the total field E = Ei
+Ez. It is clear from (3.4) that the subtracted
term corresponds to a static effect. The corres-

(z)
ponding expression for X» ~&v' differs only
by replacing (E') in (3.4) by (Ei2); i.e. , only the

static-ion part is subtracted out.
The field-field correlation functions, occurring

in both V'& and Sd'&, are of two types, the half
transforms of (E(t)'E) and (E'E(t)). It is con-
venient to introduce the retarded and advanced
correlation functions,

G ((g) = f dte (E'E(t)) (t8),

G ((g)= f «e (E E(t))8(-t),

(3.5)

where 8(t) is the Heaviside step function,

8(f) =1,
8(f) =0,

t&p
t&0

Making use of the fact that the correlation func-
tions are invariant under time translations, it is
easily shown,

f «e (E E(t)) =G ((g),
(3. 6)

x ((E E(f)) -% )) +f «e &g ((E(f) 'E) -(& ))]

(p ~3d" (X, ~g~ v) =Q X, ,f, ,
p, v

p p p, v, p, v JLl, v
(3. 2)

f «e" «(f) 5=G (-~),
0

and Eg. (3.4) becomes

with X r i =X f dt{e» (H& iH& i (&))
(2) 2 ~ i~ ~~t

pv~p V 0 Ipp. Ivv
(2)X,, ((o) = X —,'d, 'd ([G (bee .)

pv, p v~ pp, VV vp,
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1
tt & Id tr ~ d pp g

VV PV V

actions other than dipole, the integral in Eq. (3. 8)
is changed only by the form factor in front of the
charge density. " In terms of the charge density,
the field-field correlation function in Eq. (3. 5) is

x [G (g(u „)-G
R R

X(&(d tt)]+5 td t lI' d II [G (- 4(d tt )
VV PP, V V V V V P,

(E ~ E(t)) = fd'x fd'x', „(p(x)p(x', t)). (3.9)

Introducing Eq. (3. 9) in (3. 5), gives

—G (- a(g „)]}.A
OO V P,

(3. 7)
G ((g) )2 d% ~-2 G (k, (g)

G ((d) G (k, (d)
(3. 10)

G„((u)R

E

G„((u)

a notation anticipating the result shown below that
this is the asymptotic behavior of G ~ (~) for
large ~. Again, the expression for X&
differs from Eq. (3. 7) only in the replacement of
G RA( )by

R

ZQ) E.
G.„((o)

The total field E occurring in Eq. (3. 5) may be
simply related to the charge density of the system,

where the first summation is over all ion coordi-
nates and the second is over all electron coordi-
nates. Further, we may write,

Z

E= fd'x —', e +5(x-q. ) —e Z 5(x-q. )x3 . i . i1=1 1=1

It is easily shown that S(k, ~) is real. The re-
tarded and advanced charge density fluctuations
may be expressed in terms of S(k, &) by noting
that GR(k, z) is analytic in the upper-half z plane
and G (k, z) is analytic in the lower-half plane.
Therefore, we may write

G (k, (o) ——if d(g'
Q) Z6

Sk
G (k, )='f d

40 —CO + &&

(3. 13}

where the retarded and advanced functions
G ~ (k, &u) are the transformed charge density
space and time correlation functions,

G (k, ~) = f dte fd'xe (pp(x, t))8(t),
(3. 11)

A i(gt 3 ik ~ x
G (k, ~)= f dte fd'xe (pp(x t})e( t)

Use has been made of the invariance of (pp(x), t))
under spatial translations.

The analytic properties of X(z) may therefore
be obtained from those of G (k, ~) and G (k, ~).
Before considering these latter, we first define
their full- transformed counterpart

S(k &) (2v) fd xf dte '
(pp(x t)).

(3. 12)

= fd'x —,[en, (x) —en (x)],

E= fd'x —, p(x) .x'

(3. 8)

where e is an arbitrarily small positive constant.
Taking the real and imaginary parts of
Eq. (3. 13) gives

R AReG (R, (u)=wS(k, ~)=ReG (k, ~),
The charge density is p(x) =e[ni(x) —n&(x)]

where ni(x) and nz(x) are, respectively, the mi-
croscopic ion and electron number densities. The
condition of charge neutrality requires fd'xp(x)=0,
and since fd'x (x/x') = 0, we may consider p(x) as
the deviation of the charge density from its equi-
librium value. We note in passing that for inter-

(3. 14)

from which follows

G (k, ~) = [G (0, (g)] . (3. 15)

ImG (k, (u) = —Pf d(g ', = —ImG (k, (u),
00 (d -CO
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The symbol P in Eq. (3. 14) indicates the Cauchy-
principal part should be taken. Equation (3. 15)
shows we need only consider G (k, (3)).

It is now possible to justify the notation
G~R)'4((3)) for +i(3) '(E') in Eq. (3.7) for large (3),

ImGR(k, (d) behaves as

lim ImG (k, ~)-+ f d~'S(k, &g')

=(g 'fd'xe (pp(x, f = 0)).

The existence of the integral over S(k, (d) implies
S(k, +)-0 for large ~ faster than ~ '. Therefore,
ReGR(k, &) vanishes faster than the imaginary
part. From Eq. (3. 16) and Eq. (3. 10), the be-
havior of GR((d) for large ~ is

lim G (~)-~ i(4v) 5 2, k fd'xeR -1. 2 dsk -2 3 ik ~ x

x (pp(x, f = 0)) = —(&$ -=G ((d )

which was to be shown.

Finally, the real and imaginary parts of
G (k, (d) are related by the Kramers-Kronig re-
lations, which follow from Eq. (3. 14)

R ~ J

R GR(k ) -1Pf d
3ImG (k, (3) )

OO R g

ImGR(k, +)= —v 'Pf d+
ReG (k, (3) )

(d -CO

(3. 17)

which shows GR(~) can be neither pure real nor
pure imaginary'4 (unless it vanishes everywhere).
Equations (3. 17) and (3. 14) may now be used in
the expression for GR(~), Eq. (3.10), to give the
desired result,

((o) = (4v) v 2, k S(k, v)
R 2 de -2

OO d%-(3'J dtd'(td'-&) ', 3 '3(k, (a')). (3. 18)
OO 27r '

This form will be of use in Sec. IV, where S(k, ~)
is related to the dielectric constant for the plasma.

The operators V" and K&2' are then

2—3 X Q 38[6 3 d 33 ~ d 33 36
2

(4(3) 33)
V VV Pv V P, 1, 2 VV

R
+ 5 3d 3 3 ~ d ~ (G (- &(u 3 ))*].(3. 18)

pp. vv v v 1 2 V V

Here Gl (~) -=G (~) —Gi~ ((d), 62 (&u)= G (~)
-G R(~). Recall that X"' is appropriate for the
line center while X~" applies for the wings.

Before continuing, it is convenient at this point
to compare with previous results. It has been
shown that 30("(~)-0 for large ~[since GR(&o)

does] and therefore the formulation of Eq. (2. 21)
approaches the exact far-wing static limit. In
the line center, it is easiest to compare with the
results of Ref. 2. If electron-ion correlations
are neglected, we have

G, (&)=f die "(E Z (f))
0

+ f d e [(E. ~ E.(t)).—(E.E.).].

The first term is the result of Ref. 2. The second
term is strictly an ion term and represents the ion
motion neglected there. To the extent that the time
dependence of the ion field in the second integrand
may be neglected, the static-ion result is obtained
as expected. The role of the subtracted term

(Ep) is therefore to eliminate the static con-
tributions to X'". The relationship to the impact
limit is discussed elsewhere. '

It may be disconcerting that G R(h&) di-
verges as 6 0. However, this occurs only at
the very line center in a region probably of little
practical interest. It should be noted that such a
divergence at the exact line center is present in
any theory using a microfield function since for
small enough frequencies the microfield function
represents too much static effect. This may be
seen in the work of Smith" where the divergent
terms first occur at fourth order in the coupling
constant.

IV. DIELECTRIC CONSTANT

It is evident from Sec. III that detailed knowl-
edge of S(k, (3)) is required. Often, it is more con-
venient to consider the (longitudinal) dielectric
constant e(k, (3)), for the plasma. A simple re-
lationship exists between S(k, (d) and e(k, ~)":

X ' ()——'Xd ~ d
QV, P, V PP, V V

Ime-'(k, (g) = —(2v/k)'n((g) 'S(k, (o),

where n((d ) —= (e —1)

(4. 1)

x [Gl 2
(n(d 3)+(GI 2

(- a(d ))~)R R
vP, 1, 2 vP,

In terms of the dielectric constant, Eq. (3.18)
becomes
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GII( ) 4 ( )
d k Ime(k, (g)

iP
d p n((u ) d'k Ime(k, ~ )

+ m, ((u —(u ') (2m)' I e(k, (u ') I' '

iP
+

'll'

on(o, ~) d'k Ime(R, o(g)
(o- 1) (2v)' le(k o~)I'

—R
The expression for G, (~) is

—II( ) 4 ( )
d% Ime(k, (g)

, n(~ ) d% Ime(k, ~ )
((o'-(u (2~)' I & (k, (o') I

'

Using Eq. (3. 16), we obtain for G, (~),
—R

where the sum over ~ indicates a sum over dif-
ferent species, here electrons and ions; C (x) is
the plasma dispersion function Za =—(~/k)( —,mnP)'~',
up~ is the plasma frequency associated with the
nth species, and a =4P&. It may be shown that
the ion contributions to (4. 5) are small for Z& 0. 1.
This occurs for either large ~, as expected, or
small k. This latter fact shows that there are
contributions to G, ,R from the ion-motion term
even for frequencies larger than, say, the ion
plasma frequency. Another way of stating this is
that while e(k, ~) does approach the dielectric
constant for the electron subsystem for large +,
it does not do so uniformly in k. A similar anal-
ysis holds for the imaginary part. It should also
be noted that the simple form of Eq. (4. 5) show-
ing the dielectric constant as the sum of electron
polarization and ion polarization holds only in the
random-phase approximation. In general, elec-
tron and ion contributions to e(k, ~) are not ad-
ditive. Also, the case in which electrons and
ions are in quasiequilibrium at different temper-
atures may be described using (4. 5) with P re-
placed by P~.

(4 4) V. DISCUSSION

It is possible to express (Et') also in terms of the
dielectric constant and the electron and ion po-
larizabilities. However, it may be more con-
venient to calculate (Ei') directly, for example,
using the microfield function Q"&.

Equations (4. 3) and (4. 4) in conjunction with

(3. 19) and (2. 20) or (2. 21) are the principal re-
sults of this paper. The real parts of G, , are
formally the same as the results of Refs. 3 and 4,
with the important difference that here the dielec-
tric constant is that for the entire plasma rather
than for the electron subsystem only. The pres-
ence of I e(k, &u) I' in the integral is often used to
describe results of this form in terms of effective
atom interactions. In this terminology, we see
that (4. 3) and (4. 4) represent an effective atom-
plasma interaction which is dressed by both ions
and electrons as opposed to just electrons. "
For instance, the low-frequency limit of I e(k, +)1~
yields a Debye shielding which is characterized by
the sum of the electron and ion Debye lengths.
In the random-phase approximation the dielectric
constant is'

Explicit calculation of a line shape based on the
results here has not yet been carried out, so
quantitative estimates of the regions of validity
of K "& and X"' cannot be given. As pointed out
the line center is improved over Refs. 2-4, and
the far wings are exact (to the extent that the
density matrix may be factored). The results
here are the exact second-order perturbation cal-
culations in the sense that no approximation was
used in obtaining Eqs. (2. 20) and (2. 21). It is
felt, therefore, that the region of failure of the
results here represent the limitations of the use-
fulness of a microfield function in conjunction
with finite-order perturbation theory. Also, in
the past it has been found that ion-ion correlations
and electron-electron correlations modify the
line shape considerably. This would indicate that
the ion-electron correlations included here may
be significant. Even in the static-ion limit,
G,E(~) does not go to fo dte~~t(EeEe(t))e but
rather

00 ~

lim G, (~) f dte (E E (t)) —2(E E.)
0 eePeip'

(
p&

)
-z' -a'/z'

] (4. 5)

(d

e(k, (u)=I+K, (2[(Z+a/Z ) 'e(Z -a/Z )
P(d ~ (X Q Q

Not only is the average taken over the entire
plasma but the time dependence of the electron
field is generated by the plasma Hamiltonian.

It is felt that the generalization of existing
methods" to calculate the new microfields occur-
ing in Eqs. (2. 20) and (2. 21) will not prove too
difficult. If it should, one can approximately
factor the plasma average to obtain
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already available. This approximation is strictly
valid only if electron-ion correlations are neg-
lected.

=fd'8'Q. (8')Q (8-8'),

where Qt and Qe are the usual ion and electron
microfields for which methods of calculation are
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atomic transitions there must be a dipole associated
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by Na
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references.
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