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The one-particle distribution function which satisfies the Boltzmann equation is interpreted

as the average of the phase-space function 2 ;_ lN SE=TF)oT=7,).

The equation of motion

for this function is a generalized Langevin equation. This equation is the linear Boltzmann
equation to which a fluctuating force term is added. An expression for the second moment of
this force, in terms of the Boltzmann kernel and the equilibrium second moment of the dis-
tribution function, is derived in analogy with the known procedure involving the Langevin
equation. The second moments of the fluctuating pressure tensor and the heat-flow vector
are evaluated by using the first Chapman-Enskog approximation. They are equal to the ex~
pressions derived by Landau and Lifshitz, using thermodynamic fluctuation theory in relation

to the linearized hydrodynamic equations.

I. INTRODUCTION

In this paper, we present a generalization of
the linearized Boltzmann equation that includes
fluctuation effects. The resulting equation is re-
lated to the familiar Boltzmann equation, in the
same way that the Langevin equation of motion
for the velocity of a Brownian particle is related
to the equation of motion for the average velocity
of that particle. For this reason, we refer to
our generalization as the Boltzmann-Langevin
equation.

In a later paper, we will present a derivation of
the Boltzmann-Langevin equation from first prin-
ciples. Here, we obtain the result by arguments
based on physical intuition and analogy.

As an illustration of the utility of the Boltz-
mann-Langevin equation, we obtain from it a
theory ‘of hydrodynamic fluctuations in a low-
density gas. The results are identical with ex-
pressions obtained by Landau and Lifshitz, using
entirely different arguments.

Our discussion is motivated by the following
observation. As is well known, the single-
particle distribution function 7 (¥, V; ¢) that satis-
fies the Boltzmann equation can be interpreted
in two different ways.!™% For example, itis
proportional to the probability density of finding
a particle at a position T with a _velocity v at
time £. In this interpretation, f is found from
the N-particle probability density fN(RN ¥N:¢)
in the phase space of the entire gas by integrating
over the positions and velocities of all but one
particle

F@®, ¥ ;0=N[aRY ! [
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The single-particle distribution function f can
also be viewed as the ensemble average of a
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phase function f(¥, V; #), defined as the physical
density in a six-dimensional position-velocity
space (the “u space”)

fE,¥;t)= E (R -r)6(v -9, (2)
j=1 ]
FE V0 =(fF, ;). 3)

The ensemble average (denoted by { ) () is
taken over some given initial distribution in
phase space, and the hme -dependent positions
and velocities Rj (¢) and v (¢) are parametric func-
tions of the initial posmons and velocities. It

is evident that in a purely mathematical sense
both interpretations are equivalent.

But the second interpretation has an interest-
ing consequence that is not so apparent in the
first interpretation. In any individual member
of an ensemble (i.e., for any specified initial
state of the N-particle system), the actual den-
sity f(¥,V;¢) is not identical with its average value.
There are fluctuations about the average. The
Boltzmann equation describes the time dependence
of the average density f; so we expect that there
is some equation of motion for the actual density
f, such that its average is the Boltzmann equation.
This equation, in the linear approximation of
small deviations of the actual density f from its
equilibrium value fg(F, V), is the Boltzmann-
Langevin equation.

It is possible to derive a linear equation of mo-
tion for the deviation f - fp by means of a tech-
nique due to Mori.® When this is done, and then
an expansion in powers of density is performed,
the Boltzmann-Langevin equation is obtained in
the lowest order in density. Higher-order cor-
rections in density can also be obtained. Ina
later paper, we will describe this derivation in
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detail.

Here, we follow a more intuitive procedure.
The difference between the Boltzmann-Langevin
equation and its average is a random-force term.
This is expected to be a very complicated function
of time and of the initial state of the N-particle
system. But for many applications one does not
have to know its structure in detail. Often it is
sufficient to know its mean value (which is zero)
and its second moment (or correlation function).

The correlation function of the random force
can be obtained from the Boltzmann-Langevin
equation itself, using standard techniques, if we
assume that the random force is a Markov pro-
cess. In other words, we suppose that the random
force at any particular instant of time is not cor-
related with its value at any other time. This
assumption allows us to evaluate the correlation
function by a method analogous to that used in the
derivation of the fluctuation-dissipation theorem
from the ordinary Langevin equation.”’

The Markovian assumption is consistent with
treatment of the ordinary Boltzmann equation as
a Markovian equation, in which the collision in-
tegral does not contain any memory of the past
behavior of the system. It is expected to be a
reasonable approximation when one is dealing
with slowly varying, or low-frequency, processes.
In the limit of low density, it will fail only when
the time scale is of the order of the duration of a
collision.

As an application of the Boltzmann-Langevin
equation, we discuss the role of fluctuations in
the hydrodynamic equations of a low-density gas.
We show that the random-force term in the
Boltzmann- Langevin equation gives rise to a
fluctuating stress tensor and a fluctuating heat
current in the hydrodynamic equations, and we
calculate the correlation functions of these hydro-
dynamic fluctuations. This is done in the frame-
work of the first Chapman-Enskog approximation.

Our results are equivalent to the hydrodynamic
fluctuation theory presented by Landau and Lifshitz
(in the low-density limit).® Their derivation was
based on use of thermodynamic fluctuation theory
in connection with the linearized hydrodynamic
equation directly, while we proceed to the same
results more indirectly by means of the Boltzmann-
Langevin equation.

II. RANDOM-FORCE TERM IN THE BOLTZMANN-
LANGEVIN EQUATION

In this section, we introduce the Boltzmann-
Langevin equation, together with its random-force
term, and we show how the correlation function of
the random force is related to the collision oper-
ator.

First we write the ordinary linearized Boltzmann
equation in a form suitable for generalization. It

is convenient to use the relative deviation from
equilibrium, in place of the average single-par-
ticle distribution function. The relative deviation
@(F,V; t) is defined by

8, ¥;0 =l @, N FEF0-1,E D). @

In this form, the linearized Boltzmann equation is

3 v.¥ F=73, (5)
where J denotes the linearized collision operator.
(Since the explicit structure of this operator is
not used in the following treatment, we do not need
to write it out in detail. )

It is important to note, however, that the oper-
ator J is Markovian; that is, it converts the func-
tion ¢(F,V;#) to a new function at the same time
t, and does not contain any memory effects.

As was indicated in the Introduction, f is in-
terpreted as the ensemble average of the u-space
density f(¥, V; ¢). Similarly, fg(¥, V) is the thermal
equilibrium average of the same function:

=n(m/21rkB T) 32 exp(- mv2/2kB T). (6)

Here, the angular brackets (without a superscript
zero) denote an equilibrium average; and % is the
number density.

In analogy to Eq. (4), we define the instanta-
neous phase-space deviation function ¢(%F, ¥; ¢) by

¢(F,V;8)=(fp)(f-fg) - (7)

The average of this equation is identical with
Eq. (4).

Now we want to write an equation of motion for
¢(T,V;1). Since this equation is linear in ¢, and
its average over some initial ensemble is the
linearized Boltzmann equation, this equation must
be

20, 7Y ~No=FG, 1), ®)

where F(T, ¥; ¢) is the random-force term. The
ensemble average of F must vanish,

(FE,T; )@ =0, 9)
Equation (8) is our Boltzmann- Langevin equation.

It is more convenient to work in the Fourier
representation of Eq. (8)
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%(poz,v;m(ii.v_J)¢(E,v;t)=F(E,v;t). (10)

The Fourier transform of ¢(¥, ;) is ¢(K, V; ),
explicitly,

->

N > =
ok, v (Z)e’k’R?(t)a (t) - )—fBo(E)>;

(11)

1
g

and the Fourier transform of the random force
is F(K,V;¢).

Also, 1t is convenient to define the linear oper-
ator L(k V) as follows:

L& V) =ik.-¥-J, (12)

so that Eq. (10) becomes

2L =F() . (13)

Now we are ready to discuss the correlation
function (or second moment) of the random force.
The first step is to solve Eq. (13) formally, as a
linear operator equation, to give

ok, ¥; 1)

-(¢-s)L

> t >
tL¢(k, ¥;0)+ [ dse Fk,V;s). (14)
(4]

The equilibrium correlation function (or second
moment) of the solution is the following:

> - > > . t t
(p(k,, ¥,)plky, V) =lim [ ds, [ ds,
f=o Y 0

xexpl-(t - s,)L(&,, ¥,)] explt - 8,)L (k,, ¥,)]
X(FEK,,Vy;8,) FK,, V,58,)). (15)

Next, we introduce the assumption that the ran-
dom force is Markovian and write

(F(En Vi 81) Flks, ‘72; sl = ZB(EI’ Vi, ks, V,)0(s,-s5) ,
(16)
where B(&,, V,, k,, V,) is some unknown function.

On substitution into Eq. (15), and after one in-
tegration, we get

(plk,, V1), V) =tli..moo ftds exp{- (t-s)

x[L (&, 7)) + L&, ¥,) 2B, ¥, K, 7). (1)

In order to get B explicitly, one operates on
both sides of Eq. (17) with [L(&,, ¥,)+L(&,, ¥,)],
and one uses the identity

(L +L)e -(t=-s)(Ly+L,) _ -2 e-(t-s)(L1+L2), (18)

where, for simplicity, we abbreviate L, =L(k,, v,),
etc.
The result of this is

(L,+L,){¢,0,) = lim f ds —exp[_ (t=s)(L, +L,)]

[~ o
x2B(1, 2)=2B(&,, ¥, k,, V). | (19)

(In order to get the second equality in the last
equation, we. use a property of the Boltzmann col-
lision operator, that the real part of L is posi-
tive.)

Equation (19) contains the eqm11br1um correla-
tion function of ¢(k,¥). This can be evaluated
easily in the limit of low density, : ‘

: (20)
Therefore, we can write

2B(k,, ¥, K,, V)
=(L1+L2)[fB(u2)]"a(€/’1—Vz)a(i’ln'{z). (21)
By using the identity
(L +Ly)6(V, - V,)6(k, +k,) =26(K, +K,)J(¥,)6(V, = V,),
(22)
we obtain the following simple expression for B:

B(k kz, x}’z)=a(E1+1?2)[f3(vz)]'lJ(Vl)o(\‘zl- 7).

(23)

Thus, the correlation function of the random force
is :

1’

(Fliy, ¥y 1,) P&y, 75 8,)) = 26 (K, +K,)

><z3(t1 -tz)[fB(vz)]'lJ(\’rI)d(Fl— x72) . (24)

In later calculations, the Laplace transform of
this expression with respect to time will be
needed:

(F(Eu Vi €1)F(i;2» vz? €)= 26(1-;1 +i;2)

x o(e, +e )lf, (vz)]' IF )6 -—vz) (25)
where, e.g.,
F(Eb v1; €)= foodt € € 1t1F(izh“;1§t1); (26)

[]

This concludes our discussion of the properties
of the random-force term in the Boltzmann-
Langevin equation.
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III. SOLUTION OF BOLTZMANN-LANGEVIN EQUATION

The formal solution of the Boltzmann-Langevin
equation was already written in Eq. (14). It con-
sists of two parts; the first is

(&, 7; £) = expl- tL(K, ¥ o, ¥; 0), @7)

where ¢(k, V; 0) is the initial value of ¢(k, 7).
This is, in fact, the solution of the averaged
Boltzmann equation, and it can be evaluated in
any of the known approximations, such as the
Chapman-Enskog approximation.

The second part of the formal solution is the
fluctuating part:

1> ~(t-s)L(K, 7).~

t
¢ & 7;8)=[dse

Its average is, of course, zero, but its second
moment does not vanish.

F(k,v;s). (28)

The correlation function in terms of this variable is

->

For further applications it is easier to work
with the Laplace transform

o'k, V;e)=[e + L&, V] F(K, 7€) . (29)

The correlation function of ¢1(E, ¥;€) is the fol-
lowing:

<¢1(E17 ;ﬁ €1)¢1(E2, ‘72; €)= {[51 +L(i21; ‘71)]
x [52 +L(izz; v2)]}-1<F(E1; -‘;1, €1)F(E2, ‘72; €z)>
= 25(k, +K ,)5(¢, +€,){e, + Lk, 7,)]

X [e2+L<E2,VZ)]}-1fB-I(vzw(ul)a(vl -¥,). (30)

For hydrodynamic calculations it is convenient
to use the dimensionless velocity, defined as

E:(m/szT)”zTr . (31)

(9Hky, T e )9ty Tyi€n)) =200 +Kp)orc +€0) 2y T/m)/2(n 2 /m)

x{le, + (2kBT/m)1/2L(E1,

& )le, + (szT/m)l/zL(E

gL e Jole, ~c,). (32)

2’ 1 72

1V. FLUCTUATIONS OF HYDRODYNAMIC VARIABLES

Expressions for the average pressure tensor and the average heat current can be evaluated from ap-
proximate solutions of the Boltzmann equation. The coefficients of viscosity and heat conductivity are
extracted from these expressions. By using the Boltzmann-Langevin equation, one can find expressions
also for the fluctuating parts of the pressure tensor and the heat current, and evaluate their correlation

functions.
The pressure tensor is defined as3™°

P =m [d*U TUfy9,

(33)

where U=V~ (V). In order to get the fluctuating part of the pressure tensor one has to put ¢* into Eq. (33)
instead of ¢. On doing this, using the dimensionless velocity ¢ [Eq. (31)], one gets the following expres-
sion for the Fourier Laplace transform of the fluctuating pressure tensor:

=1 -3/2 , 3 - -C% 1
P e)=2k, Tt 7 fa

The correlation function of this quantity is

w1~ wl ~ 2-3,.3 .3
(Pcy, € ) Py, €)= @kpTn)"n ~ [d'c  [d'c

ccce ~ ¢ (& c;e).

2%1¢1%2%9°

(34)

-C2 -C?%, 1~ = 1, - -
le "2 (¢ (ke )0 (kyco5e.). (35)

An expression for the correlation function of the fluctuating distribution function was already derived
[Eq. (32)]; by substituting it in Eq. (35) we get, after one integration,

-y -y ->
(Prk, )Py, <,

)y=(2m?n/m%2)(2 kT /m )sl'ﬁ‘es(i1 +k

2)6(61 +€2)



187 HYDRODYNAMIC FLUCTUATIONS 271
2 > . > > - >\ >
X fds'c gt © {[el + (2kET/m)1/2L(k1, c)][e2 + (2kBT/m)1/2L(k2c)]} 1 J(E)Ce. (36)
From the properties of the linearized collision operator it is known that J(c)[c?]=0; therefore, we may
write
J[2E¢] = J[2@€T - 5¢2T)]. (37)

In order to remain in the framework of the first Chapman-Enskog approximation we have to evaluate
Eq. (36) in the limits of £, € -~ 0. Doing this, and using Eq. (37), we get from Eq. (36) the following:

=1

(B, € )) BLE,, € )= onPn/n2

Nt /m)* 25, +E o ) faedEe Lol [2@F- 12T, (58)

The viscosity coefficient can be expressed as follows3=5;

1/2

= mn(ZkBT/m) (4/15 1/2) J dccse-CZS(c), (39)

where S(c) is the solution of the following integral equation:
J@E-32T)S()] =2@E-%c2T) . (40)
The correlation function, expressed in terms of the function S(c), has the following form:
a1 1 - 3/2 g \3/2 > = . —— =C% s
(P (kl,el)ﬁ (yy€,)) = (m n/ / )(2kBT/m) / 6(k1+k2)6(€1+€2)jd3ccc e O @T-1c2 ). (1)

Performing the angular integrations and using Eq. (39) for the viscosity we get, after some rearrange-
ments, the final result:

1 1 2
<Pij (kl, el)le (k €,) = 2% T176(k +k )5(e +€ )(6 0 im 6imaﬂ- 3 aijalm) . (42)
This becomes, after inversion of the Fourier and Laplace transforms,
1 - 1 - - - _ - _ 5 _ _2_ .
<Pij (Rl’ tl)le (R 9 tz)) ZkBTniS(R1 Rz)ts(t1 ¢ )(6 léym +6im g3 éijﬁlm) (43)

These expressions are equivalent to the results derived by Landau and Lifshitz.®
The correlation function of the fluctuating heat current can be derived in a similar way. One begins
with the following expression for the heat current3-5:

q=dmfauTuygs . (44)

Expressed in the dimensionless velocity ¢, the Laplace transform of the fluctuating heat current has the
following form:

§& &) = onnfer® DYk gr/ml2 [P eT e O oL E G, (45)
Its correlation function is
(@, € )T Ry, €)= m®n?/an )2k T/m)®

2 -cp2

3 3 - 2= -2, 1> = 1+~ -
x [d cljdgczclc1 Cocae Yo (,,c,;€,)9 @k, c;€,)). (46)

Substituting the expression for the distribution correlation function and performing one integration, we
get
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2 -c?

@& e )a Ey e ) = m2n/an°! 2)(2kBT/m)7/ 25k +E (e vey)[ dctce

1
x{[el +(2 kBT/m )1/2L(E1, ‘é)][e2 + (ZkBT/m »2L (1;2,'5)]}'12J(c)'5c2. (47)

The vector € is an eigenfunction of J(c) with a zero eigenvalue; therefore, one is permitted to write
J(€c?) = J(@E(c?-2)) . (48)

Using Eq. (48) and taking the limits %, € -~ 0, we get, from Eq. (47), the following:

)5/2

Gk e &y ) = 0nPn/20” B2k T/m) 2o +E (e, e ) [ ezt CLae [E P - D] 19)

The coefficient of heat conductivity can be expressed in the following manner3~S5:

1/2 1/2 6

A =%nkB/7r T(ZkBT/m) Jdce e-CZR(C), (50)

where R(c) is the solution of the following integral equation:
J[ER(c)] = Clc? - 3). (51)

When the correlation function [Eq. (48)] is expressed in terms of R(c), we get

3/2

(ﬁ(ﬁl, el)al(ﬁz, 62» = (mzn/21r )(2kBT/m)5/26(E'1+]'{2)6(€1+€2)fd30_5c2e_02<-:°R(c). (52)

Performing the angular integrations and using the expression for the coefficient of heat conductivity, we
get

1 iy _ 2 T
(qi (kl’ el)qj (kz, 62)> = ZkBT )uS(k1 +k2)6(€1+€2)6ij } (53)

On inverting the Fourier and Laplace transforms, this becomes

1 - 1 - _ 2 - _ - _
<qi (Rl, tl)qj (Rz, t2)) =2k, T A\6(R Rz)é(tl ¢

1 »

9 (54)

i’

The last two expressions are equivalent to results of Landau and Lifshitz. ®
In conclusion, we find that the fluctuating part of the solution of the Boltzmann-Langevin equation gives

rise to fluctuations in the pressure tensor and the heat current, and we find that correlation functions of

these fluctuations are related, in a known way, to the coefficients of viscosity and thermal conductivity.

Note added in proof. Many of the results reported in this article are contained in a report by Fox
[Ronald F. Fox, Ph.D. dissertation, Rockefeller University, 1969 (unpublished)], although the methods
used are somewhat different. We are grateful to Professor G.E. Uhlenbeck for calling our attention to
this work.
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