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It is pointed out that the ground-state energy of an electron does not deviate much from mc2, even in
the presence of intense magnetic fields larger by several orders of magnitude than 10" G.

~OR astrophysical purposes, it has recently been
investigated' ' how the ground-state energy Eo of

an electron may be shifted from mc' in the presence of a
very intense static uniform magnetic field H. Without
radiative corrections, Eo does not depend on H. Assum-
ing that the radiative corrections can be described by
adding a term pe H to the Dirac Hamiltonian )where
p = (n/2 )v(eh/2snc) is the Schwinger value for the
anomalous magnetic moment, and where the com-
ponents of e are the Pauli matricesf, one finds for the
ground-state energy of an electron'4

Eo ——eic'
~

1—(a/4v-) (eh H/m' c)
~
. (1)

On the basis that (1) vanishes for H= 7 6X 1O" & and
becomes larger than the rest energy of a muon for
H 10" G, puzzling conclusions about pair creation'
and electron-to-muon decay' have been claimed.

We wish to point out that the extrapolation of (1) to
high-field values is unjustified. A high field will distort
the structure of the electron. The very concept of an
anomalous magnetic moment only means that when the
energy is expanded with respect to H, the linear term
is pe 8, but higher-order terms in H become important,
of course, if H is large. When H is large, it must be
taken into account to all orders; the expansion with
respect to the small fine-structure constant a=1/137
is, however, still legitimate. Therefore, one must com-
pute the Feynman graph of Fig. 1, where the double
line represents the propagation of an electron in the
external field H.

This computation has actually been carried out many
years ago. An essential ingredient is the electron prop-
agator in a uniform magnetic field, which has been
independently derived by several authors' in different
but equivalent forms. The Feynman graph itself can
then be computed. Most authors at some stage went to

*Laboratoire associe au Centre National de la Recherche
Scientifique.' R. F. O' Connell, Phys. Rev. Letters 21, 397 (1968); Phys.
Letters 27A, 391 {1968).

2 H. Y. Chiu and V. Canuto, Astrophys. J. 153, I.157 (1968);
V. Canuto and H. Y. Chiu, Phys. Rev. 173, 1220 (1968); H. Y.
Chiu, V. Canuto, and I.. Fassio-Canuto, ibid. 176, 1438 (1968).

3 M. H. Johnson and B. A. Lippmann, Phys. Rev. 77, 702
(1949).

4 I. M. Ternov, V. G. Bagrov, and V. Ch. Zhukovskii, Moscow
Univ. Bull. 21, 21 {1966).' J. Schwinger, Phys. Rev. 82, 664 (1951).

6 G. Geheniau and M. Demeur, Physica 17, 71 {1951).' R. Kaitna and P. Urban, Nucl. Phys. 56, 518 (1964).' G, Geheniau and F. Villars, Helv. Phys. Acta 23, 178 (1950).

l87

the low-field limit, which was the only one in which
they were interested. A result which is valid for all
field strengths has, however, been given' as the following
integral representation:
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When I is large, the leading term in this Laplace
transform is obtained by replacing the integrand by
its asymptotic form for large s:

I 2 doe 'L
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FIG. 1. Feynman graph for the radiative correction to the
energy. The double line represents the propagation of an electron
in the external field H.
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where L = eAH/m'c'.
When L is small, (2) can be expanded in L and yields

(1).'0 When I. is large, however, one must look for the
asymptotic behavior of (2). Using s= iLvw —as a new
variable, one finds for the integral in (2)
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(the last integral has been taken from a table" ). There-
fore, L&'0 behaves like (lnH)2 for large values of H. A

more careful, tedious, but straightforward study of
(3), with the use of majorizations and minorizations,
gives the following more precise result for the asymptotic
behavior of Eo.

Eo= mc2+ (a/4n. )mc'f Dn(2ehH/m'c')
—C——,

' j'+A+ ), (3)

"I.S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series
and Products, edited by A. Jeffrey (Academic Press Inc. , Xew
York, 1965).

where C"=0.577 is Euler's constant, and where .l is a
numerical constant for which we have only found
bounds: —6(A & 7.

One readily sees from (3) that even for tremendous
values of H (the characteristic field m'c'/eh being
4.4X10" G), the radiative correction to Eii remains of
relative order 0.. In particular, Eo certainly does not
vanish at H= (4ir/n) (m,'c'/eh) = 7.6X10" G, a field
value for which (1) is not valid. Some doubts about the
limits of validity of the anomalous magnetic moment
concept have actually been raised by the authors of
Ref. 2 themselves.
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The formalism of Moen and Moffat is interpreted as a Yang-Mills theory set in a space-time generally
endowed with curvature and torsion.

'N a recent paper, ' Moen and Moffat describe the
- possibility of a generalized definition of "parallel"

transport of a vector nonet )an element of the tensor
representation of the combined group of space-tinie and
f.'(3) transformationsj resulting in (a) a connection
between space-time and internal symmetries without
reference to a "supergroup" and (b) unitary synimetry
breaking induced by the presence of a zero-mass boson
(to first approximation). We show that it is possible
to interpret the formalism in this work as an extended
Yang-Mills theory. From this point of view we see
that a total symmetry group is already "embedded"
in the theory, and that the character of the background
space-time is sufhcient to break the internal symmetry.

To see how it may be possible to make the afore-
mentioned interpretation, we first review some aspects
of a local gauge theory set in a curved background.
At the outset there is, presumably, a matter field which
displays a unitary symmetry characterized by'

0'(z) = S '(~)0(~).

The entities generically designated 5 are taken to be
matrix representations of elements of a group of internal
transformations, and are by assumption functions of
the space-time coordinates of the event point at which
the transformation is made. The internal degrees of
freedom of the f field are thus adjustable at all other
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D„=V„+B„. (3)

D„commutes with both space-time and internal trans-
formations, and serves to establish a meaning for a
parallel transport of fields with mixed indices. In terms
of the vector nonets mentioned in I, the operation of
D~ provides, for example,

D A "=V3-+B„,A ~~=a„A"+ A~'+B„',A'r, (4)

where Greek indices refer to space-time structure,
Latin indices to internal.

Now, the covariant derivative defined in I is just such
an operator, that is, it measures the effect of the total
variation of fields. As expressed in that work, the
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points of space-time, in keeping with the requirements
of a local picture of interaction. To ensure the invariance
of the dynamical structure of this system, it is necessary
to introduce auxiliary field operators B„ that couple
universally with the various f components, and which
transform under local internal group action as

B'„=S '(B„S V„S). —
Here V„denotes the relevant space-time covariant
derivative with respect to the pth coordinate.

In a sense, the B„ fields are like components of an
a%ne connection'; as a consequence, we may define a
totally covariant derivative operator expressed symbol-
ically as


