
P IOX ASIA'I RETRY IN THE DECAY OF POLAR IZED

Z —v n7r y with P('.6p MeV/c, relative to all Z—

decays. This ratio is unlikely to be wrong b~ a large
factor and is to be compared with the Z leptonic
decays, which are about 300 times more probable. To
make this point graphically, we display in Fig. 3(b)
the pion-energy spectrum, which follows from our calcu-
lation (and is identical to that calculated in Ref. 2

because the integration over cose removes the polari-
zation-dependent term). For simplicity, we show only
the limiting cases of pure S wave and pure P wave. In
our notation, the pion-energy spectrum, normalized
to the two-body decay rate, is

dR dr(Z ~ n~y) 1 e' m P'-

T~(P),
dP F (Z ~ n7r)dP ~Po 4~ M Eo(Eo—&)

where the upper (lower) sign refers to pure S wave
(P wave).

In conclusion, we note that, since the kinematic
enhancement of the pion asymmetry for Z —+ nx & is
large only in the region of low pion energy) and since
this region is at present experimentally inaccessible,

the radiative decays offer at this time neither a useful
method of identifying the Z polarization nor a useful
alternative method for measuring the magnitude of no.
Ke emphasize, however, that when the low-pion-energy
region becomes experimentally accessible, " the kine-
matic enhancement of the pion asymmetry in the radia-
tive decay can be a useful tool for studying the structure-
dependent and magnetic-moment effects, in addition
to providing information about Z polarization and
the two-body asymmetry parameter.

A complete study of radiative hyperon decays from
polarized hyperons is in progress and will be published
as a longer article.
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An unambiguous derivation of the superconvergence sum rule from the equal-time commutation relation
is presented. This enables us to show that the canonical commutation relations of meson 6elds lead to the
superconvergence sum rules of higher moments.

I. INTRODUCTION
' 'X an earlier work, ' the superconvergence sum rules
~ ~ for zero-mass-pion-nucleon scattering were derived

by applying the infinite-momentum technique to the
equal-time commutation relation that involves the
pion fields, along with an appropriate subtraction
method. Since, however, the method is not unambig-
uous, especially concerning the dependence of the
scattering cross section on the fictitious external mass
variables, in this article we present another proof of the
above-mentioned assertion that is free of ambiguity.
This method shall be applied to the canonical commuta-
tion relation of the pion fields. All the notation is the
same as in Ref. 1, unless otherwise stated.
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II. ALTERNATIVE DERIVATION OF SUPER-
CONVERGENCE SUM RULE

We start with Eq. (5') of Ref. 1:
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