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Reciprocal Bootstrap Model
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Through the use of a nonlinear equation for the Bethe-Salpeter amplitude, the reciprocal. bootstrap
model of the N(I,J =-,', —,'+} and h(I,J = $,$+} baryons is studied. The results are compared with some
of the consequences of the N jO method, the linear Bethe-Salpeter equation, and an approximation to
the nonlinear equation.

I. INTRODUCTION

A CCORDING to the reciprocal bootstrap model of
the .V(I,J =zi, iz+) and A(I,J =3z, zz+) baryons,

these particles are bound states of themselves and
pions. '' This is known to be a greatly oversimplified
model; there are many other important components,
and the customary static approximation is rather crude.
Nevertheless, since this is the simplest bootstrap model
that is at least qualitatively reasonable, it is often used
for illustrating and testing new techniques and concepts.
In this paper, we examine the iV—6 model through the
use of a nonlinear equation' for the Bethe-Salpeter
amplitude. The results are compared with some of the
consequences of the .V/D method, ' the linear Bethe-
Salpeter equation, ' and an approximation to the non-
linear equation. '

IL EQUATIONS FOR THE STATIC MODEL

I.et the index ~ denote a baryon multiplet of mass M;.
Each M; is assumed to be real (below threshold). De-
note the propagator by S;(E), where E is the energy;
S,(E) has a pole of unit residue at E=M;. The vertex
functions I';, are approximated by the following form:

&', (x,y) = 2@',(x)e,'(y)/g', —e', (x)-e,.(y)+g;, (1)

where

P;, (x)=I',, (x,O)=r, ;(O,x), g;, = I( 00)=g,;,
and the energies of the baryons are denoted by K=M;—x, etc. The motivations for (1) and for possible gen-
eralizations are discussed in Ref. 3.
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The coupled-channel Bethe-Salpeter equations are

P„(x)=P v de I,k'(x, y, M;)S&(M& y)p&;(y—)

g ~klDkl Ckl gj lglkgki )

where the Dkl&' are certain complicated integrals over
the form factors and the propagators satisfying the
relation

D„'= Dlk'&.

A similar equation can be obtained by considering the
extremum principle that is equivalent to (2) when the
interaction is considered as

where

0= fi(&i&vg'g~ 'It ' ~iiiivg'I i "giigi ), i (6)

Ej = 4,, ( )'x(S,M—x)vde,

C;;(x)S,(M, x)I,&*'(x,y,M;)Si, —

X (M& —y)C„;(y)v de v'de'

(r=M, —M;+e, y=Mi, M;+e). —

(y =M'p —M, +e), (2)

where v=v(e) is the phase-space factor for a meson of
energy e, including the standard damping factor; the
contribution of exchange of the 1th baryon type to the
interaction kernel is

I,i,"(x,y,F)= I', i(x,z)Si(M —z)i'ii(z, y)cai'*

(z= x+y+E+M i M, M&)—, (3—)
where the Ci, i'*' are Racah coefficients (crossing matrix
elements).

It is convenient to write Q;, (x) = g;,4;,( ),xwhere
4;,(0)=1, and to consider separately the problems of
determining the coupling constants g;j and the "form
factors" C;,. On the mass shell, we can write (2) in the
form of a nonlinear equation for the coupling constants



The wj' are weights related to the multiplicities. If we
vary with respect to the g's only, and then exhibit
explicitly the quadratic dependence of Ijk" upon the
g's, we obtain

gji ~kS kl fjtgfkgki~ kl

Dw'*= l,~*'I&,'~~i"g, ig is.

Equations (4) and (gl necessarily give the same solu-
tion. In some earlier works' it was assumed that D=D,
which is a simple way to guarantee identity of the solu-
tions. This hypothesis is a useful one, as it leads to addi-
tional restrictions on the D's and E's. Ke have found,
however, in the present model, that it is only good as a
rough approximation.

With the notation y,'= ,g;(w,'g, *')' 't, we can write (6)
or (g) in the standard form for an eigenvalue equation

'=Z X'f~ 'y' (X'=1) (10)

where V,k' can be interpreted as an "effective potential"
for states with the quantum numbers of (i), as averaged
with the appropriate form factors. It is constructed as
follows:

~I~~j Ckl ~t jk gj Igl.k y (11)

where the factor V,s*'= (FC,'/gq')'~'DI, ~&' contains the
dvnamical information. Note that the Racah coe%cients
obey the symmetry relation wj'Ck~j'= wk'Cjgk'.

Equation (10) provides a simple way to estimate the
strength of the forces associated with qua. ntum numbers
for which there are supposed to be no bound states. In
addition, we can estimate the dependence of output

masses on the masses of constituents and exchanged
particles from the values of the V's.

The normalization conditions on the Bethe-Salpeter
amp1itudes are

:V;=1= v de Z,zv,'y, ;(x)'S,'(M, —x)

v de r, 'de'Z;g(n, 'g, ,(x)S,(M, x—)

XI "(xy M;)'Sa(M~ y)dk —(y), (12)

where x and Y have the same meaning as in»,
where the primes on 5 and I denote differentiation with

respect to —E.

III. SINGLE-MULTIPLET MODEL

We reexamine here the degenerate LSU(4)j version
of the S—5 model (cf. Refs. 3 and 6) in order to see how

sensitivelv it depends on the spectral function of the
baryon propagator

S(E)=(M—E) '+ p(e) de (M+e E) '. (13)—
1

The static model thus involves two arbitrary functions
v and p, although in most treatments the second has been

'tt d It is well known that the static model really
f thedepends on only one characteristic parameter o t e

function 7,
—a cutoff energy. In our analysis we consider
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kI. C I PROC' I. BOOTSTRAP XIOI) F I.

the form

p(e) = 8b(e a)+—13'b(e a')—. (14)

Ke first took 8'= 0; then a represents an average energy
of the continuum contribution to S(E), and 8 represents
the net strength of this continuum. For a given value
of a, the parameter 8 is fixed by imposing the normal-
ization condition (10) on the bound-state solution.

We took for r(x) the expression

r. (x) = (x' —1)"'(I+x'/A'-') '

Just as in other formulations of the static-bootstrap
model, the solution depends very strongl& on A. In Fig.
1 we show some results for A = 5 Lwhich is approximately
right, in units of the 5(. (4) av'erag-e meson massj. For
5V(4), the Racah coeScient is C=47j63.

For given 8 and a, we solved Eq. (2) by the iterative
procedure described in Ref. 3; then 8 was found from
(12). In Fig. 1, g is plotted against a. Observe that g is
insensitive to a, provided a is big enough. (Because only
the relative values of g are interesting, we normalized to
the value at a= 2.2, which is near the peak of r.) Neat,
for a= 2.2, we reduced 8 bi. 10%, and, for various a',
we adjusted 8' in accordance with (12). The results,
graphed in Fig. 1, indicate again that the form of the
solution is very insensitive to the form of p(e) for large e.
The results also show that the shape of p(e) near thresh-
old is quite significant; this part of p would, however, be
determinable, in a more extensive study, by considera-
tion of the low-energy scattering given by the potential
(3). The parameter 8 (and in the second case, 8') varied
almost linearly with a (u'), and in such a way that the
low-energy form of S remained nearly invariant.

We conclude that the static-bootstrap model really
involves only one important adjustable parameter,
namely, the damping parameter A. In order to have a
solution, it is necessary to consider a more general form
for the propagator than is customary, but when the
high-energy form of the propagator is adjusted in ac-
cordance with the supposition that a bootstrap solution
exists, it does not matter how this adjustment is made.

b,e,c
(b)

b

stants are gl1=0.87, gi=0.6, and g2=0.79; the relative
strength of the continuum contribution of the propa-
gator 8 is 2.5. In Tables I and II, we compare the results
with that from the simple static-bootstrap model in Ref.
4 and with that from Ref. 6.

TAt&LE I. Comparison of the coupling-constant ratios and the
mass differences in this work, simple Bethe-Salpeter bootstrap
model {B.S.),and strong-coupling models (S.C.). gp;q- (model of
row 1)/g~-,q- (model of row 2) = 1, and gq~ {model of row 2)/g~~
(model of row 3) =0.9. The experimental value of the first column
is (gaA' /g, v.~- )2=0.5.

This work
B.S. model, ' Ã —3
B S model b

Imax =Jmax = ~
S.C. model"'

SV(4)," 20 multiplet

(g~~./ ger. / g~x /
gx.v.)' g~~. g~~.

0.475 1.1 0.75 0.385
0.36 1.5 0.9 0.311

0.5
0.5
0.31

0.7 0
0.7 0
075 0

a Reference 6, Lin et aL,.
b Reference 6, Chen-Cheung.' V. Singh, Phys. Rev. 144, 1275 (1966); see also Ref. b above."Reference 6, ).in et at.

(c)

I' IG. 2. (a) Vertex equations for Eqs. (2) and (4) . (b) Nor-
malization equations for Eq. (12). The notations are D,&"=DJ;:"
and Vf„'= V;J,'. (c) The graph representation for E,~.

IV. RESULTS

In this section, we shall present the results of the
reciprocal bootstrap model for the X and A. We denote
X b& the subscript 0, and 6 by 1. The mass difference
5—X= 6a and the three coupling constants g,+, are to
be determined from the model. Both propagators are
given by Eqs. (13) and (14), with 8'=0 and with the
same value for a that is taken to be 1. An iteration pro-
cedure was started by assuming some initial values for
8, 8, and also for the form factors 4,, when one of the
baryons is on the mass shell. The three coupling con-
stants go, gr, and g~ are then determined from Eq. (4).
Equations (2), (4), and (12) were then solved (Fig.
2), by a complicated iterative method, for the g~+, ,4...8,
and 6. The mass difFerence is 5=0.385. The coupling ron-

This work
L-C model'
B.S. {B=0)
B.S. {B=~ )

B.S. (B=2.5)
D.E'.b

dv/
d JJle

0.43
1
1
2

3
1

0.4

aV/
G) JJJc

0.51
0
1
1
2

0.75

0.94
1
3

:& B—1
6

1.14

G) JJl, /
80lc

0.46
1
1
3
2
5

0.36
—1

BJJlg ~
/

G) JJlc

0.54
0
2
3

5

0.65
2

a Reference. 6
b Reference 4,

TABLE II. 0 V/OJJl of this work estimated by taking the average
of the U's in Table IV. G) V/BJJl for B.S. models are calculated from
the changes in the propagators only, neglecting the induced
changes in the vertex function and using 8=0. D.F. is the result
from Ref. 4. B.S. stands for linear Bethe-Salpeter model. The sub-
scripts e, c, and a to mass JJl indicate the corresponding propagator;
see Fig. 2(b) for illustration.



F . S. C H E ih —C H E U 3 G A X D R. F. . C U T Ko S K Y

1.0

0.9

TABLE III. Values of DISCI&' as defined in Eq. (4) and values of

DI,&&" as defined in Eq. (9). Dp is the value calculated according
to the L-C model (Ref. 6) normalized to unity for 0000. For illus-
tration of D,&", see Fig. 2(a), right-hand side of the equality.

O.B-

0.7

0.8

0.5

0.4

0,3

0.2— d—b
C

aceb

0000
0010
0100
0110
1000
1100
1010
1110
0001
0011
0101
0111
1001
1011
1101
1111

D &ec

0.79
0.39
0.61
0.33
1.36
0.79
0.67
0.58
1.46
1.16
0.95
0.58
1.70
0.92
1.25
0.77

D ~ec

1.26
0.54
0.54
0.26
1.64
0.81
0.67
0.39
1.64
0.81
0.67
0.39
2.18
0.99
0.99
0.57

(Dp)gee

1.0
0.62
0.62
0.23
1.38
1.0
1.0
0.62
1.38
1.0
1.0
0.62
1.77
1.38
1.38
1.0

TABLE IV. Effective potentials as defined in Eq. (11).For illus-
tration of V&, ', see Fig. 2(b), right-hand side of equality.

0.0
0

Frc. 3. Insert: Various form factors 4;;(x). x is the amount by
which the second baryon is away from the mass shell. The first
baryon is on the mass shell. x is in units of a. Form factors (a), (b),
(c), and (d} plotted in one graph for better comparison.

The form factors 4;; are plotted against x in Fig. 3
(one of the baryons is on the mass shell).

From the result of this work, the "effective potential"
as dehned in Eq. (10) can be obtained. First we list the
values of Dg, I&' and D~~" in Table III. The values of
V, I,

"are then presented in Table IV. Variations of V, I,
"

with respect to baryon mass in various propagators are
listed in Table II and are compared with those from
several other models.

Some general conclusions from this work are the
following. Although some of the input (the form of the
baryon propagators and the structure of the off-mass-
shell vertex functions, for example) is quite diferent
from what is usually assumed in the static model; the
general nature of the results is rather similar. However,
results pertaining to perturbation of the model, es-
pecially by the method of Ref. 4 and, to a lesser extent,
by the method of Refs. 6, may not always be justified, as
is indicated by Table II. Compared with the method of
Ref. 6, it is mainly the normalization equations, not

abeca

00000
01000
00100
01010
01100
01110
10001
11001
10101
11101
11111

1
0.9
0.87
0.86
0.81
0.74
1.82
1.47
1.22
1.1
1

the mass-shell vertex equations, which are affected by
the more complicated structure of the vertices and
propagator s.

A pessimistic note is that the technical problem of
finding the solution in the two-multiplet case was much
harder than it was in the single-multiplet case. Further
progress will have to be made on this technical problem
before a more realistic model calculation along these
lines can be attempted. (For interesting related articles,
see Ref. 8.)
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