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Model expressions for the forward off-shell Compton scattering amplitudes with suitable high-energy
behavior are given and used to compute the proton-neutron mass difference.

I. INTRODUCTION

HE notorious negative sign! for dm=m,—m,
(which felicitously licenses the stability of the
hydrogen atom against weak decay) contradicts naive
expectation and has defied a satisfactory theoretical
explanation for decades. The hope of Feynman and
Speisman? that the negative magnetic energy may over-
whelm the positive Coulomb contribution was dashed
by the eventual measurement of nucleon electromag-
netic form factors. (In nature, the form factors are
damped too rapidly at high photon momentum for the
derivative magnetic coupling to gain ascendance.) Thus,
by the beginning of this decade it was generally realized
that the Born term alone is inadequate® and that more
details of strong interaction must be considered.

So far, none of the many attempts at dealing with
the strong interaction dynamics,* though all rather in-
genious, can claim to be totally satisfactory. A some-
what less ambitious approach, proceeding within a
symmetry-group context, was advocated by Coleman
and Glashow in 1964.5 They delegated all strong-inter-
action effects beyond the nucleon pole to an /=1,
I3=0 scalar meson capable of tadpoling into the
vacuum. Two years later, Harari® made a significant
advance by considering the high-energy behavior of the
amplitudes appearing in the Cottingham formula’
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where /12(¢?») are the two invariant amplitudes® de-
scribing the forward Compton scattering of off-shell
photons:

Tu= tl(quV)[q2guv_Qqu]+t2(q2’V)[V2guv+ (QQ/MQ)P;:P»
+/m)(pugtpug)]. (2)

Regge theory hints that the large-» behavior of {; is
determined by the intercept of the leading trajectory
with I=1, C=1, G=—1, P=(—1)7, that is, the 4,
trajectory, and that #1(¢>,v) — »* and f,(¢*») — v*2 as
v—x with ¢* fixed [a=0a4,(0)]. As « seems to lie
experimentally between 0 and 1, #,(¢%,») can never aspire
to be represented by a fixed-¢*> unsubtracted dispersion
relation, while a once-subtracted dispersion relation for
ls(¢*,v) may be dominated with a bit of good fortune
by the nucleon pole alone. However, now one must
deal with a basically unknown ¢*>-dependent subtraction
constant #(¢%v,). Harari interprets the contribution of
this subtraction constant to éz as the manifestation of
the tadpole of Coleman and Glashow. Thus, the tad-
pole need not be a physical particle in the sense that
it may appear as a propagator pole, but is merely a
convenient mnemonic summarizing partially the effects
of the high-mass states nelgected. Harari’s achievment
is to correlate the postulated symmetry-group properties
of the unobserved tadpole with the actual symmetry-
group properties of the observed low-mass resonances.?

In this note, we write down for #;(¢%») explicit expres-
sions based on the Veneziano model,’® which exhibit
suitable high-» Regge behavior and contain the correct
nucleon-pole expression, and proceed to calculate the
resulting ém.!' Although the value of any blatantly
model-dependent calculation would appear to be some-
what dubious, this procedure provides us with a theo-
retical laboratory to observe the explicit contribution
of high-lying states and their partial summary in the
subtraction constant. Furthermore, this would subject
the Veneziano model, which has had a measure of suc-
cess in strong-interaction processes,’*> to an electro-
magnetic test.
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II. FORWARD COMPTON AMPLITUDES WITH
REGGE BEHAVIOR

The model expressions we propose for ;(¢*v) are

i =] | i A ]
o ey -1-a) ’
V()=
Lo(g2y =—~1 2—a) fo( )[-*-—ﬂ- —+ @ — —V):I,
W u? ( sl (V(s)+3—a)
s=(p+q)?, v=pg m.

m is the nucelon mass, and the mass u characterizes the
slope of the nucleon trajectory N(s)=3+ (s—m?)/2u*
(2u?/m*= 72~1.12, experimentally). By isospin, only
an /=% baryon trajectory can contribute, and so only
the nucleon trajectory is assumed to enter.
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For the Sachs form factors, we take the dipole fit!3:
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where ¢°>0.72 BeV? and A’=¢o*/m?. a, the intercept
of the A, trajectory, is experimentally!* about 0.34.
These amplitudes exhibit the assumed Regge be-
havior and we fix their scales by requiring that the
nucleon pole appears with the correct normalization.
Note 1(¢:*) has a v= 0 pole only for ¢*=0, conforming
to the decoupling of the longitudinal mode of massless
particles.® Models of the Veneziano type were originally
intended to describe only on-shell hadronic processes.
To include the off-shell photons,'® we assume the stan-
dard expedient that only the particle-trajectory-particle
coupling function depends on the masses of the external
particles and not the trajectory itself. This is equiv-

13 More sophisticated fits differ in high-¢? behavxor but pre-
sumably the dominant effect comes from the low-¢% region. A
recent reference on form factors is D. H. Coward e al., Phys. Rev.
Letters 20, 292 (1968).

14 For the value of a, see R. J. N. Philips and W. Rarita, Phys.
Rev. 140, B200 (1966) V. Barger and M. Olsson, zbid. 146 1080
(1966); K. Igi and S. Matsuda, Phys. Rev. Letters 18, 294 (1967),
K. V. L. Sarma and G. H. Renninger, ibid. 20, '399 (1968);
S. Y. Chu and D. P. Roy, ibid. 20, 958 (1968); 21 57 (1968);
V. Barger and M. Olsson, ibid. 18, 294 (1967). The value of a is
by no means certain. We take a=0.34=0.03 as given in the last
reference cited above.

13 The usual fixed pole coming from the current commutator
does not exist here, of course, while the discussion of H. D. 1.
Abarbanel and S. Nussinov [Phys. Rev. 158, 1462 (1967)] is
irrelevant for the mass difference.
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alent for our purposes to the ansatz that the nucleon-
resonance electromagnetic transition form factors have
shapes similar to the nucleon electromagnetic form
factors, a proposition which holds for example in vector-
meson-dominance models.

Experimentally, «,4x,20 or kp?—«,*~~0, where the
magnetic moments are w,= 14kp, un= ks Thus, fi(¢?)
is proportional to 2x,, whence dm; may be referred to as
the magnetic mass. On the other hand, f(¢?) is pro-
portional to (144m?/¢*+2k,), indicating that &m.
is mainly Coulombic. Note also the emphasis on low
¢% in éms, causing a positive mass difference in calcula-
tion using the Born term alone. (In an obvious notation,
we have referred to the contribution of f; to ém as ém,.
om= dm,~+ dms.)

III. NUMERICAL EVALUATION

Once expressions for {; have been given, only the
integration in the Cottingham formula need be dis-
cussed. We venture to describe the evaluation in some
details, hoping to indicate the relative contribution of
the different terms involved. As the possibility of an
exact evaluation appears somewhat remote, we resort
to a judicious mixture of approximate analytical and
machine integration.

Let us treat dm, first. Write an unsubtracted disper-
sion relation for f,, or in other words, express /; as a sum
of poles. Integrate over » and define for convenience
u=¢*>/m*. Then

e’ g —sinra
oms=—- m( > re- a)(———)
472 \m T

w I'(n+a—1)
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0 0 u

The nth term in the series then represents the contribu-
tion of the nth resonance lying on the nucleon trajectory,
with #= 0 designating the nucleon pole. As a function
of photon mass squared, &,(%) rises from zero at =0
to a positive peak at ¢>~0.2m* before being damped by
the form factor. Great care must be taken if b,(u) is
evaluated on a machine, as for large #» and small # it
involves the small difference between two numbers
several orders of magnitude larger. Note that B,>0
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and B,>0. Taking into account the y-function factors,
we see that each of the resonances contributes a
negative value to ém, while the nucleon contribution is
positive. In this model, all the higher resonances join in
working against the nucleon pole. Although B, may be
evaluated exactly, the ensuing sum over # can only be
done by machine. Instead, we choose to approximate
the u integral by taking the first Taylor expansion in %
of the square bracket appearing in b.(#) (the =0
nucleon term must be treated separately). Then B,
~1/n and the series may be evaluated exactly:

—sinra\ = I'(n4a—1)1
1‘(2—a)< ) 2 —=—y—y(2—a)

- =1 T'(n+1) =
=—0.75 for a=0.34
=—2(1—In2) for a=%,

where ¢ is the digamma function and v is the Euler-
Mascheroni constant. We then evaluate the first few
B, on a machine to correct for the Taylor approxima-
tion. As the sum converges rapidly, this procedure vields
a reliable answer. The Taylor approximation is even
more justified for B,, and B, dominates over B,. The
result is

Mo = myBor - §mresonance~1 1-().28 MeV.

Although the resonance contribution lies in the right
direction, it does not overwhelm the Born term. From
our discussion above, it may be seen readily that a
larger o would favor the resonances.

The evaluation of dm; is considerably trickier as #
has slower convergence properties. We write a once-
subtracted dispersion relation for ¢ in the variable
¢*+2vm and subtracted at ¢+ 2vm=2u> After inte-
gration over v,

e\ /3m\ / m?
omy = — <_><_)(—>Ax(# P —uat—1)
472/ \ 7 /\2u?
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u

—1ir / du an(se).
0

The nth term in the series represents the contribution of
the (n—1)th resonance (conforming with the nomen-
clature already introduced) lying on the nucleon tra-
jectory. The #=1 term corresponds to the nucleon pole
itself and the z= 0 term is the subtraction. (It must be
emphasized that we do not disperse at fixed ¢, in
contrast to Harari.) A Taylor approximation for the

NUCLEON ELECTROMAGNETIC MASS DIFFERENCE

2229

A, may be verified explicitly to be unreasonable, par-
ticularly since the sum converges rather slowly. We
have integrated A, carefully on a machine. Extreme
caution must be exercised as the integrand again in-
volves the near cancellation among several large num-
bers. The integrand a,(u) starts out negative and attains
a deep negative peak at #~0.1 (or photon mass squared
¢*~0.1m?), then turns positive around #~1 and again
peaks at #~2 before being damped by the form factor.
It is remarkable that the positions of the peaks and the
point of sign change hardly move at all as » varies.
The heights of the peaks go down as 1/# roughly, how-
ever, and the positive peak flattens out considerably.
Thus, although the positive-peak height is only about
1o the height of the negative peak, its contribution
almost cancels the contribution of the negative peak to
give the integral a rather small negative number. This
unpleasant feature virtually assures that a rough first-
trial machine calculation would produce misleading
results. Typical values for (2/7)4,X10% are (n=0,
+50.8), (n=1, —8.9), (n=2, —3.8), (n=10, —0.4),
(n=20, —0.16), (n=101, —1.96X107%), (n=200,
—8.8X107%), (n=1001, —2.5X10-%). Unfortunately,
the large positive subtraction term successfully resists
the hordes of small negative nucleon and resonance
terms to yield émi>~4-0.5 MeV.

Finally, we may of course integrate directly with the
v functions on a machine, without transforming
first into a sum. Besides losing insights into the relative
contribution of the various terms, we have to laboriously
compile v function for complex arguments. We have
carried out such a calculation roughly, and the order of
magnitude and the sign agree with what are concluded
above. For example, in the expression for ém;, the inte-
gral over » turns out to be negative for small ¢ but
crosses over to positive values too soon at g2~0.2m2.
The result is a positive dm;.

IV. CLOSING REMARKS

We summarize the situation. In ém,, the major con-
tribution comes from B, with its empha.51s on the low-¢2
region. Each of the resonance has a 51gn opp051te to that
of the nucleon. A glance at the expressions given above
reveals that bo(u) differs fundamentally from & ().
For small u, bo(#) ~u~1/? while §,o(%) ~ constant. The
nucleon pole thus dominates dm,. For ém,, the nucleon
and the resonances all contribute negatively. Here,
however, a subtraction term looms large and posmve
A calculatlon of the present sort is not totally insensi-
tive to the value of « and the form factors. As noted
above, a large a would favor the resonances. In con-
clusion, we are led to suggest that a model of the
Veneziano type fails to describe the effect of the higher
resonances in the nucleon electromagnetic mass dif-
ference. It damps them too severely.

We make a closmg remark about the “tadpole” term
of Harari coming from the subtraction at ¢*=0 of a
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and crosses over quite soon to negative values at
¢*=2au?, before the damping from the form factor has
set in. Finally, we need not emphasize again that the
calculation presented here is specifically model-depen-
dent and serves only as an illustration.

dispersion relation in ». Thus,

5mlllumri — _%/ {lqzqzll(QZ)()) .
0

Harari proves that

al
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The conjecture on the role played by the Pomeranchuk singularity in finite-energy sum-rule (FESR)
calculations and within the duality framework is reviewed and subjected to various experimental tests.
It is assumed that in the FESR sense the Pomeranchon is built from nonresonating background contribu-
tions, while all other trajectories are constructed from s-channel resonances. Previous results based on
this conjecture are reviewed first. A detailed model for =V elastic scattering is then compared with experi-
ment. All 7=1 #-channel amplitudes for =N scattering are entirely accounted for by the N*-resonance
contributions, while the /=0 ¢-channel amplitudes require significant nonresonating background. This
background is predominantly imaginary, and is presumably associated with the Pomeranchon-exchange
term. The residue functions of the P and P’ trajectories are calculated, using FESR and assuming our
conjecture. The calculated functions are then used to predict high-energy differential cross sections and
polarizations for =N scattering, in reasonable agreement with experiment. The P’ trajectory seems to
favor the Gell-Mann ghost-eliminating mechanism both in #V and in KN elastic scattering. Inelastic
processes such as K*n — K%, KN — KA, and KN — K*N are predicted to have purely real amplitudes
at large s and small ¢. Various phenomenological models are shown to be consistent with this prediction.
The paper concludes with a few remarks concerning various properties of the Pomeranchon, the connection
of the model with multiparticle production and to photon initiated reactions, and the (only) failure of
the model in baryon-antibaryon scattering.

I. INTRODUCTION number of experimentally identified hadronic states!
seems to support this idea. Theoretically, it is now be-
lieved that the duality between direct-channel reso-
nances and crossed-channel exchanges? allows the reso-

nance-dominance assumption to coexist with the usual

N the absence of a better understanding of strong-
interaction dynamics, it is customarily assumed that,

in many cases, direct-channel resonances dominate the
strong-scattering amplitudes over a wide energy range.

This working hypothesis has gained new popularity in
the last year or two. Empirically, the ever-increasing

* Research has been supported in part by the Air Force Office
of Scientific Research through the European Office of Aero-
space Research, OAR, U. S. Air Force, under Contract No.
F-61052-68-C-0070.

exchange mechanisms or even to replace them in some
cases. In practice, many model calculations actually

! See, e.g., the rapporteur talks of B. French, A. Donnachie,
R. D. Tripp, and H. Harari, in Proceedings of the Fourteenth
International Conference on High-Energy Physics, Vienna, 1968
(CERN, Geneva, 1968).



