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In the limit of a dipole-dipole interaction between neutral atoms and the binary-collision ap-
proximation, we present a theory of pressure broadening in which the multiplet structure of
the atomic levels is considered. The appropriate Schrodinger equations for the collision prob-
lem are numerically integrated to obtain solutions for both resonant and foreign gas broad-
ening. The presence of radiation fields is neglected in the first half of the paper, where the
collisional time rate of change of the density matrix is found. The pertinent collisional decay
parameters are extracted from these equations. The ratios of the parameters of the average
magnetic dipole to electric quadrupole moment obtained were 1.21 +0.02 for the relaxation of
the entire ensemble in resonant broadening, 0.966+0.012 for the relaxation of the initially
excited atoms in resonant broadening, and 1.12 +0.02 for the relaxation of the initially excited
atoms in foreign gas broadening. In the second half of the paper, the collisional broadening
results are incorporated in a systematic evaluation of (i) spectral profiles (effects arising
from the velocity and recoil of the emitting atom are neglected), (ii) Hanle-effect line shapes,
and (iii) laser phenomena. For the case of resonant broadening, the radiation trapping pro-
cess is reviewed and its influence on line shapes discussed. Finally, a detailed comparison
of the theory with experimental findings as well as with previous theoretical results is made.
We conclude that the dipole-dipole interaction is sufficient to explain most cases of resonant
and some cases of foreign gas broadening.

I. INTRODUCTION

In the past decade, there has been increased
interest in applying pressure broadening theory
to obtain information about atomic systems. The
earlier impact theories of Lindholm, ' Foley, '
and Anderson' have been modified or extended by
several authors. ' " In effect, Lindholm and
Foley neglected the multiplet structure of the
atomic levels and explained the collision process
in terms of collision-induced phase shifts in a
two-level problem. For a given atom-atom inter-
action, this procedure led to a predicted value of
the ratio of shift and width for collision-broadened
spectral lines.

Anderson included multiplet structure and showed
that its inclusion led to an interaction matrix that
did not commute with itself at different times. The
problem of noncommutativity led to several approx-
imate methods of handling the problem. Either the
noncommutativity was ignored, or the problem was
solved by perturbative techniques using a cutoff
procedure to treat close collisions. To check the
errors introduced in such approximate methods,
it is desirable to find numerical solutions of the
Schrodinger equation for the collision problem.

In the impact approximation and in the limit of
a dipole-dipole interaction between neutral atoms,
we shall present such a numerical theory of pres-
sure broadening in which we consider the multiplet
structure of the pertinent atomic levels. Both res-

An outline of the paper is given below.

Sec. I
Sec. II

Sec. III
Sec. IV
Sec. V

Introduction
Approximations and method of ap-
proach
Solution for resonant broadening
Solution for nonresonant broadening
A generalization of the theory of
Secs. IG-IV to allow for additional

onant" and foreign gas broadening will be studied
by similar techniques to obtain the various multi-
pole decay parameters of the problem as well as
the collisional time rate of change of the density
matrix of the system under consideration.

Several similar calculations have appeared for
the case of resonant broaden jng9, s2~ &5~ 22& 26~ 28, 3

there have been numerical discrepancies between
some of these results. We hope that our results
will resolve these differences. The techniques
employed are essentially equivalent to those of
Dyakonov and Perel, ' Omont, "and Kazantsev"
which, in turn, reflect the work of Anderson. We
include the resonant broadening results for the
sake of unity of presentation and as an independent
numerical check of previous results. In addition,
we shall work in the magnetic quantum number rep-
resentation for the density matrix as well as the
irreducible representation commonly employed
and shall incorporate our results in a systematic
treatment of evaluating experimental line shapes.
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Sec. VI
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Sec. VIII

Sec. IX

Sec. X
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virtual transitions and broadening of
both upper and lower levels
Effect of interaction with radiation
fields
Nonresonant line shapes

A. Spectral prof iles
B. Depolarization effects

(Hanle effect)
Laser phenomena

Resonant line shapes
A. Depolarization effects

(Hanle effect)
B. Spectral profiles
C. Laser phenomena

Comparison with other theories and

experiments
Discussion of results
Numerical solution for resonant case
Numerical solution for nonresonant
case
Treatment of close collisions by an
adiabatic approximation
Procedures for performing the needed
averages over impact parameter, rel-
ative speed, and collision orientations

II. APPROXIMATIONS AND METHOD OF
APPROACH

The physical system to be considered consists

In Secs. II-V, we shall neglect all interactions
of the atomic system with radiation fields and con-
sider those changes in the system caused solely by
collisions. This will give rise to a calculation of
collision broadening parameters. In Secs. VI-VIII,
we shall extend the calculations to allow for the
presence of spontaneous emission and obtain line-
shape formulas corresponding to various experi-
mental situations. We shall see that the average
electric-dipole-moment decay parameter associ-
ated with two radiative levels is responsible for
the shift and width in spectral profiles. The var-
ious multipole decay parameters associated with
a given atomic level will be relevant to a discus-
sion of Hanle-effect line shapes. In addition, we
shall indicate how a study of laser phenomena can
be instrumental in determining broadening param-
eters. For the case of resonant broadening, we
shall review the resonant trapping process, '
and exhibit its importance in line-shape calcula-
tions.

In Sec. IX, we shall compare the results with
other theories and recent experiments, "~"
and give values for certain oscillator strengths
based on the theory and experimental results. A
short discussion of the effects of very close col-
lisions will also be given in Sec. IX, in which we
argue against the use of some "intuitive" strong
collision cutoffs previously used. "~ "~"

of an excited atom (emitter) undergoing collisions
with ground-state atoms (perturbers). In general,
the interaction between the emitter and a perturber
is an exceedingly complex function of their separa-
tion. However, if only those collisions in which
the impact parameter is much larger than atomic
dimensions are considered, the emitter-perturber
interaction can be represented by the electrostatic
multipole expansion. We shall retain only the
leading dipole-dipole term of this expansion.

The assumption that the interaction can be ap-
proximated solely by the dipole-dipole term is not
valid for very close collisions. To treat such col-
lisions properly would require a demanding quan-
tum treatment of the problem. The dipole-dipole
approximation will be valid if close collisions do
not contribute appreciably to the line shapes.

When the emitter and perturbers are atoms of
the same kind (resonant perturbers), the dipole-
dipole interaction will contribute in first order. If
the oscillator strength of the resonant transition
(the transition from the excited to ground state) is
relatively large, one should expect the dipole-
dipole term to provide a good approximation to the
total interaction, since its effective range will be
many times greater than atomic dimensions. On
the other hand, if the emitter and perturber atoms
are different (foreign gas or nonresonant pertur-
bers), the lowest contribution from the interaction
occurs in second order. In general, this will lead
to an effective range for the dipole-dipole interac-
tion on the order of or less than 10 A. At this
range, one may already question the validity of the
use of a pure dipole-dipole interaction. The only
justification for its use in these cases will be
found in the agreement between theory and experi-
ment.

One should note that even in the case of resonant
broadening, the second-order or nonresonant ef-
fects may be comparable with the first-order or
resonant effects if the oscillator strength of the
resonant transition is small. However, for reso-
nant broadening perturbers, we shall consider only
those cases where the resonant effects are domi-
nant.

Figure 1 illustrates the general form of the in-
teraction potential seen by the emitter in a colli-
sion with a single perturber. The time t = 0 is
chosen to coincide with the point of closest ap-
proach. The amplitude of the central peak is
dependent upon an inverse power of the impact
parameter b of the collision. Since the amplitude
falls off rapidly with impact parameter, the sig-
nificant collisions occur only with impact param-
eters on the order of some critical impact param-
eter bo. We can choose bo as that radius in a
hard-sphere model which will produce optical
cross sections equal to those predicted by the
theory to be discussed in Secs. III-V. The radius
bo is essentially equal to the Weisskopf or optical



187 INFLUENCE OF COLLISIONS ON LINE SHAPES 223

U(t)

FIG. 1. General form of the
emitter-perturber interaction
potential.

[%nb 'v] '»r = b /u, or Stmb '«1, (la)0 c 0 0

which is the requirement that the average number
of perturbers in a sphere having the optical colli-
sion radius bo be much less than unity. Since the
time between collisions is also apyroximately the
inverse of the "collision width" I,"&, an alternate
form of Eq. (la) is

«[I' ]
C C

(lb)

Equations (la) or (lb) are criteria for the "impact

collision radius" and will depend on the strength
of the interaction and on the average relative
speed of the emitter and perturber.

The collision time 7~ will be defined as the dura-
tion of the interaction pulse shown in Fig. 1, when
the impact parameter is bo. As we have already
noted, collisions with larger impact parameters
(and larger collision times) will not prove to be
very significant in the broadening problem. To
a fair approximation, one may take rc =ho/v,
where v is the average relative speed of the emit-
ter and perturber. For a typical case, ho=10 '
cm and v= 5 x 10» cm/sec giving rc= 2 x 10 " sec.

One need not consider collisions between three
atoms if the time between binary collisions is
much larger than the collision time. The time
between collisions is approximately given by [atm
xbo'v] ' where %is the perturber density. Thus,
three-body collisions may be neglected if

approximation" of pressure broadening
theory'& ~'&'& ' which, in this context, states that
one is able to consider each collision as an in-
dependent event. For the purposes of this work,
we shall restrict the discussion to pressures
where the impact ayproximation is valid.

Finally, we note two additional assumptions
which will be made. First, it will be assumed
that the perturber atoms follow straight-line clas-
sical paths. Second, we shall make several as-
sumptions on the relative magnitude of (rc) ' com-
pared with energy-level separations (to be dis-
cussed in Secs. III and IV) which effectively treat
the collision as adiabatic with respect to the fine-
structure separation and diabatic with respect to
the Zeeman splitting. Neither these assumptions
nor the dipole-dipole approximation are valid for
very close collisions where the collision time is
short. Such effects will manifest themselves in
the wings of the lines, and we should not expect
the theory to provide an adequate description in
this region.

With the above assumptions, it is necessary to
consider only binary collisions and we shall pro-
ceed as follows: (i) The Schrodinger equation for
emitter-perturber system is obtained. (ii) A
given collision geometry is chosen and the change
in the wave function resulting from the collision is
calculated. For distant collisions (b» bo), the
change in the wave function may be obtained by
perturbation theory, but for intermediate colli-
sions (b = bo), a numerical solution is necessary.
Very strong collisions (b «bo) are treated by an
additional adiabatic approximation to be discussed
and justified in Appendix C. (iii) From the colli-
sional change of the wave function, the collisional
change of the density matrix of the emitter-per-
turber system is found. (iv) The density matrix
is contracted to provide the change in the density
matrix of the emitter and yerturber separately.
(v) One then multiplies the change due to a single
collision by the differential rate of such collisions
and averages over all possible collision histories
to obtain rate equations for the density matrix.

III. RESONANT CASE

The resonant case arises when the perturber and emitter possess identical energy schemes such as
shown in Fig. 2.

The emitter is in a linear superposition of the states a, b, and s, and the perturber is in the ground
state s before the collision. The transition a - s is the resonant one while state b has beenintroduced to allow
for a study of optical transitions between excited states a and b. The level a will be taken to have total
angular momentum j =1 and levels b and s to have j =0. We shall assume that the dominant broadening
mechanism is the resonant dipole-dipole interaction between the states a and s. In that case, the levels
shown are the only ones requiring consideration. At any time t during the collision, the state vector of
the system of emitter and perturber may be written

lg(t)) = Q ga (t)lm;s) ce +(t)&s;m&] exp(-iE f/Fi)j + [&(&)I bs)+ (bt)ls;b &] exp(-iE f/5)
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j=o
j=o

FIG. 2. Atomic structure of emitter or perturber for
the resonant case. The transition a- s is the resonant
one, where s is the ground state.

FIG. 3. Collision axes for the standard orientation
Qp. The emitter E is at the origin and the perturber P
at R(t) in the xz plane. The perturber moves with rel-
ative speed v in the -x direction and the impact param-
eter 6 is along the z axis.

+ Zr f, (t)im;m') exp(-iE, t/5)+g(t)ls; s) exp(-iE t/g) .
ynrn myn' SSmm'

(2)

The first letter in each ket stands for the emitter state and the second for the perturber state. The m
refers to a magnetic substate of the a level (j =1), and the b to the lower radiative state shown in Fig. 2.
The energies Eab are defined by

E =E +E
ab a (3)

where the E's are the energies of the various levels.
The first step in the calculation is to compute the effects of a given collision. At a later stage, an aver-

age over-all collision histories will be performed. For our given or "standard" collision orientation
(designated by Qo), we take the impact parameter b along the z axis, and the perturber moving in the xz
plane with speed w relative to the emitter. The axes are chosen with origin at the emitter as shown in
Fig. 3. The dipole-dipole interaction is of the form

U(t)=[R(t)] '( p p —3[p R(t)][p ' R(t)]/[R(t)]'j, (4)

where p =eQ. r. (E), and p =eQ. r. (P) .
Z 2. P

The separation of emitter and perturber is denoted by 5(t ), while rt (E) and r j (P) represent electronic
coordinates of emitter and perturber, respectively. If we define pE =e(xE, yE, zE), pP =e(xP, yP, zP),
and choose the time origin such that R(t) = bz —vtx, the interaction takes the form

U(t) =(e'/[R(t)] Hx x [(R(t))' —3v't']+y y (R(t))'+ z z [(R(t))' —3b']+(x z +z x ) (3bvt)). (5)

Utilizing the fact that p can be expressed in terms of components of an irreducible tensor of rank 1, the
nonvanishing matrix elements of U(t) are found to be (the axis of quantization is taken along the z axis)

(n100;n 00i U(t)ln Im; n lm ) =+[e'a '/(R(t))'] [T (n O, n 1) T (n 0, n 1)]([5(m, —1)—5(m, 1)]

[5(m, —1)—5(m, 1)][(R(t))'—Sv't'] —[b(m, I)+5(m, —1)][5(m, 1)+5(m,-1)](R(t))'

+ 25(m, 0) 5(m, 0) [(R(t) ) 2 —3b'] + 3(v 2 ) bvt ([5(m, —1) —5(m, 1))5(m, 0)+ [5(m, —1)

—5(m, l)]5(m, 0))} = (n 1m;n 1m iU(t)in 00;n 00)

(n 00;n 1m i U(t)ln 1m;n 00) =+ [e'a /(R(2t))~][T (n O, n 1) T (n O, n 1)] ([5(m, —1)
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—b(m, 1)][&(m,—1)—5(m, 1)] [(R(t))' —3v't'] + [&(mE, 1)+&(mE, —1)][&(mP, 1)

yb(m, —1)](R(t)) +25(mE& 0)5(m&& 0)[(R(t)) —3b'] + 3(v 2)bvt([5(m
&

—1) —5(m, 1)]6(m, 0)

+[6(m, —1)—5(m, 1)]5(m, 0))] = (n 1m;n100~U(t) ~n 00;n 1m )*,~P

where T(nj, n'j') is the reduced matrix element in units of the Bohr radius ao57 of the irreducible tensor
of rank 1 formed from the components of p between states nj and n'j' of the atom in question, while
5(m, m') is the Kronecker 5.

The Hamiltonian for this two-particle system is H= HO+ U(t), where the unperturbed Hamiltonian H, sat-
isfies the relationship HO Im; s) =Ems lm;s). It will be convenient to introduce the following notation for
the interaction matrix of the two-particle system:

a1+;sO* sO+;gi* bO*;s0* sO+;bO+ ai+;ai+ sO*;s0+

aig 'sOQ

sO+;ai+
b0+;s0+
s0*;bO+
a1+;ai+
s0*;s0+

0
v t(t)

0
0
0

v(t)

0

0
0

0
»(t)

0

0
0
0

H~(t)
0

0
0

F(t)
H(t)

0
G~(t)

0 I

0
0
0

c(t)

In this notation, each label represents the njm
values of emitter-perturber multiplets so that,
for example, the matrix element between states
n, j,+; n, j,* and n, j,+; n4j4* is itself a matrix of
dimension (2j, + 1) (2j, + 1) by (2j, + 1) (2j~+ 1). The
matrix U(t) can be thought to act on the corre-
sponding wave vector given by

a(t)
w(t}

I (( )& = „(,)
c(t)

f(t)
g(t)

The elements of I g(t)) are each column vectors;
for example, if I g(t)) is given by

Z a, ~n j m;n j m')exp(-iE t/5)
mm'

+ 2 b, ~& j m;v j m')exp(-iE t/h)+ ~ ~ ~
&

I mm
mm

then the vector a is composed of the (2j, +1) (2j,
+ 1}elements amm

' (m =j„.. . , —j,; m' =j„.. . ,
—j2), the vector b is composed of the (2js+1)
x(2j, + 1) elements bmm&(m =j„... , —j„

p o

m =j4, ... , -j4j, etc.
We seek the change in I g(t)) caused by the col-

lision. Since the collision occurs in a time rc(b)
« b/v, the Fourier transform of the interaction
matrix U(t) will have non-negligible frequency
components up to the frequency

In order for the matrix U(t) to contribute in first.
order, the difference in frequency &d between the
emitter transition from its excited state to some
lower state and the perturber transition from its
ground state to some excited state must be less
than &uc(b). Such first-order processes may
lead to the transfer of excitation from emitter to
perturber. We shall make use of the adiabatic
approximation which states that all such first-
order processes contribute a negligible amount,
except those of a resonant nature in which the
emitter and perturber transition frequencies are
identical (or nearly so). For the systems under
consideration, the fine-structure separation of
the pertinent levels is greater than 10"sec ' and
we may take this as the value of &d." The adia-
batic approximation will begin to fail when c = &d
or at b=10 ' cm so it will surely be valid if the
dipole-dipole approximation is valid. Selection
rules may also inhibit first-order processes, but
we shall always refer to the "adiabatic nature of
the collision" as that condition which allows us to
neglect such effects.

In this section, we have assumed that the first-
order or resonant effects are dominant over all
second-order effects. Under the adiabatic ap-
proximation, only the elements V(t) and V~(t) of
the interaction matrix U(t) represent resonant
processes. Thus, we shall be concerned only
with the change in the transition amplitudes rep-
resented by the vectors a, (t) and w(t) in Eg. (9).
The time-dependent Schrodinger equation, in the
interaction representation, reduces to the two
vector equations

~ (b)= [7 (b)] '=v/b.
C C i@a= V(t)w, ilaw= V (t)a, (10)
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where the matrix V(t) is given by

V(t) = exp(i3', t/n) U(t) exp(- iÃ, t/n) .
Since the collision is localized in time about t =0,
we can take the initial conditions at t = —~ (before
the collision) and seek solutions for t =+ ~ (after
the collision). The initial conditions are

a(- ) = a„w(- ~)= O.

We introduce time evolution matrices r (t ) and
R(t) defined by

a.(t) = r(t) a, w(t) =R(t) a,0 0 (12)

which obey the matrix differential equations

inr= v(t)R, inR= v (t)r,
with initial conditions r( ~) =1, R(- -~) =0. The
explicit form of V(t) is determined by Eq. (7) to
be

x(t) Y(t) z(t)
V(t) = Y(t) —2X(t) —Y(t) = V (t),

z(t ) —Y(t) x(t)
(14)

where

X(t) = e'a '~ r(sO, al)i' (2[R(t)]'-8v't'j/8[R(t)]'

Y(t) = —e'a '~ r(so, al)
~

'bvt/(~2)[R(t)]',

Z(t) = e'a '~ r(sO, al)
~

'v't '/2[R(t)]',

and the form for a(t) is

ao

The exponential factor in the matrix elements
of V(t) will be of the form exp(i~zt), where ~g is
the Zeeman splitting of level a. For the signif-
icant collisions, we shall assume that the colli-
sion frequency &c(bo) =10" sec ' is much larger
than the Zeeman splitting. This implies that
exp(i&uzt) is a slowly varying function of time com-
pared with V(t) and the exponential may be evalu-
ated at t= 0. Thus, collisions are always dia-
batic with respect to the magnetic sublevel sep-
aration of the emitter and, as will be shown, can
always magnetically reorient the emitter.

With this assumption, Eqs. (10) become

ina= V(t) w, inw = V (t) a

From Eqs. (15), it is easy to see that D(t) =S*(t),
so that the matrices T and R can be expressed
solely in terms of S as

r(t) = Re[s(t)], R(t) = iIm[s(t)].
Equation (15a) must be solved numerically

since the matrix V(t) does not commute with V(t')
for t at'. The solution of Eq. (15a) is obtained
in Appendix A. This solution, together with Eqs.
(12) and (18), provides a complete determination
of the change in the wave function as the result of
a single collision. Rather than work with the wave
function, it will prove more convenient to work
with the density matrix of the emitter-perturber
system. The density matrix is defined by

p(t) =
I q(t)& &y(t) I,

with Ig(t)) given in Eq. (9)." As we shall see,
the reduced density matrices of emitter and per
turber will prove relevant. These matrices are
defined by

I
p =Trp

y

II
p =Tl p.

(17)

(18)
The trace in Eq. (17) is over all perturber states
while that in Eq. (18) is over all emitter states
We denote by 5pI and 5pII the changes in pI and pII
caused by a collision. Due to the adiabatic nature
of the interaction, one gets contributions to
5pImm I only if the perturber is in its ground state
after the collision and contributions to 5p~mm I
only if the emitter is in its ground state after the
collision. The latter case corresponds to a trans-
fer of excitation. The net result is that both 6pI
and 5pII can be expressed directly in terms of the
components of I g(t)). The value of p(t) just prior
to the collision will depend on the past collision
history of the emitter and will be represented by
p( t, c). Furthermore, we shall write p(- m, c)
—= p(c). Thus, for our standard collision geometry,

= [r(t = ~, b, v, n )p (c)
I

xr (t=~, b, v, 0 ) —p (c)]
I

0 mm' '

5p, (b, v, 0, c) = [a(, c) a (,c) —a(c) a (c)]mm mm'

(15a)

(15b)

Sum and difference matrices S(t) = r(t)+R(t) and
D(t) = r(t) —R(t) are introduced which transform
Eq. (13) into

ins= v(t)s,
inD = V(t)D, —

s(- )=D(- )=1.

xR (t= —~, b, v, Q )]0 mm

where we have used w(c) = 0. One should note

(2o)

5p, (b, v, n, c) = [w( )w ( ) —w(c)w (c)]mm' ' ' o' mm'

= [R(t = ~, b, v, B ) p (c)
I
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that the evolution matrix T(t, b, v, A) for the spe-
cific binary collision does not depend on the pre-
vious collision history.

In Sec. VIII, we shall need the quantities de-
fined by

p (t) = p (t) + p (t),
I II

and bp(t) = bp (t)+ 6p (t)
I II

(21)

In terms of components, Eqs. (19)-(21)may be
written60

bp, (b, v, n, c) = g T, (b, v, A )p, (c),I
mm' ' ' o' ll, mm'

(22a)

bp, (b, v, n, c) =JR, (b, v, n )p,(c),II

(22b}

bp, (b, vn, )c= gS, (b, v, n )p, (c),
ll'

mm' ' ' o' l, mm ' ' o ll'
(22c)

where

only carry out the transformations

I'
p =&(n)p u (A), (25a)

where

,~~
(b, v, n} = Z m' (n)~', ,(n)

p, p, , QQ

x x' (n)x', ,(n)T,""(b, , n ), (27)

I'
bp =m(n)&p u (n), (25b)

where the $(n) are rotation matrices. "Substi-
tuting Eqs. (25) into Eq. (24) and using the or-
thogonality relations for the S matrices, ~ one
solves for the change in pI I and finds

bp, (b, v, n, c) = Z T, (b, v, n) p, (c),I pp'

(28)

ll'T," (b, v, n) =T,(b, v, n)T', &, (b, v, n)

l, m l', m"
ll'R, (b, v, A) =R (b, v, A)R~,&,(b, v, A),

S, (b, v, A)mm'

=T, (b, v, A)+R, (b, v, n).ll' ill
mm' ' ' mm'

(23a)

(28b)

(23c)

and j and j' are the j values associated with states
m and m'.

Having obtained the change in pmm I due to an
arbitrary collision, we can proceed to find the
average collisional rate of change of pmml. Con-I
sider the change in pI I in a time 5t chosen
small enough to contain at most one collision but
large enough to contain the entire collision. The
change in the average value of p is given by

[bp, (b, v, A, bt, c)] =(f P (b, v, A, «)

We must now seek the average of the change 5p

due to all possible collision histories. The first
step is to find the change in p caused by a colli-
sion of arbitrary orientation. This change may
be obtained from the results for a collision with
the standard geometry Ao. For the sake of defi-
niteness, we shall work with Eq. (22a).

Let us suppose the emitter undergoes another
collision with the same b and e but a different ori-
entation. We choose a new coordinate system
(primed) such that the collision is along the z' axis
with relative velocity in the x's' plane. In this
new coordinate system (quantized along the z' ax-

l
is), the change in p i for this collision is given
Dy

bp, (b, v, n, c) = Z T, (b, v, n )p, (c),
Il PP'

(24)
I

and Tmml&~ is unchanged since the physical scat-
tering processes in the primed and unprimed sys-
tems are identical. To obtain the change in p
(i. e. , in the initial coordinate system), we need

x Z T, (b, nv)p, (c)) )

= Z ( P( ,b,vn, b)t

pp'

x T, (b, v, n)) (p, (c)), (28)

where P, (b, v, A, bt) is the probability density of
a collision specified by b, v, A occuring in a time
5t, (' ' ')

b A
indicates an integration over b, v,

and A, and () refers to an average over all
possible histories up to time t." Explicitly,

P, (b, v, A, bt) = bt2mbvsty(v}E(n), (29)

where Ot is the density of resonant perturbers,
y(v) is the relative speed distribution, and E(n)is
the probability density for a collision orientation
A. Performing the average in Eq. (28), one finds

I

,(t)l«= 2 T, p, (t), (8o)mm I mm pp

I
where T, = 2mStf dbdv dn bvy(v)E(n}
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and the notation (p~~~(c))c= p~m~(t) has been
used. For the present, we shall assume Eq. (30)
may be replaced by the corresponding differential
equation

fer collisions. If these effects are included, Eq.
(35) is modified to read

(30')

n /~«1, (32)

where Z is the total density of resonant atoms.
In calculating the various line shapes, we shall

see thai each excited atom contributes to the line
shape through its reduced density matrix so that
we must calculate the sum of excited-atom re-
duced density matrices given by

p (t)=Z.p. (t),
IS I

2
(33)

This topic will be discussed in Sec. VII.
In reality, there is more than one atom excited

at t= 0. Indeed, the average over collision his-
tories has significance only because one observes
radiation from many different atoms. That is,
each emitter possesses its individual collision
history; only the ensemble of emitters can be
characterized by average collisional decay rates.
However, we still assume that the density of ex-
cited atoms is always low enough to neglect any
collisions between two excited atoms. If ng is
the density of excited atoms, we shall assume
that

Finally, we define pS(t) by

p (t)=p (t)+p (t),
S IS IIS

(37)

with p (t) and p (t) given by Eqs. (33) and (34).
Combining Eqs. (30) and (36), we see that pS i(t)
satisfies the equation

(36)

where S,~~ =T,~~ P,P~ . (39)Pl Pl VESl

The Smm ~~ and 1'mm ~P shall be called aver-
age scattering matrix elements for the entire sys-
tem and initially excited atoms, respectively.
~e shall see that the decay of both pS(t) and p (t)
are instrumental in determining experimental line
shapes. (In what follows, we shall drop the super-
script S. )

The evaluation of Eq. (31) for T~~~~~,
~mm'~~, and S i' elements is presented in
Appendix D. The average collisional rates of
change of pimm~(t) are given by the rate equations

where the sum is over all atoms that were initially
excited. That Eq. (30') for pm~~(t) is still valid
for plms~ I(t) follows from condition (32) and the
fact that each emitter acts independently.

Similarly, we define p as (40)

p (t)=Z.p. (t), (34)

where the sum is over all perturbers that were
initially in their ground state. Following a pro-
cedure similar to that above, one finds

,(t)= Z It,~~ p, (t),p —,I ppp i
pp'

(35)

where the Rmm&~~ are given by an equation anal-
ogous to Eq. (31).

Equation (35) is not really complete since two
additional effects must be taken into account. The
first of these is that as soon as a ground-state
atom is excited it begins to decay at the same
rate as the initially excited atoms. The other ef-
fect is that the rate of transfer of excitation to
ground-state atoms is dependent upon the number
of excited atoms at time t. These atoms will in-
clude some which have become excited by trans-

p„(t) = T„"p„(t)+T„"p„(t)+T„'"p, ,
(t)]*,

with the remaining equations obtained by inter-
changing 1 and —1 in all indices. The equations
for p(t) analogous to Eq. (40) are

p„(t) = S„"p„(t)+ S„"p,„(t) +S„' 'p, ,(t)-
(41)

p„(t) = S),"p,o(t) +S„'-'p, ,(t), etc.

Values of T '~~ and S ~~~ are shown inmal
Table I in units of the frequency

A = (2w/15)[l T(s0, a1) I /6)(Ks a /Fi) (42)

The errors quoted in Table I, as well as all other
errors to be given, represent only those estimated
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TABLE I. Resonant average scattering matrix elements in frequency units of A = (2v/15) K (e ao /@ L6 ( T(s0, al) ( ) .

00
00

-42.42
+0.21

00
00

—29.98
+ 0.31

-41.62
+ 0.23

-34.68
+0.32

00
ii

4.53
+0.08

S oo
11

14.99
+0.13

0-1
10

0.799
+ 0.088

S 0-1
10

-4.70
+0.12

10
10

-46.15
+ 0.21

10
Sio

-49.67
+0.29

Z
1 1i-i

-46.95
+ 0.23

S1-1

-44.97
+ 0.32

3.73
+ 0.12

~f~i
ii

19.69
+ 0.20

numerical errors introduced in solving Eqs. (15a)
and (31) and do not include errors introduced by
incorrect physical assumptions of the model. To
complete the table, the additional relationships

isotropic, the pKQ will decay exponentially with a
decay parameter independent of Q. '4 Thus, when
the inverse of Eq. (43) is substituted into Eqs.
(40) a.nd (41), one finds

PP (T P P) 5 PP (g P P)
mm' m'm ' mm' m'm

T,PP =T, P P, S,PP =Smm' -m-m' -m-m~

. I I I
p = —I' p

KQ K KQ' =012
Q=K, . . . , —K

KQ K KQ'

(44a)

(44b)

and

T,"'=T,- ',
mm' PP' $ PP g

mm
mm PP

PK (lxJ, a j1 )

p g g g( I)™~ ~
g ~ (43)

n jm, a'j'm' m-m' Q

The pKQ are the coefficients in an expansion of
the density matrix in terms of an irreducible ten-
sor operator basis. " Since the collisions are

are needed.
The elements Tmm~ P represent the rates atp

which emitter atoms alter their populations [as
exhibited by the rate equations for diagonal ele-
ment of pl(t)] or coherence properties [as exhib-
ited by the rate equations for the off-diagonal ele-
ments of pl(t)] as the result of collisions. Col-
lisions result either in a reorientation of the emit-
ter sublevels or in a transfer of orientation in-
formation to the perturbing atom. One should note
that both reorientation and excitation transfer are
coherent processes; the state of the system after
the collision is strongly dependent upon the state
of the system before the collision with both the
amplitude and phase information retained. TheI
elements Bmm~pp represent the rates at which
perturber atoms acquire population and coherence
properties as the result of collisions. Finally, the
elements Smm~PP represent similar rates for the
entire system of emitters and perturbers.

Equations (40) and (41) for the collisional decay
rate of the density matrix are not in the most con-
venient form. These equations may be decoupled
by taking a linear combination of the pmm~ given
by

where the decay parameters I"~are linear com-
binations of the average scattering matrix elements
(see Appendix D). Using the fact that the reduced
matrix element between the states a and s of the
resonant transition is simply related to the tran-
sition probability per unit time ya s of that tran-
sition by

e'a 'l T(s0, al)( '/fi = 9X'y /32vP,0 a~ s
one finds

I' = (0.0287 +0.0002) XA. y
I 3
1 a, s'

I" = (0.0297+0.0002) JEA y
I 3

a, s'

I' = (0.0211 +0.0003) &X y
I 3

a~s

1 = (0.0344 +0.0003) &A y
3

a, s'

I" =(0.0285+0.0002) Otk y
3

a, s'

I" =1.2x10-' +X y
3

0 a, s'

(45a)

(45b)

(45c)

(45d)

(45e)

(45f )

where A, is the wavelength of the resonant transi-
tion.

The I"s have a simple interpretation in terms
of the various multipole moments of the given
j = 1 multiplet. It is easily shown that I",represents
the decay rate of the average magnetic dipole mo-
ment, while I", represents the decay rate of the
average electric quadrupole moment of level a.
Whereas the I"~ represent the decay rates of
average multipole moments for the entire ensemble
of excited emitters, I'I& represent the corre-
sponding decay rates for the ensemble of initially
excited emitters only. (In resonant broadening
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by isotopes, it is possible to measure the I' ~.»)
The average monopole moment is a measure of
the total population of the j = 1 multiplets. Thus,
X'I, is the decay rate of the initially excited emitter
population, and, as such, represents the rate of
transfer of population from emitter to perturbers.
The decay parameter F, gives the decay rate for
the state a population of the entire system.
Since the interaction is adiabatic, F, has theo-
retical value zero; the small value for X', ob-
tained by our numerical methods is somewhat in-
dicative of the accuracy of these numerical meth-
ods. The multipole moment decay constants are
directly measurable in certain Hanle-effect ex-
periments44i48i50 (see Sec. VIII).

We have not yet completed our calculation of
the decay rates of density-matrix elements that
are altered by collisions. As we shall see in
Secs. VI-VIII, both bp b

and 5p [see Fig. 2

(m refers to a magnetic quantum number of the

j = 1 state)] are important in determining the widths
of the spectral lines. Since the perturber enters
the collision in its ground state and since the col-
lision is adiabatic with respect to levels b and s,
it will be impossible for the perturber to acquire
an electric dipole moment associated with states
a and b during the collision. However, it is pos-
sible for the perturber to acquire a dipole mo-
ment associated with states a and s. We now make
these statements quantitative.

First we calculate 5pmb. The perturber enters
the collision in its ground state so that It(- ~) = 0
[see Eq. {2)]. Since the collision is adiabatic,
one also finds

b(+-) =b(- -) = o

and the integral is over impact parameter and
relative speed. The three components Fmb
(m =1,0, —1) can be shown to represent the decay
rates of the components of the average electric-
dipole-moment operator associated with the states
a and b. Since the collisions are isotropic, Fmb
is independent of m and may be written simply as
Fab. One finds its numerical value to be

I' = (0.0229 ao.oool)&X3y
ab a, s' (48)

It is imPortant to note that Fab W F 0, differing
by about 8%%uo. This point has been overlooked in
some analyses of experimental results. '~ '~"

Finally, we calculate 5pms. The wave vector
is given by Eq. (2), and we seek

bp (b, v, A, c)
I
ms 0'

=a (+, c)g*(+~,c)- a (c)g*(c),

bp (b, v, n, c)
II

ms 0

(+ m, c)g"(+~,c) —w (c)g (c),

=Z,[&,(b, v, n ) —b, ]p, (c)

where g is the coefficient of I s; s) in the wave
vector lg(t)) [see Eq. (2)] and initially w(c) =0,
a(c) = ao, and g(c) = go. Adiabaticity implies that
g(+ ~, c) =go. Therefore,

5p (b, v, A, c)I
ms 0

so that bp (b, v, A, c) =0;II
(46) and

that is, the perturber never acquires a dipole mo-
ment associated with states a and b during the col-
lision. Level b of the emitter has been assumed
to be unaffected by collisions so that c(+~) = c(- ~).
Using this fact, one finds

I )fc &ac

bp (b, v, A, c) =a (+,c)c (+,c) —a (c)c (c)

np {b,v, n, c) =Q,R,(b, v, n )p, (c).Ir I

After performing all averages, we obtain

sp (t)/st = rp (t), — (49a)

sp (t)/s t = —I' p (t) —I' p (t), (49b)
II II I II

~ mb mb mbp (t)=-r p (t), (47a)

,r, (b, v, n, )p,b(c) —p b(c)

On averaging this equation, one obtains {see Ap-
pendix D)

sp (t)/st = rp (t), —

where

I' = —(5t) '{PI(b, v, bt)(-1+ —, [TII(b, v, A )
I

(49c)

where

= —(bt) '{Pl(b, v, &t) (- 1+—,
'
[711(b,v, n )

+T (b, v, n )+r (b, v, A )])jb (47b)

+Too(b, v, n, )+ &
1 1(b, v, A )]))b„,

I = (bt)-i{—', P (b, v, bt)[R 1(b, v, A )

(b, v, n )+R
1 1(b, v, A )])b

(5oa)

(50b)
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II
as as as' (50c)

which is in good agreement with some recent cal-
culations of this shift. "~"

and the integral is over impact parameter and
relative speed. Comparing Eqs. (47b) and (50a),
we see that the real part of the average electric-
dipole decay parameter is independent of the lower
state. Since B~~P is purely imaginary, I'IIas is
pure imaginary and may be written as i&g,' we shall
call ~g a "shift" although it is not now certain that
6& can be directly related to a shift in the emitted
spectral line from state a to s. The origin of the
shift resides in the ability of the excited atom to
transfer its dipole moment to the perturber. Nu-
merically, we find

= I' = z(2.10+0.01)x10 & p, (51)
g as a, s

so that
0.0918+ 0.0010, (52) )

+5 b (t) I s; q) exp (- iE t/Fi)
q sq

+ c(t) i b; s ') exp (- iEb, t/ti)

+Q f (t)lb;q)exp(-zE t/rz),
qq ' bq

(58)

where the q represents the magnetic sublevels of
state p. Following the same procedure as in the
resonant case, one easily finds the vector equa-
tions

zeal= V (t)p, (54a)

zrp=v t(t)a, (54b)

where the matrix V~(t) is obtained from V(t) by
replacing l T(s0, al) I' in Eq. (14) with Tp(s'0, pl)
T E(s0, al) (the same standard orientation for the
collision as in the resonant case has been used).
From Eq. (11), we find (neglecting Zeeman split-
ting)

IV. NONRESONANT CASE

The case of foreign-gas broadening requires a
somewhat different analysis than that given for
the resonant case. Let the energy schemes of
the emitter and perturber be as depicted in Fig.
4. During the collision, both emitter and per-
turber undergo virtual transitions to allowed
states, but after the collision, due to the adiabatic
nature of the interaction, both atoms must have
returned to their initial multiplets (we again as-
sume the fine-structure splitting is much greater
than the inverse collision time). For the purpose
of thig section, we shall assume that the perturber
can undergo only the virtual transition s'-p and
the emitter only the virtual transition a-s; in
addition, we shall assume that the b level is un-
affected by the collision. The results will be gen-
eralized in Sec. V.

Under these assumptions, the wave vector may
be written

l q(t)) = Q a (t) I zzz; s') exp (-iE,t/fi)

v~(t) = v~(t) exp (- i(u t),ps

where v =v =(E —E +E —E,)/t,ps sp p a s s'

so that Eq. (54) may be formally integrated to
give

(58)

a,(t)=a +(zr)-' f dt'V (t') f0 QQ N OQ

&& Vt' (t")a(t")exp[- i(u (t'- t")],

p(t) =(zTi) ' f dt' Vl' (t') exp(i~ t')a~

gP
+(zTi)-' f dt'Vt' (t') f dt"

QQ N OQ

&& v (t")p(t")exp[i(u (t'- t")]. (57b)

The frequency ~ps represents the frequency dif-
ference between the virtual transition of the per-
turber to state p and the virtual transition of the
excited emitter to state s. We shall assume the
interaction to be adiabatic with repsect to this
frequency, i.e. ,

» i.
ps c (58)

j sO

j=0 j=0

Emitter Perturber

FIG. 4. Atomic structures of emitter and perturber
for the nonresonant cs,se.

Thus, any accidental resonances are not considered.
From this condition, it follows that both Vfg(t")
and a(t") are slowly varying in time compared
with exp(i&o st"). In doing the integral over t",
we may eva uate both Vgt") and a(t") at t"= t'
since the major contribution to the integral occurs
at t" = I,"." We have neglected the Zeeman split-
ting, but this procedure will be valid as long as
v~ '» Zeeman splitting. With these approxima-



P. R. BERMAN AND W. E. LAMB, JR. 187

tions, Eqs. (57) become

a.(t)=a, +(f5) '(t'(u ) ' I dt'V (t')V~ (t')a(t'),
OQ

(59a)

ponents and find the decay constants I',N, I",N,
and I' N which correspond to I'I„ I'I and
I', of the resonant case. From Appendix D
we have

p( )=o. (59b) r, =(7. 62+0. 08)NIBI'~'(v'~')N
(64a)

That the perturber remains in its ground state is
specified by Eq. (59b).

We define the evolution matrix M(t) for foreign-
gas collisions in a way similar to that in which
T(t) was defined for resonant collisions, namely,

r, =(6.80+0. 08)NIBI'~'( v'~'),N
5

N -4
I" = 3.75x 10 NIB I

'(v'~')
0 5

(64b)

(64c)

a(t) =M(f)a~,

M(- )=1. (60b)

From Eqs. (59a) and (60), one can easily show
that M(f) satisfies the matrix equation

M(t) =1+iTi '(Fiur ) ' J dt'V (&')VtN(t')M(t'),

or in differential form,

NdM/dt = —(5e ) 'V (t) V (t)M,
Ps N

with M(- ~) =1.

(61a)

(61b)

The solution of Eq. (61a) is given in Appendix
B. For the nonresonant case we are interested
only in following the emitter, since the perturber
remains in its ground state after the collision.
The effect of a collision is to magnetically re-
orient the emitter in a certain manner. All the
equations of Sec. III involving 5pI are applicable
to the nonresonant case with the replacement of
Tmm~PP by M~~&PP =—M M ~P~. The ele-
ments M~~~PP', as derivef in the Appendixes,
are listed in Table II in units of frequency

(—' v)NI BI'"'(v"')
15

where

B = (~s) I T (so, pl) T* (so, al) I'

(62)

&& (e'a '/n)'(&u )-',
o Ps

(63)

(vs~') equals the average value of the 5 power
of the relative speed, and N is the density of
foreign-gas perturbers.

As in the resonant case, we can expand the den-
sity matrix in terms of its irreducible tensor com-

r, /r, =1.12+o.o2.N N
(e4d)

p ~(f)=-r p (f)

N Nwhere I' =y +i 6
ab ab ab

y =(8. 97+0.04) IBI '(v' ')N
ab 5

(65)

(eea)

(eeb)

= (6. 51 +0. 03) IBI' '(v' ')N
ab 5

(eec)

We shall be able to interpret AabN as a shift and

yab as collisional broadening of the emission lineN

from state a to state b. If the quantity co&s of Eq.
(56) is less than (greater than) zero the shift is to
the red (violet).

It is interesting to note that the ratio

/y
h

=0. 726+0. 007
ab ab (67)

is precisely that of the simple Lindholm-Foley

As in the resonant case, I',N and I',N can be
interpreted as decay rates for the average mag-
netic dipole moment and electric quadrupole mo-
ment, respectively, of level a while I",N is the
decay rate of excited-state population which has
theoretical value zero (the emitter always re-
mains in its excited state). The departure of the
numerical value of l",N from zero is again some-
what indicative of the accuracy of the numerical
methods employed.

Finally, we wish to calculate 1 abN, the colli-
sional decay rate of p~b due to nonresonant col-
lisions (r~5 is the decay rate of the average elec-
tric dipole moment associated with states a and 5).
Assuming no collisional perturbation of the b level,
it is shown in Appendix D in a manner similar to
that for the resonant case, that

TABLE g. Nonresonant average scattering matirx elements in frequency units of (2w/15)NI& I (v ) ~

00
Mpp

—10.82
+ 0.16

-11.80
+ 0.11

5.41
+ 0.07

M$0

—0.976
+ 0.200

10

~ 17o21
+0.07

—16.24
+0.24

M

6.39
+ 0.16
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theory'&' which neglects multiplet structure. We
should point out, however, that this agreement
seems to be a numerical coincidence. We should
also mention that the neglect of noncommutativity
in calculating the electric-dipole parameters for
this case provides a good approximation (=1%)
to the values obtained in Eqs. (66). (For the res-
onant case, the neglect of noncommutativity in cal-
culating I'Iab leads to errors =13%%uo. ) j=0

j=2

)=2

V. GENERALIZATION OF THE THEORY j=0 j=0

The theory of Secs. III and IV can be generalized
to include the effects of additional virtual transi-
tions and perturbations of the lower level b. The
selection rules governing the virtual transitions of
either the emitter or perturber are (a) &j =+ I, 0
for transitions originating in a j =1 state, (b) Aj
=+1 for transitions originating in a j =0 state,
and (c) parity violating transitions are forbidden.

The time evolution of the emitter-perturber sys-
tem is given by

tb i j(t)& =[H, +U(t)] i q(t)&, (68)

where U(t) and i ((t)& as defined by Eqs. (8) and

Emitter Per tur ber

FIG. 5. Atomic structures of emitter and perturber
for the generalized nonresonant case.

(9), have been expanded to include all possible
states. It will be sufficient to consider a finite
number of states for the emitter and perturber as
depicted in Fig. 5. These states will be repre-
sented by a finite portion of the U(t) matrix, de-
noted by U' (t), and given by

al+; s'0 +

g0y p] g

s0+; kl+

U'(t) = d2 +;PI+

d2+; hl +

50+ js 0+

al+jpl+

al* ' kl*

At p(t)
At b(t)

Dtdp(t)

0

0

Fat, ( t) Fag( t)

0 0

0

Ft,j,(t)
Ft b(t)

~)

(69)

al*; s'0* s0 ~ P1+ s0*;hl+ d2*;pl* d2~ A 1+ b0+ s'0+: al*;pl + al~ hl+

O A,&(t) A, b(t) DdP(t) 0 0 0

0 0 0 0 0 0

The state vector associated with U' (t) is given by The following notation is implied in Eq. (69):

a(t)
p(t)
h(t)

iq(t)& = &(t)
r (t)
b(t)
t(t)
g (t)

with initial conditions

(vo)

A, (t) =(ale; s'0* i U(t) ino +; n'I+&,

dimension 3 x3,

D, (t) =(al+; s'0 + i U(t) ix2*; r'I+&,

dimension 3 x15,

, (t) =( bo +; s'0 + l U(t) if1*;f'1*&,

dimension 1 x9,

(na)

(71b)

(71c)

a(- )=a, b(- )=b, ,

and all other elements of if(t)& at t= —«& are zero.

where Anni (t), D~~i (t), and Fffg(t) are matrices
as described in Sec. IIL (We have suppressed
the indices a, b, and s' in labeling these matrices. )
In essence, the A's represent the matrix elements
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,= T (s'0, n'1) T* (no, a1),nn' (72a)

, = T (x'1, s'0) T*(y2, a1),rr' (v2b)

of virtual transitions from emitter state a to states
with j = 0, the D's represent the matrix elements
of virtual transitions from state a to states with

j = 2, and the F 's represent the matrix element of
virtual transitions from state 5 to states with j =1;
in addition, two possible perturber virtual transi-
tions with hj =1 have been included in this notation.
The usefulness of this notation lies in the fact that
all A matrices are scalar multiples of each other,
differing in magnitude only by the ratio of reduced
matrix elements. Similar remarks also apply to
the D matrices and to the F matrices. It will also
be convenient to define the following products of
reduced matrix elements:

p(+ )=h(+~)=d(+~)=r(+~)=0, (75)

dM"dt
A t t A tA t

SP sh

Dd (t)D
d

(t)

DI
D„„(t)D „(t))

M,D

and m' are the magnetic substates of level a. If
resonant effects dominate (i. e. , if Ep —Es~ =Ea
—Es and the oscillator strength of the transition
is large), the results of Sec. III are still valid,
since all matrices exceyt Ast, ( t) and Aj'

~ ( t) con-
tribute a negligible amount to the broadening. If
nonresonant effects dominate, the previous results
will be modified. The equations analogous to Eqs.
(59b) and (61) for the evolution matrix M(t) are

, = T (s'0, f'I) T~ (so,f 1), (72c) (V6a)

and also the quantities
and M(- )=+1. (76b)

(78a)

2( 2 2/@)2( D
) 1

o
(78b)

A somewhat tedious calculation gives the matrix
equation

, (t)D, (t)(@~,)- = d (~~', nn')2

x A. ,(t)A, (t)(u~, ) ' —hq, (t)I, (VVa)
nn' nn' nn' rr'

F ~ ~F 2 2 2 2-F
Q ff I ff I ( e a /n ) ( (o ff )

(Vsc)

where

, = [E (q = 0)+E, (j =1)-E - E, ] /e,
A

(74a)

D
, =[E (q=2)+E, (q=1)-E -E,]/a,

(v4b)

where 1 is the unit matrix,

D
3d'(rv', nn') =——
2 A

nn'

A
CO nn'

D
(d rr'

q, (t) =108~,(z(t))- .D

and the frequency q, (t) is given by

(vvb)

(77c)

and

, =[E (q=l)+E, (q=1)-E -E, j/e.

(74c)

Note that qzz~(t) is just a real scalar function of t.
The different A matrices are scalar multiples of

each other and are related by

A, (t)A, (t)

These +'s represent the differences in frequency
between the virtual transitions of emitter and
perturber. The j values represent the angular
momenta ot' the virtual states. (Note that, by
definition, 2 nni =g nin. )

From the reduced nature of Eq. (69) for U'(t),
one immediately notices that the levels a and b
are perturbed independently. Let us first con-
sider the magnetic reorientation effects of the
additional virtual transitions on p ~, where m

= A, (t)A, (t) (&,/&, ), (78)

so that

,(t)A, (t) (eg, )-~

= a (nn', mug')A, (t)A, (t)(@ ~,)mm' mm' mm'

(V9a)
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where a'(nn', mm') =

A
V' ns'A

(d
myFL'

A
(0

A
nn'

. (79b) G, (t) =(al+; s'0+ l U(t) l qi+; q'lw) .
qq

(71')

that connects state a to other j =1 states, i.e. ,

Using Eqs. (77) and (79), Eq. (76) takes the simple
form

The state q represents a j = 1 emitter state not
shown in Fig. 5. In analogy with Eqs. (73) and
(74), we also define

, = (+) l 7 ( q'1, s '0) T * (al, ql) l
2

(t)w (t)dM, sp spzI
dt

=-Q
A

h

—M- h p ( t) M, (80) x (e a /h)2(~ ) 12 2 -G
0

(73')

where

o.' = I+a'(sh, sp)+d'(dp, sp)+d'(dh, sp),

and p, (t)=q (t)+q (t) .

Using the transformation
t

M ( t) = [exp(t 1 lJ ( t ') dt') ] M ( t),

(81)

(82)

(83)

where

(a =g(e",—,
' eD ~ (aG) (85)

, = (E +E,—E —E,)/5 . (74 )qq' q q' a s'
The G matrices enter the theory in an identical
manner as did the D matrices, so that the general
result for all virtual transitions in the nonresonant
case may be easily obtained. The reorientation re-
sults of Sec. IV are still valid if 8 is replaced by

dM (t) 2 sP sP
(t)~ (t)

zA dt
= Q -A

SOP
SP

(84a)

one obtains the following matrix equation for M (t): where the sum is over all allowed virtual transi-
tions of the system. Thus, the averaged scat-
tering matrix elements M

m HAPP
are given by

Table II in units of (2m/15 Nl
%a
l' '( v'~')v and

Eqs. (64) are modified to read

M(- )=1. (84b) r =(7. 62+0. O8)l e l'I'(v'~'),
a V

(86a)

In Sec. IV, we solved [Eq. (61a)]

thdM/dt = —(h~ )-4 (t)& (t)M, (6 la')

I" = (6. 80+0. 08) lS l'~'( v'~')
a V

-4I" =3.75xlo l 8 I'~'(v'~')
0 a V

(86b)

(86c)

which is identical in form to Eq. (84a). For cal-
culation of reorientation effects, one always needs
products of the form

M M —M
mp m'p' mrn'

M M —M
rnp m'p' mm'

One sees that the exponential factor of Eq. (83}
will not alter reorientation results and concludes
that the final results (after all averaging) of Sec.
IV for reorientation effects are still valid if the
substitution (+Asp) 1- o, 2(&uAsp)-I is made. This
is equivalent to replacing 8 [ see Eq. (63}] by

IA A 3 D ID
ps ph db dh '

where the Sn i 's are defined by Eqs. (73).
Virtual transitions from state a with 4j = 0 will

be included by introducing the matrix Gnni (t)

One might have expected that the quantity a
would be proportional to the London value" for
the van der Waals constant; however, such a pro-
portionality does not exist. The explanation of
this feature resides in the fact that the London
value is based on a static interaction, while ours
involves a dynamic one. The time dependence of
the interaction results in ratios between the con-
tributions to a of the virtual transitions hjE =+1,
hj@=0, and hj@ = —1 (the subscript E refers to the
emitter) which are different from those of a static
interaction. One should note several other points
concerning Eq. (75) for S . First, one must ad-
here to the way in which the reduced matrix ele-
ments have been defined by Eqs. (72) and (73')
since reversal of the arguments in such elements
will introduce statistical factors. Second, in sys-
tems with total spin S=O which also obey an LS
coupling scheme, all the 0 are zero. Finally,
it should be noted that an exact evaluation of a
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— E (t) F (t)
db ap apzh --+
dt

5Q7

(87)

The appropriate matrix elements are given by
Eq. (6), a,nd a simple calculation yields

24hz

[ft(t)] '

which is a scalar function of t. Eq. (77) can be
integrated trivially to give

b(+ ) =exp[9wi(~8 +& „)/b v] b
5

aP ah 0
(88)

where the S 's are defined by Zq. (73c). Defining
an evolution function for one collision Q(t, b, v) by

b(t, b, v) = q(t, b, v) b, ,

we have

is all but impossible, and approximation techniques
are needed.

To complete this section, 'we compute the col-
lisional effects on the spectral line a-b when
there is a perturbation of both levels. We may
find the change in the probability amplitude of
level b due to collisions by the methods of Sec. IV
(we assume that the broadening of level b is of a
nonresonant nature). Using Eqs. (68)-(70), one
can easily show that the amplitude b, which is the
probability amplitude for the state I b; s), obeys
the equation

&& b* (+, c) —a b' = Q, [- 6

+Q*(b, v)M, (b, v, n )] p, (c),

which must be averaged over impact parameter
and all orientations of collisions (substitute T for
M to get the resonant case). If the average over
angles is performed (see Appendix D), we find

6p (b, v, c)=(-I+-.'Q*(b, v)[T, (b, v, n )

+ T (b, v, n )+T
1 1(b, v, n )]]p „(c) (90a)

I

for the resonant case, and

bp „(b,v, c) = j- 1+ ~ Q+ (b, v)[M11(b, v, n )

+M (b, v, n )+M, ,(b, v, n )]]p (c) (9Ob)

for the nonresonant case.
For broadening by similar atoms, we shall as-

sume that the resonant interaction dominates all
nonresonant effects. Thus, we take the T 's
equal to those derived in the section on resonant
broadening and set Q+ (b, v) =1. For this case,
inclusion of the nonresonant interaction in levels
a and b would result in a slight increase in width
and a small shift of the spectral line a- b.

For foreign-gas broadening, the M elements are
given by Eq. (83). The additional phase factor
due to hjE =+1 virtual transitions, represented by

e(b, v) =exp[i f p(t')dt'],
in Eq. (83), must now be considered. When one
allows for all virtual transitions of the systems,
it can be shown that the total phase factor is given
by

Q(+, b, v)=exp[9mi($ +e @)/b v].5

ap ak

C (b, v) = exp(i X/b'v),

where X=(", w) (QS yQ & ),D G

(91)

It is obvious that this result can be generalized to
allow for all virtual transitions by putting

and the sums are over all virtual transitions of
type D (AjZ ——+1) and G(nj@=0). In terms of the
phase factor 4, Zq. (83) becomes

Q(+ ) = exp(9' S /b'v),
b

(89a)
M(b, v, n )=4(b, v)$1 (b, v, n ).

where + =Ed' (89b)

the sum being over all transitions of type F [see
discussion following Eq. (74)]. We have yet to
average over impact parameter.

We seek the change

As noted earlier the matrix M is just a generaliza-
tion of the nonresonant M determined in Sec. IV.
The generalization is effected by replacement of

bp (b, v, n, c)=a (+, c)
mb ' ' o' rn
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which appears in the expressions [see Eqs. (63)
and (66)] for M in Sec. IV, by

(p —Q(~ +38 ~ 3 )

the sum being over all virtual transitions of the
system. This is the same replacement that was
needed in generalizing the reorientation effects
[see Eq. (65)].

With these changes, Eq. (90b) becomes

2
0

&p (b, v, c) = (-1+ 3 q*(b, v)C(b, v)
r= (0o/(Bb

x [M, (b, v, a ) +M (b, v, n )

+M I (b, v, fl )]]p (c). (93)

FIG. 6. Variation of Dzir) and yzy as a function of
the ratio ~ of level a and level b broadening parameters
for the case of AjE= —1 virtual transitions only assuming
a fixed B&&0. At ~=0, A~g /p~p =0.726 tsee Eqs. (96)],
while for ~»1, both +y and y~y+ vary as & with

I &ay /&a(t I
= 0.76 + 0.007 t.see Eqs. (67)I,

On averaging this equation over impact param-
eters, one obtains

p b(f)=-r
b p b(f), (94a)

where

r =-(bt) f~, (b, v, bf)
N -1

X ( 1+ —,
' q*(b, v)4(b, v)[M11(b, v, Q )

+M (b, v, n ) +M, ,(b, v, n )])]

The evaluation of I."abN is now quite complex
since it requires a detailed knowledge of the rel-
ative strengths of the virtual transitions. To ob-
tain a qualitative picture of the average, we in-
troduce the parameter x as the ratio of the broad-
ening parameters for levels a and b,

~= O3 /(8a b
'

The general behavior of

N N . N
=y +i~

(96)

as a function of x will then be given in Fig. 6 which
is drawn assuming a fixed Bb &0, Ba &0, and ne-
glecting nj@ =+ 1, 0 transitions. Positive b b
corresponds to a violet shift. (If level b had a
greater energy than level a, the direction of shift
would be reversed. ) For r « I, level b dominates
the broadening, and one may analytically obtain
the Lindholm- Foley result

As x increases, the shift passes through zero and
the width goes through a minimum. (A method of
estimating where these phenomena occur, based
on the perturbation solutions, is presented in
Appendix B. ) When level a dominates the broad-
ening (r» 1), y P and bag are given by Eqs.
(66) (with 8 modified to include all AjE = —1
transitions). Had level b been the ground state,
the system would most likely be in the region
x»1, where the predicted red shift is usually
said to be typical of the attractive van der Waals
forces. However, when both levels a and b rep-
resent excited states, it becomes almost mean-
ingless to associate a definite sign to the shift for
an arbitrary van der Waals interaction. Indeed,
the shift can be towards either red or violet de-
pending on the ratio x, and whether level b lies
above or below level a in energy.

The effect of including the ~jg =+1, 0 virtual
transitions would be to increase the contributions
of level a to both the width and shift of the line,
and to alter the ratio bag/r P in the region
x» 1 from that given in Eq. (67). Thus, it is
possible to get various ratios of shift to width and
direction of shift within the confines of a dipole-
dipole interaction. It should be noted, however,
that both the shift and width are proportional to
(v'i')„and deviations from this dependence may
indicate the need for additional interactions. In
summary, one obtains the Lindholm-Foley values
for the shift and width only in the case where the
dominant broadening is that of a j=0 state. All
other cases lead to more complicated formulas
which require a knowledge of the atomic structure
of the colliding atoms.

y =14.4IVim i"'&v' g

=10.4IVim i"'(v"') .
ab

'
b 8

(96a)

(96b)

VI. INTERACTION WITH RADIATION FIELDS

The purpose of Secs. II-V of this work was to
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develop a formalism that will prove useful in
studying the general case of an atom in the pres-
ence of a radiation field which is undergoing col-
lisions. We shall restrict this study to the case
of spontaneous emission and assume, in a class-
ical manner, that each atom has a prescribed
center-of-mass motion. The Hamiltonian for the
system, in dipole approximation for the radiation
field, is given by

H(f) =II +H +H (t) +Q [(e/m. c)p ~ A(.R.(t))

+ —,'(e'/mc')&2(R. (f))], (97)

where Hatoms is the Hamiltonian for the free
atoms, Hf is the Hamiltonian for the vacuum ra-
diation field, pz is the total electronic momentum
of the ith atom [i.e. , pg is the QIp&(i), the sum is
over all electronics of

atomic],

A[Rf(t)] is the
vector potential of the radiation field at the po-
sition R~(t) of the ith atom, and He(t) is the
collision Hamiltonian which is a sum of binary
collision Hamiltonians similar to that given in
Eqs. (8) and (69). The time dependence of H(f)
enters implicitly through the factors X(Rf(t)) and
He(t) which depend on the position of the atoms.
The factor He(t) will effectively consist of a
series of impulses representing the collisions.

In terms of the creation and annihilation oper-
ators for photons of frequency p, direction of
propagation k, and polarization x, represented by
at. (k) and a.(k), respectively, we can express Hf
and A as

0 atoms f' (98)

H (t) =(e/mc)Q. p. ~ A[R.(t)] (99)

and neglecting the A' term, the Schrodinger equa-
tion for the system will be

N sg&/st =H'g&, (100)

where H=H +H (f)+H (I) . (101)

We expand the wave vector l(& in an interaction
representation as

g) =Q b (t) exp(-iE f/h) y ), (102)

neglected. It modifies the electrostatic collision
interaction at large atom-atom separations (sep-
arations larger than the radiative wavelength).
This corresponds to the well-known Casimir-
Polder result" in which the radiation fieM pre-
cisely cancels out the B dipole-dipole interaction
at large separations, leaving the leading term of
order A '. However, we are not concerned with
such large atom-atom separations since they con-
tribute negligibly to the broadening and shall drop
the A' term. There may also be some question as
to whether A ~ p or E ~ x is the correct interaction
Hamiltonian to be used. For the case of optical
spectra, both these interactions are equivalent
except in the extreme line wings, a region that
does not concern us here.

Letting

and

@(gba (k) ~~(k),kX
where the lys& are eigenvectors and the E~ eigen-
energies of H0. Substituting Eq. (102) into Eq.
(100), we find that the probability amplitudes
b~(t) must satisfy the equation

A(R.)=g (2p@c /V- )''[Z (k)a (k)kz x

xexp(ik ~ R.)+Z (k) a (k) exp(-ik ~ R.)],
z 2

where the e's are polarization vectors and t/' is an
enclosing volume. Since we are treating the atom-
ic trajectories classically, the vector potential is
an implicit function of time through the factors
exp[+ik ~ Rg(t)]. For the case of no collisions,
these factors lead to the Doppler broadening of
spectral lines. When collisions are present,
Rf(~) depends on the specific collision history of
atom i, and one must average the results over all
such histories. A discussion of this averaging
procedure will be given in Sec. VG.

In general, the term in''in Eq. (97) cannot be

H (f)+H (~) I' &exp(~~ f) b (~) .
Q Q ~P S

(103)
The operator He(t) is independent of the radi-

ation field. Consequently, He(t) may have non-
vanishing matrix elements between states diagonal
in the photon occupation number only. Matrix
elements of EP(t) obey the selection rules for di-
pole transitions. There will be additional selec-
tion rules for matrix elements of H (t) arising
from the nature of the dipole-dipole interaction
and the adiabaticity of collisions which will be
discussed below. We now proceed to examine the
solutions of Eq. (103) for spectral profiles, po-
larization effects (Hanle effect), and laser phe-
nomena for the nonresonant and resonant cases.

VII. NONRESONANT LINE SHAPES

By using techniques similar to those which led to Eq. (61), one may eliminate all the states of the sys-
tem in which the perturbers are in excited states and, for the case of nonresonant broadening, we shall
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suppress the perturber-state labels with the understanding that perturber ground states are implied. The
probability amplitudes under consideration, which specify states of the emitter and radiation field, obey
the modified equation

iSb =Q (y ~H (t)+H (t) y ) exp(i~ t)b (t), (104)

where H (t) is an effective real collision Hamiltonian, obtained by one iteration of Eq. (103), with a struc-
ture similar to that given in Eq. (61)." The interaction H (t) will have nonvanishing matrix elements
only between states of the same multiplet.

A. Spectral Profiles

We wish to determine the spectral profile of spontaneous radiation emitted from level a, a degenerate
j =1 state, to the ground-state level s shown in Fig. 7. Since we have treated the collisions by an effec-
tive Hamiltonian, there is no need to consider additional emitter states. We specify the initial conditions
at I;= 0 by assuming that the substates m of level a and the state s have some given initial population dis-
tribution.

The spectral distribution is given by the probability of finding the emitter in state s and an emitted
photon of frequency zb of type 5, X after a long time has passed. This probability is denoted by
bsk~(~) '. Using the selection rules, we obtain the time development of b k&(t) from Eq. (104) as

iSb -„(t)=Z H „-(t)exp[i((ub —(u )t]b (t)+H (t)b - (t), (105)

where = (d —(d
o a s ' (106)

The formal solution of this equation is

b (t)=exp[-iS f H (t )dt ]f dt'Q (iS)

x exp[iS J H (t")dt "]H (t') exp[i(~b —(g )t ]b (t ) .

Thus, the spectral profile is given by

b (~) = S 5 if dt f dt'exp [iS f H (t")dt "]H (t)

xexp[i(~ —&u )(t- t )]exp[ iS f-H (t' ')dt ]H i (t )b (t)b*,(t') . (10V)

The time dependence of the H (t) elements may be separated out by writing

(a) H (t) =exp[-ik ~ R(t)]Hsk); m st; m
and (b) H (t) = exp [ik ~ R(t)]H (108)

where R(t) is the position of the emitter. One also recognizes that

8 ~ =8st; m m; skX

Substitution of Eqs. (108) and the factor of unity [bs(0)b s(0)j bs(0)b s(0) into Eq. (10V) transforms it
into

j=O

FIG. V. Two-level atomic emit-
ter structure employed to consider
radiative interactions in the non-
resonant case.
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( )~ =h Q, f df f df'[b (0)b* (0)] exp[ih f a (f")di"]

xb* (0)H exp[-ik ~ R(t)]exp[i(+ —w )(f —f')]exp[-ih f H (f")dt"']s skX; m o o S;S

xb (0)H, exp [ik ~ R(t')]b (t)b* p(t').s sk); m m m' (109)

Using Eq. (104), it is easy to show that

b (t)=exp[-ih f II (f')dt']b (0), (110)

which expresses the collisional change in the ground state of the system. Substituting Eq. (110) into
Eq. (109), and forming density-matrix elements gives

Xexp [i(yah —&u )(f —f')] exp{- ik ~ [R(t) —R(t')]jp (f) p* I (f') .

Changing variables to ~=t —t', t =t', one can show that

~b (~)
~

=2h Re f drexp[i(a —m )v']cp(7'),
2 -2

sk~ o

where, for 7. &Q,

f df [b (0)b* (0)] & & - ~ exp{ik ~ [R(t ) —R(t ~7)]]p (f +r)p+, (f )mm 0 0 s s ski; m skX; m 0 0 this 0 m s 0
112

The quantity p(r) is sometimes called the correlation function. '
The spontaneous emission from level a contributes an exponential decay in f to the factors p (f +7)

a.nd p*~'s(to). Had this decay been neglected, one would find Eq. (111) to be divergent when averaged
over all collision histories. Many pressure broadening theories do not properly consider spontaneous
emission, and it has been customary to replace the time integral in Eq. (112) by an ensemble average
over all collisions. The justification of this replacement is found not in the ergodic theorem as is com-
monly claimed, '~' but rather by a systematic treatment of spontaneous emission. "

We seek the value of ~beak&(~) ~
averaged over all collision histories and emitter velocities. Denoting

this average by I (kX), we have

I (kX) = 2h 'Re f d7 exp[i(~& —~ )v](y(v))

where c and u indicate averages over collision history and emitter velocity, respectively. We are left
with the difficult problem of determining"

(q(7)) =Q, f"dt [b (0)b~ (0)] I - If +-
cQ mm 0 0 s s ski; m st; m

x(exp{ik ~ [R(t ) —R(t +~)]]p (f +r)p+ (t )) (114)

It will be useful to distinguish three interrelated effects contained in the average. First, there are the
energy-level perturbations induced by collisions which will be termed impact effects. Second, there are
velocity effects which require one to take account of the emitter's velocity in calculating the profile.
Third, there are the changes in the emitter s velocity induced by collisions which will be called recoil ef-
fects. The velocity and recoil effects are contained in the exponential factor in Eq. (114). Recoil and im-
pact effects occur at the same time and will be correlated leading to mathematical complexities in evalu-
ating the average. Although formal expressions for (y(r))c„have been derived, "explicit evaluations of
it have been made only for unrealistic collision models. "y"~" ~ In the following discussion of spectral
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profiles, we shall neglect all effects arising from the velocity and recoil of the emitter; that is, we shall
replace expfik ~ [R(to) —R(to+ v')]} by unity. This is not to say that these effects are unimportant (they may,
in fact, be dominant), but only that they will not be considered here. In order for an expermental spectral
profile to agree with the results we shall obtain, all velocity and recoil effects must be correctly sub-
tracted out of the profile. If one neglects recoil effects, the exponential factor no longer depends on col-
lisions, giving the Doppler contribution exp (ik ~ v7'), and the spectral profile could be analyzed in terms
of Voigt functions (convolution of a Gaussian with a Lorentzian line shape). " This procedure has often
been carried out in analyzing spectra, but, as noted above, there is no sound theoretical basis for the use
of Voigt profiles once recoil effects are included.

With the above approximation, Eq. (114) becomes

(y(7)) = Q g f dt [5 (0)b+ (0)] H H * p(y, (f, v))c mm 0 o s s st m st m mm o'

where y ~(t, 7') = p (f +v) p* r (f ) .
mm 0 ms 0 m s 0 (116)

Let us consider the change undergone by q~~ ~(to, 7') in the time interval between f = v' and v+57. The
quantity 57 is chosen small enough to contain at most one collision but large enough to contain the entire
collision. The change in the average of cp will be given by

[5(7 r(f, T, 5T, 5, v, 0)] = (P0(5 T)5(7 't(f, T, 5T)) +((P (5, v, 0, 5r)5y g(t, 'r, 5r, 5, v, 0)j )
0 I

(117)

where Po(5v) is the probability of no collisions in a time 5i, 5y ~~~(to, ~, 5w) is the change in y~~~
in time between 7 and r+ 5r if no collision occurs, P, (b, v, 0, 5v) is the probability density for a
collision specified by 5, v, 9 occurring in a time 5v, 5y ~~i(t, r, 57', 5, v, 0) is the change in y~~ due
to this collision. For 5r chosen as described above, P,(5v) = 1. In the Wigner-Weisskopf approximation,
neglecting energy shifts, one can show that the change 5y'mm~ is given by

,(f, 7;57) = ——.'I' 5~q, (f, ~),mm o' ' a mm o' (118)

where 1 is the natural width of each sublevel of state a. On the other hand, from Secs. IV and V, we

find the change 5y'mmI as

5y' ~(t, v;57', b, v, 0) =Q [-5 +Q*(b, v)M (b, v, g)]y, (t, 7) . (119)

Substituting Eqs. (118) and (119) into (117) and averaging over all collision histories using the results of
Secs. IV and V, one obtains

(5y, (t, 7)) /5r = ——,'(I +21' )(qr i(t, r)) (120)

where I'~s is the nonresonant average electric dipole decay parameter given in Eq. (94).
The transformation of Eq. (120) to a differential equation is valid only if 5v is much less than the oscil-

lation frequency of the integrand in Eq. (111). This condition is fulfilled if

(~ -~ )5v«1, (121)

and ~(1' +2I' )5r«1,a as (122)

and since 57' is on the order of the collision time, Eqs. (121) and (122) represent the standard criteria for
the adiabatic and impact approximations. ' '~" In that part of the line shape where Eq. (121) is valid,
Eq. (120) may be replaced by a differential equation and integrated to yield

(cp, (t, r)) =exp[- —,'(I' +21' )r](y, (t, 0)) (123)

Combining Eqs. (123), (113), (115), (116), and using the fact that b~(t)b*~(t) =bz(0)b*~(0), gives the spec-
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tral profile as

(4) =
as

I'+2Rer, df H - H *-
&p .(& ))

-2 N
a as ] mm, o ski;m skX;m mm o c

[a&&
—v -Im(I' )] +[—,

' F +Re(I' )]
(124)

Equation (124) verifies the assertion of Secs. III and IV that the real part and imaginary part of I'as
correspond to broadening and shift, respectively. If we evaluate elements of K+ at =+o the line shape
is a pure Lorentzian. One additional average may be made in Eq. (124). If the excitation is unpolarized,
one should average over initial conditions using

(b (0)b*,(0)). = 3D 5 I, where D =g b (0)
m m' i ' o mm'' o m m

(126)

and (~ .
)& indicates the average over initial conditions. If this average is performed, Eq. (114) becomes

,D h [—I' +2Re(I' )]I' $ IH l

[~„-~ —Im(I" )] +[—' I" +Re(I' )]
(126)

The above procedure can be extended to the emitter structure shown in Fig. 8 and is used by Vaughan
and Smith in their experiments. ' Level a is a degenerate j=1 state while levels 5 and s are j =0 states,
and the initial condition is bb(0) =1 while all other b s vanish at t=0. The spectral profile Iba(kA. ) of the
emission line between states 5 and a may be calculated as

I" [lb+I' +2Re(I' )]g IH
b

I

-2 -1 N x 2

[(ub-(ob —Im(rb )] +[-'(rb+I )+Re(rb )]
(127)

where I'b is the natural width of level 5, I'z is the natural width of any sublevel of state a, and 1~~ is
the collisional decay rate of py~ as calculated in Secs. IV-V. Again we see that it is the decay of py~
alone which determines the contribution of collisions to the spectral characteristics of the emission line
between states b and a. Velocity and recoil effects have also been neglected in Eq. (127). Had we in-
cluded velocity effects but neglected recoil, both Eqs. (126) and (127) would go over into Voigt profiles
instead of Lorentzians.

B. Polarization Effects (Hanle Effect)

The geometry of a Hanle-effect experiment is shown in Fig. 9. Emitter atoms in a scattering cell are
excited by resonant radiation of polarization X, direction 5. One observes the scattered (reemitted)
radiation of polarization X, direction A. The scattering cell is located in a weak magnetic field. In this
experiment, the detectors do not discriminate between different frequencies. We shall see that this con-
dition enables one to bypass the difficulties presented by velocity and recoil effects.

Consider the emitter-level structure shown in Fig. 7. Level a is now nondegenerate due to the presence

z, H

FIG. 8. Three-level emitter structure employed to
consider radiative interactions for both the resonant
and nonresonant cases. The radiation k, y is observed
while the k', A,

' radiation is not detected. In the reso-
nant case, the k', X' radiation is completely trapped in
the medium.

FIG. 9. Hanle-effect geometry, where k, ~' represents
the incident and k, X the scattered radiation from a sam-
ple cell at the origin. The system is in a weak magnetic
field H directed along the z axis.
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of the weak magnetic field. In Hanle-effect experiments, the excitation radiation usually has a broad spec-
tral profile. If this is the case, one can simulate excitation radiation of direction 8, polarization X by a
proper choice of initial conditions. The nature of the excitation radiation is reflected in the ratio of the
b~(0). For example, if the incident radiation is plane polarized in the y direction and is propagating in
the x direction with the magnetic field along s, then we choose b0(0) =0, b+1(0) =+5 1(0). The probabil-
ity of observing scattered radiation of frequency &y& is given by Eq. (107), generalized to allow for the
nondegeneracy of level a

b ( )
~

= h Z f dt f dt'H H exp[i(~ y~ )(f —f')] exp{i5 [5 H (f")dt'st mm p 0 skk m skX m k s S~S

I

—f H (t" )dt ']] exp[-i(~ f —~ gt')]e px(-ik ~ [R(t)- R(t')]].b (f)b* ~(t'). (128)

Since the detector does not discriminate different frequencies, we must sum Eq. (128) over ail vy. The
calculation is similar to that for. isolated spontaneous emission profiles, and; in the Wigner-Weisskopf
limit and the limit v/c « I, one obtains

2 Ql0 00 y4C
b (~) = +, ', 2vVQ, f dtH H „,exp (imp, f)p, (t),mm 0 sion; m skoz; m mm mm

(129)

where ko=&uo/c. Note that velocity and recoil effects no longer appear since the integration over my
gave a result proportional to 5(t —f ) The .removal of velocity and recoil effects make Hanle-effect ex-
periments extremely useful in studying collision phenomena.

The intensity of radiation observed in the direction 5 with polarization X [denoted by I(SX)] is given by
Eq. (129) averaged over all collision histories. Letting

C = If ~ (2vc) 2m V,0 (180)

one finds

f(~&) = C Z ~ f d&H H iexp(iw I f)(p i(t))
0 skoky m skoX m m m mm c

We must evaluate (p~~ (t)}c. Using Eq. (104) in the Wigner-Weisskopf approximation, one can
show that p ~(t) obeys the differential equation

p &(f) = —1' p &(f) + (ih) [exp (iX f/h)H (i) exp (- i3C t/h), p(t)] (132)

The radiation term is transformed away by use of the substitution

p i(f) =p', (t) exp(- I' f),mm mm a

leading to the differential equation for p' &(f)
mm

imp', (f) = [exp(iz t/h)H (f) exp( —iX0t/5), p'(f)]

Thus, p ~~ &(f) satisfies the equation of motion for the problem with no radiation field present. In Secs.
IV and V, we have already derived differential equations from which one can obtain (p ~~ &(t)}c. The re-
sults are most conveniently expressed in terms of the irreducible components of (p }c, given by

(124)

The (p &@(f)) exhibit the simple exponential decay similar to that in Eq. (44),

(p& (f)} = exp(- I'& t)p& (0).
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Combining Eqs. (133)—(135), we obtain the desired result
I

(p r(t)& = Z (-1) ~ exp(-(I +I" )t)tp (0) . (138)

Substituting Eq. (136) into Eq. (131) and performing the trivial time integration, one obtains the Hanle-
effect line shape as

sk X;m sk X;m m —m Q KQ

N
2M g+ (I +I )mm K a

(137)

This equation is a generalization of the Breit formula, "which has been used in analyzing experimental re-
sults.

Equation (137) for the intensity depends on the excitation through the factor p& (0) and on the direction
and polarization of the scattered light through the factor H'ask &. mH *sk &.m '. The line shape is ob-s o, PE s o,'B2
tained by measuring intensity versus ~mm &; the frequency seParation zmm ' is varied by sweePing
through the magnetic field. By suitable choices of experimental geometry (see Ref. 48), one can obtain
a Lorenztian line shape with a width which is full width at half-maximum (FWHM) of 2(I'~+ I'P) or a
Lorenztian line shape with a width (FWHM) of 2(I" + I'P). Thus, Hanie-effect experiments provide an
excellent method of measuring the multipole decay constants.

C. Laser Phenomena

A theory of the laser developed by Lamb" employed ecuations of motion for the density matrix of the
emitters. Collision effects may be taken into account by simply adding the collisional rates of change of
the emitter density matrix described in Secs. IV and V to the equations of the laser theory. The use of
such a modified system of equations to analyze experimental results might lead to a determination of the
relaxation parameters of the laser levels. Since laser action is observed between highly excited states,
Hanle-effect experiments might not be suitable for the determination of these parameters.

By studying the pressure dependence of the dip in the curve of laser intensity versus cavity detuning, one
will obtain information about the decay parameter of the average electric dipole moment associated with
the two laser levels. Recoil effects, which have been neglected in the above treatment, must be included
in this case. Somewhat artificial but soluble models of recoil effects have been utilized, ""and we feel
that a better treatment of recoil effects is necessary before theoretical predictions of the average electric
dipole parameter take on added significance. On the other hand, we should not expect recoil effects to be
as significant in determinations of I; and I",. In laser experiments, these parameters can be studied by
mode competition effects in the Zeeman laser. The laser theory without collisions predicts neutral coup-
ling for a j = 1- 0 laser transition, "while the theory, modified to include collisions, correctly predicts
the observed strong coupling. " In effect, it is the collisional depolarization which causes the shift from
neutral to strong coupling.

VIII. RESONANT BROADENING LINE SHAPES

The calculation of resonant broadening line
shapes presents some additional difficulties. Each
atom is assumed to have a prescribed motion for
its center of mass, which will specify all collisions
undergone by the system. Since both the perturber
and emitter have some probability of being excited
after a collision, we must consider each atom of
the system as a possible source of radiation. In
addition to the excitation exchange probability as-
sociated with collisions, the atoms can also ex-
change real photons. This phenomenon is common-
ly called radiation trapping and will be discussed
in some detail below. The simultaneous consider-
ation of collisions and radiation trapping will be

treated here in a somewhat phenomenological man-
ner since a more rigorous approach would be ex-
ceedingly complex.

Since each atom of the system must be consid-
ered as a possible source of radiation, we must
now label the state of each atom. However, if on-
ly one atom is initially excited, there are only
three classes of system states which are energe-
tically possible. First, there is the state written
( ia) which means the ith atom is in an excited
state a and the rest are in their ground states.
Second, there is the state written tib, kX) which
means the ith atom is in some lower excited state
b, a photon k, X is present, and the rest of the
atoms are in their ground states. Finally, there
is the state written )k 'X') which means all the
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atoms are in their ground states with the photon
k', X' present.

Due to the adiabaticity of the interaction, it is
easy to show that the reduced density matrix of the
ith atom p~~~'will be given by

8»" (rad) = -0.3ya, s'

8„"(rad) = 0. 1y
)

Z

ZW ZM (133)

S„' ' (rad) = 0.2y

since the right-hand side is the only term which
contributes in the trace of the total system density
matrix over perturber states. Thus, according to
this notation, the definition of p~~I as a sum of
reduced density matrices first given in Eq. (37) is

S„"(rad) =-0.4ya, s'

SOD' (rad) = —0.2y a, s'

S,o' ' (rad) =O. ly

(140)

Having established the notation, we can proceed to
calculate various experimental line shapes.

In order to provide some foundation for the cal-
culation, we first present a short review of reso-
nant trapping, ' " Resonant trapping refers to the
process in which radiation emitted by one atom is
reabsorbed by other atoms. Consider an excited
atom in a medium of resonant perturbers, all in
their ground states. If the volume of perturbers
is large enough, there is very little probability
that an emitted photon will escape during the ob-
servation time of an experiment. This is the con-
dition of complete trapping. Since complete trap-
ping is already achieved at pressures where col-
lision effects are still negligible, "i"we shall con-
sider only this case.

For the moment, let us neglect collision effects.
If, on the average, the radiation emitted from a
given Zeeman sublevel were reabsorbed in the
same Zeeman sublevel of another atom, all the
average multipole decay constants of the entire
system would be zero. Such is not the case, how-
ever, as radiation transfer results in a reorienta-
tion of the sample. This reorientation leads to
nonzero values for some of the average multipole
decay parameters. Thus, it is the trapping that
causes a narrowing (decrease in the I' ' s) and the
reorientation that causes a broadening (increase
in the 1' ' s) in the resultant line shapes.

Just as average collisional scattering elements
have been introduced in Eqs. (38) and (39) I these
have been denoted by S~~&pp but will be written
here as 8mmIPP (col) for increased clarity], one
can introduce average radiative scattering ele-
ments to be denoted by Smmi~i (rad). For the
case of Fig. 7, with no collision broadening, Dop-
pler width much larger than natural width, and
complete radiation trapping, Dyakonov and Perel"
calculated these elements as

S, ,' ' =-0.5ya, s'

1" (rad)=0. 0, (14la)

I' (rad) = 0. 5y (14lb)

and I' (rad) = 0. 3ya, s' (141c)

Equation (141a) expresses the condition of com-
plete trapping.

The results stated in Eqs. (140) and (141)were
derived for pressures where the average separa-
tion of the atoms was much larger than the reso-
nant radiative wavelength. It is possible that these
values will change at collision broadening pressures
where the average separation of the atoms is on
the order of the resonant radiative wavelength
(since trapping will still be complete, the value of
F, will remain zero). However, for the experi-
mental situations to be discussed, it will prove
satisfactory to use the values given in Eqs. (140)
and (141)." We shall now incorporate the above
theory in the calculation of experimental line
shapes for polarization effects, spectral profiles,
and laser phenomena.

where ya s is the transition probability per unit
time of the resonant transition. '4 Thus, on the av-
erage, radiation emitted from the m = I state is
70% reabsorbed in m =1 states, 10% reabsorbed
in m = 0 states, and 20% reabsorbed in m = -1
states. Since the gas is assumed to be isotropic,I
the SmmIPP (rad) elements possess the same
symmetry properties with regard to index inter-
change as the collisional elements Smmp~ (col).
Hence, the trapping can be described by the three
average multipole constants found by Dyakonov and
Perel" and Omont" to be

A. Polarization Effects (Hanle Effect)

In Hanle-effect experiments, one is interested in the probability of observing all the scattered radiation
of direction k, polarization X of a system excited with resonant radiation of direction k', and polarization
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In most cases, the excitation information can be simulated by a judicious choice of initial conditions
for the density matrix of the system. To study resonant collision effects, we consider the structure, sim-
ilar to that of lead, shown in Fig. 10, in which the frequency separation of levels b and s is assumed large
compared with the inverse collision time. In the presence of a weak magnetic field, one may observe the
untrapped radiation emitted between states a and b in order to obtain information about the orientation of
level a. The probability for observing an untrapped photon of frequency ~y = cuba-~g, direction k, and polar-
ization A. may be computed using Eq. (103) to be

Q. p+ k .
& k ( )=Q.~(ik) Q f0 dt H - exp[-fk ~ R (f)] exp[i(~ &u-)f]b (t).

~
(142)

where m represents a substate of level a. The position vector of the ith atom is denoted by 5;(f). Note
that all the position and time dependence has been factored from the radiative matrix elements and that the
remaining term, H y ky. ~ no longer depends on the atom label i. An additional feature of Eq. (142) is
that matrix elements of Hc(t) do not explicitly appear since the resonant collisions do not alter the state
( ib).

The Hanle-effect line shape is obtained by integrating the expression (142) over all &uy and averaging it
over all histories. The resultant intensity is denoted by I ($X) and may be calculated as

'~0 5 k Z f '~( ' m' )( Ffm fm'())e (143)

where kl = ~ &/c, C" = (~ &/~ ) C',
1 ab ' ab o

and C is defined by Eq. (130). Equation (143) is valid as long as the average time between collisions is
much greater than the time it takes untrapped radiation to travel the length of the system, a condition that
will hold for the pressures and system sizes under consideration.

Using Eq. (103), it is a straightforward matter to show that, in the Wigner-Weisskopf approximation,
elements of the density matrix have the time development given by

where
(144)

H(x, t), , ' = (-—'C') Q H H exp(f~ f)
0 00

xexpl&k [R.(f)-R (t)] j 5, , 5, , + c.c. of same term with, ', (1 —5.. 5, , ),o i j i'j' nz'p' j y P P
(145)

H(c,t), ,~ ' =(ih) [H (f). . exp(i(o f)5, , 5, , —H (f). . . , exp(-i(u, , t)5. . 5 ],
(146)

=((o —(u )/c,o a 8 (147)

and ya y and ya ~ represent the transition probability per unit time for the transitions a- b and a- s, re-
spectively, for an isolated atom. If we consider the (3n)2 elements of p for an n atom system to make up
a column vector and form corresponding matrices from the elements

H(r, t), , JP ~P and H(c, t) JP J P
zm z sl Zm

FIG. 10. Three-level atomic structure employed to
consider radiative effects in the presence of resonant
perturbers. The radiation k, X is observed while the
k', Y radiation is completely trapped by the medium.
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Eq. (144)may be written in vector form" as

p =-(y +y ) p +[H(r, t)+H(c, t)]p. (148)

The first term on the right-hand side represents the normal radiative decay, the matrix H(r, t) represents
radiation transfer effects, and the matrix H(c, t) represents collision effects.

As in the nonresonant case, we consider the change in p in a short time interval 5t,

[5p(t)] =({P ( 5t)P((R, t) 5p (tR, 5t)]@) +({{P(b, v, 0, 5t)P((R, t)5pl(b, v, 0, |R,5t))~]b 0)

where P, (5t) is the probability of no collisions in time 5t, P ((R, t) is the probability density for a specific
arrangement 8 of all the atoms in the system - the position of the atoms will affect the radiative trapping
of the system, 5p, ((R, 5t) is the change in p in time 5t if the atoms have the arrangement (Rand no collisions
occur in that interval, P,(b, v, 0, 5t) is the probability density of one collision of type b, v, 0 in time 5t,
5p, (b, v, 0, (R, 5t) is the change in p in the time 5t for the arrangement of atoms (R if one collision of type
b, v, 0 occurs, {~ )elis an intergral over all atom arrangements (R,{ ]bvA is an intergral over all pos-
sible b, v, 0, and ( ~ )c is an average over all possible collision histories up to time t. For small M,
Po = 1. Integrating Eq. (148) for a time between t and t+5t, and substituting in above, one obtains

[5p(t)] =({P(5l,t) [exp(-y 5t)(exp{-y 5t

+ f H(r, t ')dt'] ) —1]p(t)]g +({{P(b, v, 0, 5t)P((R, t)

(exp{J' + [-y —y + H(r, t )+ H(c, b, v, 0, t' )]dt ]') —I P (t))@)b„A) (149)

where ( ~ ~ ~ ) represents a time-ordered product. We can neglect the factor —y~ b
—y~ ~+H(r, t') in the

exponential with H(b, v, 0, t') since it will contribute terms of order (5t)' only. Using an assumption of
the impact theory, yn bM«1, and forming the sum of elements needed in Eq. (143) from Eq. (149), one
is led to the equation

Z. 5p. . . ,(t) = -y «Z. (p. . . ,(t)&i im im' av a b i irnim' c

+ ({P((R,t)Q. {[(exp{-y 5t+ J H(r, t')dt']) —1]p(t)], )@)

+ ({P (b, v, 0, 5t)Q. {[(expJ H(b, v, 0, t')dt') —1]p(t)], ] )

The first term on the. right-hand side represents the change in p in a time 6t due to spontaneous emission
from state a to b, the second term the change in p due to spontaneous emission and radiation trapping ef-
fects associated with states a and s, and the third term the change in p due to collisions.

As we have seen in Sec. III,

({P (b, v, 0, 5t)[(exp J' +
H(b, v, 0, t')dt') —1]p(t)j

= {P (b, v, 0, 5t)[(exp J
+

H(b, v, A, t')dt') —1]] (p(t))

i. e. , each collision is independent of the past history.
The treatment of the first term of Eq. (149) is not so simple. Since the arrangement of atoms is a con-

tinuously varying function of time, p(t) will be affected by radiative trapping in a continuous manner [as
opposed to the discrete changes in p(t) caused by collisions]. Thus, the fractional change in p(t) in the
time 5t will always be somewhat correlated with p(t), making the averaging of the first term of Eq. (149)
quite difficult.

One Can better understand the problem by studying the simpler equation X(b, t) = —I'(b, t)X(b, t), where b
is some parameter to be averaged over. It can be shown that, for fixed b, if I'(b, t) varies rapidly in a
time much less than (I'(b, t)) ', then (X(b, t)) =- (I'(b, t))(X(b, t)). The average in these equations is over
the parameter b for some fixed t. The rapid time variation of 1(b, t) minimizes the correlation between
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I'(b, t) and X(b, t).
Applying this idea to Eqs. (148) and (149), we see that if H(~, t) is rapidly varying compared with (yo s)

we shall have"

({P(6t,t)[(exp/- y &t+ f H(r, t')dt'J) —1]p(t)]@&

= (P((R, t)[(exp(- y bt+ f +
H(r, t')dt'j) —I]]+(p(t)& (152)

A study of Eq. (145) will indicate that H(x, t) will change significantly in a time t~ such thai kot~v» 2m,

where v is an average relative speed of the atoms. We obtain the validity condition for Eq. (152) by also
requiring ty«(y ) ' and find it to be

Q v»2m@
0 a, s (153a)

which, in effect, shows that Eq. (152) is valid if the Doppler width»natural width. An alternate form of
Eq. (153) is

v(y ) '»Z,
a, s 0 (153b)

which requires the perturber to travel a distance equal to the resonant radiative wavelength ~ in a time
0

much less than the inverse partial d'ecay rate of the resonant transition. For the case of lead, ~o= 2833 A,
v =4.0x10'cm sec ', and (y s) ' =2.0x10 ' sec so that condition (153b) is approximately satisfied.

The quantities

(bt) 'JP(6l, t)[(exp{-y bt+ J' +
H(~, t')dt'J) —I]}

and (bt) '(PI(b, v, 0, bt)[(exp ft H(b, v, 0, t')dt') —1]]b &

represent the average scattering matrix elements for radiation and collisions, respectively. Using this
fact and Eqs. (151) and (152), Eq. (150) may be written

I

(g. 'i . , &
= — (g. . . ,& Ql[ ( d), S( o), ](g, ,& J, ( )

I
where the S(col)~~'~~ are given in Table I. On expanding the density-matrix elements in terms of irre-
ducible tensor components using

one obtains the rate equations

(Q.p &
= —[y + I'~(rad)+ I' (col)](g.p (155)

where t'ne collisional Iff(col) are given in Eqs. (45). Equations (154) and (155) show that, on the average,
radiative and collision effects are independent. This is true only because of the assumption that the rela-
tive orientation of perturbers and emitters is rapidly changing; thus, any correlations between radiative
and collisional effects are quickly forgotten.

Using Eqs. (143), (154), and (155), we arrive at the Hanle-effect line shape

I(kA) —C» / b~kiXm bk&m' m —m' Qg i KQ (156)i(u, + [y + I' (rad)+1 (col)]mm', IC mnz' a, b

This equation is similar in form to the corresponding Eq. (137) of the nonresonant broadening case, and
the comments following it still apply. In attempting a comparison with experimental results in Sec. IX,
we shall use the values of I'&(rad) given in Eqs. (141). It should be noted that Happer and Saloman4' used
an equation equivalent to Eq. (156) in analyzing their experimental results.

An alternate method of observing resonant collision broadening phenomena has been attempted by Omont
and Meunier. " They considered the emitter-perturber structure shown in Fig. 11 which correspo nded to
the case of a Hg emitter perturbed. by other Hg isotopes. Here, if 4m = (~~ —~z) —(&~ —~s ') satisfies
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Emi t ter

j= 0

I Ik, X

j=0

Per turber

FIG. 11. Emitter and perturber atomic structures
pertinent to resonant broadening of one element by its
isotopes. One observes the k, X radiation which is un-

trapped. If a perturber becomes excited as a result of a
collision, the k', X' radiation it emits will be completely
trapped.

the inequalities Doppler broadening «
I ~+ I

« inverse collision time, the emitter radiation is never trapped
and collision effects are as before. Since the emitter radiation is not trapped one need only follow emitter
atoms in this case. It can be shown that the line shape will be given by

1- '1
Imm', KQ i~, + [y + I' (col)]rnid' a, s

where p& is the emitter density matrix, and the 1" (col) are the average collision multipole decay con-
stants of t e initially excited atoms given in Eqs. (45 .

B. Spectral Profiles

Again we consider the structure shown in Fig. 10 with level a now taken as degenerate. The spectral
profile is given by Eq. (142) averaged over all histories which, after a simple change of variable, be-
comes

I (kA. ) = 25 g. Z Re f d7'exp(i(+ —& &)&]H
&

H
ab Z I p k ab

xf dt (e px(-ik [R.(t +&) —R.(t )]jb. (t +r)b*. ,(t ))0 2 0 'L 0 Sm 0 ZSZ 0 C

Neglecting all velocity effects, we are left with the problem of evaluating the correlation function

y, (f, 7) = Z.p, (t, r)=(Z. &. (t +~)b*. (t )) .

(15S)

(159)

In order to understand the nature of the correlation function, one must look at the physical processes
involved. Initially, an atom is excited, which then decays to either state b or state s. If it decays to
state b, the radiation is observable, but if the decay is to state s, the radiation is absorbed by some other
atoms which repeat the decay process. Each atom that receives excitation through radiation trapping or
collisions acts as a newly excited atom; the density matrix of the newly excited atom contains information
on the orientation of its excitor, but this is not especially relevant in calculating the correlation function
ymm&(to, v'). However, since the population of level b remains unchanged in all transfers of excitation, no

information on the electric dipole moment associated with states a and b can be exchanged; this condition
is reflected in the correlation function by the absence of terms like bzm(to+ w)b jm &(to) for i 4j.

The observed spectral intensity is given as a sum of the individual contributions from each atom. (In
Hanle-effect experiments, we were interested in the orientation of the excited-state population of the en-
tire ensemble. ) In Sec. III, where the case of collisions only was considered, we found that the average
electric dipole moment of the initially excited atoms followed a simple exponential decay. This occurred
because it was highly unlikely for an excited atom to become deexcited in a collision and then undergo a
collision with another excited atom. The situation with respect to radiation transfer is not so simple.
When the average separation of the atoms is on the order of or less than the resonant radiative wavelength,
the decay rate for a specific atom is not the same as that for an isolated one. The emitter atom will, in
general, decay with a linear superposition of several decay modes characterizing the emitter-perturber
system. Consider, however, the case when the emitter-perturber separation remains less than or equal
to a distance on the order of the resonant radiative wavelength only for times much less than the lifetime
of the emitter. In that case, the perturbers have only a small probability of excitation and, in return, can
have little effect on the emitter. Thus, the radiative decay of a given emitter will be unaffected by the
resonant transfer process as long as the atoms are moving fast enough. This means that the perturber
must cover a distance of the radiative wavelength in a time much less than the emitter lifetime. That is,
one requires
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which is the same condition stated in Eq. (153b). Thus, condition (153b) leads to relatively simple results
in line-shape calculations for both spectral profiles and polarization effects.

If we assume Eq. (153b) to hold, then, following the procedure of Sec. VII, it is easy to show that

p, (t, ~) = y, (t, 0) exp(- —,
'

[p 5+& +2I' &(col)]T]

(16o)= {Q.p, (t )& exp(- &[y +y +2I' (col)]~],

where I"
f, (col) is the average collisional electric-dipole decay constant for initially excited atoms given

in Eq. (48). Combining Eqs. (158)-(160), one obtains the equation for the spectral profile as

I (kA) =
ab

mm'

((u —(u 5)'+ [-,'(y 5+ y )+ I" ~(col)]'
k ab a b a s ab

~ (161)

To further reduce Eq. (161), we must expand (g& pf~. f~'(t }&c in terms of its irreducible components.
Then, using Eq. (154}, we can write the numerator of Eq. (161) as

[y +y +21 (col)] Q H
5

H 5,[y + I' (rad)
-2 I r*

ab as ab
mm, ~y

1m' 1 1 Z
+ I' (col)] (-1), Z.p~ (0).

This term can be averaged over initial conditions. We shall assume that the excitation is unpolarized which
is equivalent to taking

&Z,.', (0)&, „,= (~3}-6,5, .

With this initial polarization, Eq. (161) for the spectral profile, averaged over initial conditons, becomes

ah initial(k~). . .
[r b+w +21" h(col)](r b) '2

[~ —~ ]'+ [-,'(y + y )+ I' (col)]'
k ab ' ab as

(162)

where we have used I;(rad) = I;(col) = 0. This intuitive result is valid only when condition {153b) is met.
Had we included velocity effects but neglected recoil, the line shape would have been a Voigt profile.

Finally, we wish to consider the emitter-perturber structure shown in Fig. 8 which has been used by
several experimentalists. "~ '~ "~" The radiation between states b and a is observed while that between
states a and s is completely trapped. In this case, the spectral profile will be given by the probability of
finding any atom excited in level a and a photon of type k, & present. Explicitly, the profile is given by

f~ (k~) ={Z.Z P. k~. . k~( )& .

Under the same assumptions that were used above, including condition (153a) and neglecting velocity and
recoil effects, it is a straightforward matter to calculate the spectral profile as

I (kX) =
ba

[r +r +21' (col)](r5 ) ' 2
[ur —~ ]'+ [-,'(y + y }+I (col)]'

k ba ' b a as ba

(163)

Due to the assumption of Eq. (153b), radiation trapping plays no role in this result.

C. Laser Phenomena

A typical laser structure is shown in Fig. 12
with the assumed laser action between levels a
and b. In general, the oscillator strength between

level a and the ground state s is so small that res-
onant broadening and transfer effects are unim-
portant; the resonant perturbers, in essence, act
like foreign-gas broadeners. However, if reso-
nant effects were significant, one could use the re-
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j=0

8
~A

Cg

FIG. 12. Typical structure of a laser atom. The
resonant transition a- s usually has an oscillator
strength that is so small that resonant broadening effects
may be neglected. The laser transition a 5 is shown

by an arrow.

suits of Secs. VIII A and VIII B given above, to
obtain the collisional and radiative rates of change
of the density matrix, which may then be added
on to laser rate equations which neglect such ef-
fects. Resonant collisions and radiation transfer
would provide a selective excitation (and deexcita-
tion) for level a but would not transfer an electric
dipole moment associated with states a and b from
emitter to perturber. The selective excitation of
the magnetic sublevels of state a might be impor-
tant in the case of the Zeeman laser.

IX. COMPARISON WITH PREVIOUS
THEORIES AND WITH EXPERIMENTS

A. Resonant Case

A summary of previous theoretical calculations
on resonant broadening parameters is presented
in Table III along with the values we have derived.

The results to the left of the double line are nu-
merically derived while those to the right arise
from calculations utilizing cutoff approximations.
Kazantsev" considered the possibility of different
velocity distributions for different elements of
the density matrix but found that this produced
little effect. His results are in excellent agree-
ment with ours, with the possible exception of hg.
The value quoted for bg is a corrected one, since
we believe there was a sign error in Kazantsev's
work. " Vdovin and Galitskii" used a Green's-
function approach and arrived at the results shown
for the case where recoil is neglected. They also
allowed for recoil effects by considering collisions
at large impact parameter (much greater than the
optical radius) which produced small momentum
transfer. Inclusion of such effects changed bg

a s to 0.0106 ~ 7a s but left
I'a~ unchanged. 'Se feel that some error may be
introduced by these considerations since the bi-
nary collision approximation fails at large impact
parameters. It would be very difficult to observe
this shift, since resonant trapping will dominate
all other effects at pressures where the shift is
significant. The calculations of Watanabe, "
Dyakonov and Perel, 9 and Omont and Meunier"
were in the same spirit as the present calculations,
and their agreement with our results is satisfac-
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tory.
The numerical results of Omont and Meunier,

carried out along lines similar to those presented
here, appeared while this work was in progress.
As can be seen in Table III, the agreement, in
general, is excellent. It appears, however, that
some error has been made in their calculation of

Actually, the quoted values are not those
given in the work of Omont and Meunier, but rather
those of Omont's thesis" which employed the same
asymptotic average values as those used in this
work (see Appendixes A and C). The asymptotic
average values represent the values of decay pa-
rameters averaged over impact parameter for
close collisions. These values are dependent upon
the form of the interaction and the path of the per-
turber. Omont has argued that since one cannot
properly describe close collisions, the use of in-
tuitive or equipartition values is justified. These
intuitive values were obtained on the assumption
that after each strong collision, on the average,
it is equally likely to find the emitter in any of its
magnetic substates. Equivalently, each strong
collision, on the average, is assumed to produce
equipartition. Based on these asymptotic aver-
age values, Omont and Meunier produced the re-
sults given in Ref. 31, which differ only by a few

percent from those given in Table III.
We do not feel that the equipartition values have

a sound theoretical basis although their use results
in only slight numerical differences. All one can
expect strong collisions to do is to produce a rapid
sate of approach to equipartition. There is no a
Priori reason to believe that the effect of an aver-
age strong collision will also be to produce equi-
partition. For a dipole-dipole interaction and
straight-line paths, this is definitely not the case
(see Appendixes A and C) and will probably not be
the case for the actual total interaction.

Indeed, the use of equipartition values will tend
to lower the value of r, /I', which leads to poorer
agreement between theory and experiment in both
the resonant and nonresonant cases. In summary,
we feel that it is as good, if not better, to use the
straight-line path dipole-dipole asymptotic aver-
age values than the equipartition ones. This will
be true especially for resonant collisions where
the use of the dipole-dipole interaction and
straight-line paths is still valid for a large range
of close collisions (collisions with impact param-
eter less than the optical collisions radius).

Of the approximate methods displayed, Omont's
results" (his approximation No. 2) give the best
values. This method involves using the perturba-
tion values of the parameters for distant impacts
and the asymptotic average values for close im-
pacts, with both solutions extended to join in the
intermediate impact region. Omont used the equi-
partition asymptotic average values for strong col-
lisions and this method gave agreement within 10%

of the exact results. Had the correct asymptotic
average values been employed, the agreement
would have been much worse (up to 34% deviation).
Thus, an accidental choice of asymptotic average
values leads to better agreement than the correct
one. Some other choice may yield even better
agreement, but it should be clear that cutoff pro-
cedures in the resonant case have little basis with-
out a comparison with the numerically integrated
results. Another approximate technique involving
the neglect of noncommutativity'~ "&"leads to er-
rors which average =15% (=40/o error in I",/I;).
It appears that the numerical integration proce-
dure can not be bypassed if one desires reasonable
accuracy in the results.

Experiments on resonant broadening provide sat-
isfactory corroboration of the theory. Direct ob-
servation of spectral line profiles, using atomic
structures similar to that in Fig. 8, have provided
empirical values for the collision width 21"ag. The
collision width is twice the average electric-dipole
decay parameter. To conform with the notation of
Kuhn and Vaughan, "we use the relationship
&'y~ s =~x'rocXf~s to rewrite Eq. (48)

r = 4.82st[-.'(~ cf ~)], (164)

where fcs is the average oscillator strength from
the j = 1 state to the ground state, and xo is the
classical radius of the electron. The collision
width of the line in Hz is given by

2r /2n=ZX[-,'(~ c~f )],ab o as (165)

with E= 1.5. Theoretical values for E are as fol-
lows:

Vdovin and Galitskii"
Kazantsev"
Meunier and Omont"
This work

1.48 + 2%,
1.54 +?,
1.54 +?,
1.54 + 1%.

,

The error in Kasantsev's and Omont and Meunier's
work is probably 1-2%, so it appears that their
values are in excellent agreement with the pres-
ent calculation, but that the results of Vdovin and
Galitskii differ somewhat. Several authors"~ "&"
have used a value E = 1.44 based on theoretical
values for I; rather than F~y.

Several measurements of I ay in rare-gas reso-
nant broadening have been made. "&"&"~ ~ Reso-
nant collisions have large optical collision diam-
eters (& 20 A) so that the dipole-dipole interaction
is probably valid. Experiments have shown that
collision widths are not affected by temperature,
and negligible shifts have been observed for reso-
nant transitions with appreciable oscillator
strengths. In addition, when the lower level is the
resonant one, the collision width was found to be
independent of the upper level of the transitions,
in agreement with theory. Using the experimental
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values for the collision widths and our value of
E= 1.54 in Eq. (164), we can calculate the oscilla-
tor strengths of various transitions which have
been examined experimentally. The results are
given in Table IV along with some theoretical and
empirical determinations of these strengths. In
all these experiments, it is the lower level which
is broadened by resonant collisions. The errors
in our values of f are due basically to errors in
measured widths. Except for the case of krypton,
the results are in good agreement with theory and
other experim ental determinations.

The above experiments have yielded some inter-
esting side results. The stated experimental val-
ues of I'~y were obtained after an analysis of the
spectral profile in terms of Voigt functions had
been made. We have already noted that velocity
and recoil effects might lead to a modification
of the Voigt profile. For the cases studied, such
deviations were not appreciable. " The values of
F~~ were obtained by finding the slope of the curve
of Lorentzian width versus pressure, and the good
agreement with theory indicates that the many-
mode effects which were discussed in Sec. VIII

TABLE IV. Calculated values for oscillator strengths. These values were obtained by using the theory in conjunction
with resonant broadening experimental results.

Element
Observed

transitions
Observed Resonant

broadening transition

Calculated
oscillator
strength Experimental Theoretical

Other determinations

He 3 Sp 2Pi1

2pi —Pii

2p6 Pi
2p4 Pii

3p'('P„,)4p[-.']i-'Pi
p'('P3/2) 4p [2]p

2.5 +0.15

1.89 + 0.08

0.90 + 0.16

2 Pi Sp

i iPi- Sp

3
Sp

0.260 + 0.016

0.158 + 0.006

0.057 + 0.009

0.26 + 0.12
0.31 + 0.04

0.26 +0.07'
0.273 + 0.011

0.16 + 0.014

0.2761 + 0.0001g

0.14~? j

0.12 + 0.02

0.05 + 0.01
0.075+? ~

Ar

Kr

Xe

3p ( Pig2)4p[2]i Pi 4.53 + 0.22
3p ( P3(2)4p[2]p- Pi

4p ( P3]2)5p[2]p Pi 3.78 +0.21

4p ( Pig2) 5p4]p Pi 3.24+ 0.15

iPi Sp

3 iPi- Sp

iPi Sp

Pi Sp

iPi Sp

0.266 + 0.013

0.189+0.011

0.172 + 0.008

0.159+0.01P
0.166+?
0.135+0.01P

0.28 + 0.05
0 27 +0 02s

0.256 +0.008t

0.25 + 0.05r
0 26 +0 02s

0.238 +0.15t

0.20 +0.04
0.15~?

0.20+?

0.20 +?

0.28 +?

0.25+?

a 9

b
Broadening in units of 10 Hz(atoms/cm )

Reference 45.cF. A. Korolyov and V. I. Odintsov, Opt. i Spectros-
kopiya 18, 968 (1964) [English transl. : Opt. Spectry.
(USSR) 18 547 (1965)].

dJ. Geiger, Z. Physik 175, 530 (1963).
R. Lincke and H. R. Griem, Phys. Rev. 143, 66

(1966).
W. L. Williams and E. S. Fry, Phys. Rev. Letters 20,

1335 (1968); Phys. Rev. (to be published).
gB. Schiff and C. L. Pekeris, Phys. Rev. 134, A638

(1964).
hReference 49.
iF. A. Koroloyov and V. I. Odintsov, Opt. i Spektros-

kopia 16, 555 (1964) [English transl. : Opt. Spectry.
(USSR) 16 304 (1964)] .

3P. F. Gruzdev, Opt. i Spektroskopiya 22, 313 (1967)
[English fransl. : Opt. Spectry. (USSR) 22, 170 (1967)].

kA. Gold and R. Knox, Phys. Rev. 113, 834 (1959).
Reference 42 modified to include a small nonresonant

effect (see Ref. 24).
mR. Knox, Phys. Rev. 110, 375 (1958).
nReference 42.
oReference 53.
PP. G. Wilkinson, J. Quant. Spectry. Radiative Trans-

fer 5, 503 (1965).
qR. Turner, Phys. Rev. 140, A426 (1965).
rG. I. Chaschina and E. Y. Shreider, Opt i Spektros-

kopiya 20, 511 (1966) [English transl. : Opt. Spectry.
(USSR) 20, 283 (1965)].

sP. G. Wilkinson, J. Quant. Spectry. Radiative Trans-
fer ~6 823 (1966).

tD. K. Anderson, Phys. Rev. 137, A21 (1965).
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have either saturated or are very slowly varying
over the pressure regions studied.

The value of I"~y determines a value for the nat-
ural width of the resonant transition through Eq.
(165). However, an extrapolation to zero pressure
in the above experiments produced values of the
natural width which were 1.3-1.6 times that of the
prediction. Kuhn, Vaughan, and Stacey' tried to
explain this residual-width anomoly by the many-
mode effect, attributing a larger decay param-
eter to the dominant decay mode. Zaidi, "using
a photon propagator approach, made an estimate
of this effect. Using his calculation, we found

that, at most, a residual width equal to 0.1, the
natural width, could be attributed to the many-
mode effect. This result, in addition to the dis-
cussion of Sec. VIII which showedthat many-mode
effects should be small when Doppler width» nat-
ural width, leads one to doubt the above explana-
tion of residual widths. However, if no such re-
sidual widths are found in similar experiments on
foreign gas broadening, one must conclude that
either radiative transfer or recoil mechanisms
are producing effects nonlinear in the pressure at
very low density.

A better check of the theory is afforded by Hanle-
effect experiments where velocity and recoil ef-
fects do not influence the results. Table V shows
the results of some of these experiments in com-
parison with our theoretical predictions. The
errors in the theoretical values reflect experi-
mental errors in determinations of the natural
linewidth [recall that I'~~y~ s from Eqs. (47)].
The results of Happer and Saloman from the res-
onant experiment in lead are in excellent agree-
ment with theory. At the pressures considered,
the radiative I's of Eqs. (141) seem to provide
good agreement with experiment. The different
theoretical values quoted are based on different
empirical values for the natural width. The larger
value, from the work of de Zafra and Marshall"

is probably the better choice. Omontand Meunier"
observed the resonant broadening of a given iso-
tope of Hg by other of its isotopes, reflecting the
situation shown in Fig. 11. The difference in the
transition frequencies of the isotopes is large
enough to prevent resonant trapping, yet small
enough to allow for all the phenomena of resonant
broadening. By measuring the radiation from one
isotope only, they obtained the quantities pertinent
to the decay of pI. The quoted values represent
the average value of Hg„, broadened byHg, ~, Hg»,
broadened by Hg20» and Hg», broadened by Hg»4.
Again the agreement with theory is good.

In summary, we feel that resonant broadening
phenomena is adequately explained by the theory.
The use of condition (153b) to simplify the theory
seems to be justified, as does the use of the radi-
ative decay parameters given in Eqs. (140) and
(141) at the pressures under consideration.

B. Nonresonant Case

As far as we know, all previous treatments of
nonresonant broadening have employed some form
of cutoff approximation. Byron and Foley' and
Omont" have treated the problem using cutoff
procedures and an approximation to the van der
Waals constant.

The results of several approximate methods are
given in Table VI. Methods 1 and 2 represent
cutoff procedures using equipartition and correct
asymptotic average values, respectively. Again
we see that use of the incorrect equipartition val-
ues leads to better agreement. Method 3 repre-
sents a calculation neglecting noncommutativity,
and we see that although it provides excellent ac-
curacy for 'Y~t, and ~~5, the value of I;/I; is 50%%uo

off. Again it is somewhat unclear if any approxi-
mate techniques can be used with confidence,
since their validity is established only after a
comparison with the numerical results.

TABLE V. Comparison of theoretical and experimental values for resonant broadening parameters in units of 10
sec ' (atoms/cm )

Parameter Emitter Perturber
Observed

transitions
Resonant
transition

Experimental
results

Theoretical
results

r l,/X
ZI /~
r l,/rl,

Pb2p8

Hg2o2

Hgaoo

Hg2oo

Pb2p8

Hg204

Hg'2o2

Hg2p4

3 3
Pg P(

3 3
Pg P2

3p~ $

3 3
Pg —Pp

3
Pg Sp

38+8

1.21 +0.05
3.77 + 0.40
3.88 + 0.40d
0.95 + 0.03d

30.5 + 3.6
35.5 +5.4c

1.21 z 0.02

4.03 6 0.08

4.08 + 0.08e
0.966 + 0.012

Reference 48, error approximated from graph.
Value of y used in calculation taken from Ref. 48.
Value of y~ ~ used in calculation taken from Ref. 81.

f

Reference 31.
Value of y used in calculation taken from Ref. 35.
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TABLE VI. Values for nonresonant decay parameters
in frequency units of NIBI (v )~.2/5 3/5

Element

~N
~N

I N/I N

&ah

&ab
N/~v ~N

Method Method Method Numer-
1 2b 3 ical results

8.17
7.21
1.11
8.80
5.80
0.661

10.3
6.02
1.70
8.80
5.80
0.661

8.20
4.91
1.67
8.93
6.48
0.726

7,62
6.80
1.12
8.97
6.51
0.726

Cutoff procedure using equipartition strong values,
Cutoff procedure using correct strong values.
Neglect of noncommutativity.
Numerical integration of the equations —this work.

Only recently have experiments been performed
that can provide meaningful tests of the theory.
The measurement of the temperature dependence
of both shift and width by examination of spectral
profiles shows that the T""variation predicted
by theory does not hold in some cases. 4'~" Spe-
cifically, with krypton as the emitter, the colli-
sion parameters for He, Ne, and Ar as perturbers
did not obey the T""prediction while that for Kr
as a (foreign gas) perturber did obey it. "The re-
sult is somewhat surprising since the optical col-

0
lision radii for He-Kr is 8.7 A and that for Ar-Kr
is 12 A, while that for Kr-Kr is 14 A. One might
expect that recoil effects are distorting the re-
sults since the optical collision radii seem large
enough to have the dipole-dipole interaction dom-
inate.

In a Hanle-effect experiment on Hg perturbed
by inert gases, it was found that the temperature
dependence of decay parameters associated with
Ar, Kr, and Xe collisions are consistent with a
dipole-dipole interaction, while those with He and
Ne are not. 4' Since the optical collision radius is
3.5A for He-Hg and 7.5A for Xe-Ar, these results
are reasonable. That is, one must deal with
higher multipoles and wave-function overlap in the
He-Hg and Ne-Hg systems.

Equation (85) for the broadening parameter S~
shows that a determination of the absolute mag-
nitude of cross sections requires a complete
knowledge of the atomic system. However, the
ratio I",N/I;N should be independent of the struc-
ture of the system (assuming a pure dipole-dipole
interaction). Measurement of I',N/I"2N for foreign
gas broadening of the 'P, (6s6p) state of Hg and the
'P, (5s5P) state of Cd have been made. The re-
sults are given in Table VII. Although there is
fair agreement with the value of 1.12 +0.02 pre-
dicted by theory, it would seem that the dipole-
dipole interaction is not entirely sufficient to ex-
plain nonresonant broadening. It is surprising to
note that the values of I'P/I;& for Ar, Kr, and

TABLE VII. Experimental values for I'~ /I'2 in
foreign gas broadening. The theoretical value is 1.12
+ 0.02.

Perturber
Hg202 emitter

(Ref. 44)
Cd~~2 emitter

(Ref. 50)

He

Ne

Ar
Kr
Xe

1.15 +0.07
1.26 + 0.12
1.21 + 0.06
1.16 +0.03
1.03 + 0.08

1.15 + 0.10
1.12+0.10
1.16+0.10
1.12 + 0.10
1.14 + 0.10

Xe perturbing Hg differ considerably from theory,
since an independent measurement4' on tempera-
ture effects indicates that the dipole-dipole inter-
action might be valid for these cases. The inert
gas —gd collisions have a slightly larger optical
cross section than inert gas —Hg collisions,
which, in addition to the fact that Cd is a smaller
atom than Hg, may partially explain the better
agreement with theory for inert gas —Cd colli-
sions.

An experiment involving the use of a Zeeman .

laser" yielded the ratio I',N/I;N= 1.28+ 0.03 in
fair agreement with theory. The parameters
1", and I",& are the broadening constants. for the
2s, (j = 1) level of neon perturbed by both helium
and neon. The Weisskopf radius for these colli-
sions (in which both helium and neon act as non-
resonant perturbers) is on the order of 3 A, indi-
cating that the dipole-dipole interaction is not a
good approximation to the true interaction.

A more detailed explanation of nonresonant ef-
fects will not be attempted in this paper. There
are several possibilities for improvement of the
theory. Some authors have tried to fit data by a
Lennard-Jones potential" ~ "~"; however, the re-
sults are not overly sensitive to the form of the
repulsive part of the interaction. One can also
modify the results by putting in some phenomeno-
logical dependence on velocity" which would sup-
posedly account for deviations from a pure dipole-
dipole interaction at small impact parameter. A
more detailed solution would involve a completely
quantum- mechanical description of the collision
at small impact parameter. Increased experi-
mental research in the form of measurements of
I'p/I; would be useful, since theoretical values
for this ratio can be predicted without a knowledge
of the atomic parameters of the system. Addition-
al experiments on the temperature dependence of
shift and width would also be useful. Such experi-
ments on systems known to interact primarily
through the dipole-dipole interaction might prove
useful in studying the effects of recoil on spectral
profiles. Finally, it should be noted that if one
desires to predict absolute magnitudes of cross
sections, he is faced with the task of evaluating the
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broadening parameters of Sec. V.

X. DISCUSSION

In the liinit of a dipole-dipole interaction between
neutral atoms and the impact approximation for
pressure broadening, we have numerically deter-
mined the effects of collisions On spectral line
characteristics. A comparison with the results
of approximate methods has indicated that the ac-
curacy of any method can be tested only after the
exact numerical calculation has been made. We
have found that two apparently reasonable methods,
cutoff with correct asymptotic average values and
neglect of noncommutativity, lead to considerable
errors (=30% or more) in many of the parameters.

In all of the experiments mentioned, the per-
turber density and width of line profiles satisfied
the needed requirements for the validity of the
impact approximation. It appears, however, that
the pure dipole-dipole interaction is valid only
for resonant and certain foreign gas collisions.
The situation for. nonresonant broadening is some-
what unclear at the present time. For example,
the optical collision radii for Kr-Hg and Xe-Hg
systems are 6.5 and 7.5 A, respectively, yet the
corresponding experimental ratios for magnetic
dipole to electric quadrupole decay I;+/I'p are
1.16a 0.03 and 1.03 + 0.08. It is difficult to suggest
a cause for such a variance.

One should note that we have neglected recoil
effects which may be significant in the broadening
problem x6, xv, ao, as-so The good agreement of
theory and experiment for the broadening param-
eters in the resonant case does not rule out the
possibility that recoil effects contribute signifi-
cantly ta the spectral profiles observed in non-
resonant broadening. The importance of recoil
effects in laser experiments, using realistic mod-
els, is still to be determined. "

It is fairly easy to extend the theory to allow for
transitions other than j=1 to j=0 and to allow for
different interaction potentials. " In particular,
one can solve for simultaneous resonant and non-
resonant broadening of atomic levels; for this
case the equations analogous to Eqs. (10) or (61)
would be of an integrodifferential nature. Such
calculations seem a bit premature at this time
consideririg the experimental and theoretical un-
certainties in foreign gas broadening which are
still present.

APPENDIX A: RESONANT SOLUTION

In this appendix we shall find the explicit solu-
tions of Eq. (15a). Following Dyakonov and
Perel, ' we make the substitutions cose = —ut/R,
sin8= 5/R, which transforms Eq. (15a) into

idS(8)/de = V'(8 )S (8), S(0)= 1, (Al)

where V' is given by a modified form of Eq. (14)

with X, Y, and Z replaced by

X'= o.'(2 sine —3 cos'8 sin8),
Y'= 3(v 2)& cos8 sin'8,
Z'= 3& cosaI9 sin8,

and the dimensionless quantity n is given by

n=, (e'a '/m)~r(so, al)~'(b'i) '. (A2)

Equation (A1) is equivalent to the three sets of
equations

ids /d8 = X'S + Y'S + Z'S
1m 1m om -1m

idS /de= Y'S —2X'S~ —Y'S
10m 1m -1m

(A3a,)

(A3b)

idS /de = Z'S —Y'S +X'S
om

(A3c)

idS /d8 = (X'+ Z')S
m m' (A4a)

idS /de=(X' —Z')S +2Y'Som' (A4b)

idS0 /d8= Y'S —2X'S
Om m om' (A4c)

with S (8=0)=S (0)= —S (0)

=s (o)=s (o)=1
1 00

and SO(0) = S (0) = 0 .0

%e seek solutions for t=+ ~, or equivalently for
8= m.

Equation (A4a) integrates immediately to give

S (v)=S (v)=e, S (~)=0. (A5)

The remaining equations must be solved numeri-
cally. One needs to solve the equations only for
the cases m = 0, 1 since it follows directly from
Eqs. (A3):

s„(e)=s, ,(e), s „(e)=s, ,(e),
s„(8)= —s, ,(e),

and the numerical results yield

(A6)

S „(v)=S„(~). (Av)

The solution of Eqs. (A4b) and (A4c) will be con-
sidered for three regions of +.

Region IO.O &~g ~& Q.O2

In this region we obtain solutions by iteration.
Constructing elements of Tmm~pp and Smm~pp

where m can be 1, 0, or —1, and initial conditions
are S~~~(0) = 5~~ ~. Introducing new variables
S+m=S1m+S 1m, S m=S1m S-]m, the above
equations become
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as given by Eq. (23), one obtains the following re-
sults:

T, "(b, v, 0 )= —8&'+ O(n4)

T,o '(b, v, 0 )= —16o."+O(~),

O
Cy

Cl

T "(b, v, 0 ) = (~)n'~+ O(n'),

T„"(b,v, 0 )=- 12~'+O(~4),

T, ' '(b, v, Q )=16~+O(ns)

S„"(b,v, 0 )=-4~'+O(~'),

S -(b, v, Q )=-9v'~'+O(~'),

S„"(b,v, 0 )=(~)v'n +O(~'),

S, "(b v 0 )=-20''+O(o. '),

'(b, v, 0 )=4o' + O(a4),

W= —1+ —,'[T00(b, v, 0 }+T (b, v, 0 )

+T (b, v, 0 )] = yn'+O-(~'),

6 = 3 [R00(b, v, 0 )+R11(b, v, 0 )

+R (b, v, Q )] =O(n').

-I
0

FIG. 13. Uariation of the scattering matrix element
Tf f (b, v, Do) as a function of n = (e a /)i) ($
x)T(so, al)) (b v) . Forlargen, T&i (b, v, Qo) is nearly
periodic with a period in n of -1.6. The computer
solution was extended to +=10.5.

to be negligible and we present these values as
asymptotic average values. The asymptotic
average values will be donated by script letters
s~~~PP (Qo}; for the resonant case these are
given in Table VIII. These asymptotic average
values may also be predicted analytically as is
done in Appendix C. By using the technique given
in Appendix D, one can perform an average over
all collision orientations to obtain asymptoticI
average values Imm~pp which are independent
of Qo. These values are also given in Table VIIIl
along with the quantities I HAPP (eq) which would
have been obtained if, on the average, a strong
collision produced equipartition. One notes that,
in general, I~~~PP'x8~~~PP (eq), i.e. , an
average strong collision does not produce equi-
partition as has been discussed in Sec. IX.

Region II 0.02 «& a «& 4.9

In this region, computer solutions of Eqs.
(A4b} and (A4c) were obtained. The accuracy of
these solutions, which was tested by halving the
step size, was found to be on the order of 0.5%.

APPENDIX 8: NONRESONANT SOLUTION

The calculation of Appendix A must be repeated
for the foreign gas case. The equations corre-
sponding to Eq. (61) of the text and analogous to
Eqs. (A4) are

Region III 4.9 & a «& ~ idM /d8 = —(F+ K)M
m m' (Bla)

This region corresponds to impact parameter
less than —,

' the Weisskopf radius. " For resonant
broadening the approximation of a dipole-dipole
interaction may begin to fail in this region. How-
ever, since the contribution from this region will
account for only 3% of final values, this assump-
tion of a dipole-dipole interaction throughout this
region will lead to little additional error.

The behavior of a typical element as a function
of n is shown in Fig. 13. The other elements
behave similarly. At large ~, the solutions are
nearly periodic. The average value of the elements
over a period in e was computed for the two
regions; n =[3.4, 5.0] and a= [8.9, 10.5]. The dif-
ference in values for these two regions was found

idM /d8 = (- F+K)M + 2GM
m m Om

(B1b)

idM /d8= GM —LM
Om m pm ~

(Blc)

M, (0) =M, (0) =M, (0)

F=2t) sin48(2+3cos'8}, G=6(vY)t) cos8 sin'8,

K=6t) sin'8 cos'8, L =4t) sin48(4-3cos'8),

= —M, (0) =MM(0} = 1, M, (0) = Mc (0) = 0,

where M M1 +M
1

M M Mm lm -1m ' m 1m -1m,
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TABLE VIII. Asymptotic average values of resonant scattering matrix elements for close collisions. The argument
Qo indicates values of the elements for collisions with the standard geometry while an average over all collision ori-
entations has been made to obtain the elements without argument. The argument eq indicates the values that would have
been obtained if an average strong collision produced equipartition.

00(g )00 p

—0.50

11(g )

—0.75

g 00(g )ii p

0.00

0-1(g )fo p

0.00

& io "@,)
—1.25

v'f f
f f(n )

0.75

00

30

30

00
ii

0-1
io

30

10
&fo

30

30

&„"(eq)

30

V'ff
'

(eq)

Z5.
30

00( )

30

(eq)

0.00

10( )

30

'(eq)

30

S 00' )

0.00

—0.50

8 ii "(~ )

0.00

0.00

—1.50

—0.50

00
~oo

15

g 00
ii

0-f
10

15

10
Iio

1-1
8 f~i

g 00( )

15

S „"(eq)

15

00( )

15

S
1 (eq)

0.00

3 (eq)

15

31 1 (eq)

15

1 f(g )fi p

0.25

qJ ~f~f
ii

30

1.00

30

'N(eq)
—1.00

(eq) o
«f~l(g )

0.50

0.00

I ii (eq)

a (eq)
0.00

and the dimensionless quantity p is given by

r) = a(b'v)-',

with 8 given by Eq. (63). We can solve Eq. (Bla)
exactly to obtain

M', (~) =M ', (v)=e '~~, M', (~) =0.

Equations (A6) and (A7) are also valid for the non-
resonant M elements, so we are left with the
problem of obtaining solutions of Eqs. (B1b) and
(Blc) for the cases m = 0, 1. Again the solutions
are obtained in specific regions.

M„"(b,v, 0 ) = —(,~~) m r)'+ O(rP),

&'= —1+ 3 [Mll(b, v, 0 ) +Moo(b, v, 0 )

+ M
1 1(b, v, 0 )] = 3 rrr)i —(I)m rj' + O(r)') .

We can also find the perturbation solutions for the
case of lower- level broadening and additional
virtual transitions. The equation of interest is

bp (b, v, c)/p (b, v, c) =-W"

= —1+—,'Q (b, v)4(b, v)[M 1(b, v, 0 )0
Region IO.O &~ q &~ 0.02

+M (b, v, A )+M
1 I(b, v, & )], (B4)

Using perturbation theory in this region one
obtains

M„-(b, v, n ) = O(ri'),

M,"(b v n )=O(ri4)

M "(b v n ) = —(~)m'ri'+O(ri4),

M -' '(b v n ) =(—')~'rl'+O(r)'),

—(", )& ][b v] '+O([b v]-3), -

where Sn as given by Eq. (86) in the a-level

(B6)

which is Eq. (94). In the perturbation limit,

W"=(~[a +(—")~ -3~ ][b'v]-']i —y[(~)~ '

+ (6561 )Q3 2 + (81)(g 2 27' (g (~2)(g (g
b a b ' a
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broadening parameter, S5 given by Eq. (89a) is
the b-level broadening parameter, and S& = g
x(S~+SD) with S~ and S& given by Eqs. (73b)
and (73') resulted from the additional phase con-
tributions of the added virtual transitions. Thus,
in a crude approximation, the shift will vanish
when the coefficient of [O'U] ' is zero and the width
will have a minimum when the coefficient of
[5'v] ' vanishes. If there is no lower-level broad-
ening (Sb =0), the effect of the virtual transitions
6jE = 0, +1 is to increase both the shift and width;
the ratios of shift to width is altered from the
numerically obtained Lindholm- Foley value of
Eq. (67) which was gotten assuming Sh = S& = 0.
We will average Eq. (B4) only in the limits S5 =S&
=0 and gg= @=0.

Region II 0.02 4 q (» 4.9

In these regions, computer solutions with ac-
curacy of better than 0 5% i.n all Mm~~P~ ele-
ments have been used.

Region III 4.9 (~ q (

3R„"(q,A ) = el exp(-alrl),

3R»-'-'(g, A ) = 0.5[1—
&2 exp(-Ap)], (B6)

3R„-(q, A ) = - 23R„OO (q, A~) .
One obtains ~, = 0.245, A, = 0.0357, ~, = 0.560, and

A, = 0.0462. A check of this solution at the period
&=[2.0, 2.9] yields agreement to within 10%, in-
dicating some validity in the-method. If the fit
had been made to a power law, the results would
not differ by a significant amount. An allowance
for error extremes will be presented in Appendix
D. Of course, more accurate results could have
been obtained by integrating Eqs. (B1)at larger
g; however, such a procedure is costly (step in-
tegration size -g ') and, as mentioned above, . is
probably not particularly significant. Gn averag-.
ing over collision oriegtations, one obtains as-

P

ymptotic average values N~~IPP which are
numerically equal to the corresponding S~~~PP
elements of the resonant theory given in Table
VIII.

This region corresponds to collisions with im-
pact parameters less than about 0.6 of the Neiss-
kopf radius and contributes about 25% of the
broadening. From experimental cross secti'ons,
it is quite probable that the dipole-dipole inter-
action fails for most systems at these impact
parameters (it may also fail at larger impact pa-
rameters); however, in the spirit of the model,
we shall assume its validity for all impact pa-
rameter. As in the resonant case, the nonreso-
nant elements are periodic at small impact pa-
rameter (large g). The value of M~m~~p aver-
aged over its period in q, denotedbyM~~&PP (Ao),
for three periods is given in Table IX. From
these results we can infer the asymptotic average
values Ã»»(Ao) = —0.5 and JR„"(Ao)= —1.5. In
addition, we shall assume the final asymptotic
average values for other elements as 3R»00(Ao) = 0,
SR»00(Ao) =0, and 3R» ' '(Ao) =0.5 whose choice
will be verified in Appendix C. In view of this
assumption, an attempt was made to fit the average,
of the elements over periods g =4.0-4.9 and

g = 8.4-9.3 to the following expressions for the
asymptotic averages:

APPENDIX C: STRONG COLLISIONS

Resonant Case

Consider Eqs. (10) which describe a single col-
lision

isa = V (t)w, (C la)

it'w= V(t)a, a(- ~) =a, w(- ~) =0 (Clb)

In this appendix, we indicate a method for ana-
lytically obtaining the asymptotic average values
for the elements described in Appendixes A and
B. The method is based on an additional adiabatic
hypothesis to be discussed below 26,~,85

It may seem surprising that strong collisions
give rise to an adiabatic effect. However, in this
appendix, we are considering adiabaticity relative
to sublevels of a given state rather than relative
to two optically separated levels. It is the colli-
sion interaction that breaks the sublevel degener-
acy and allows for the use of an adiabatic theory.

TABLE IX. Average values of nonresonant scattering matrix elements for several periods in g.

Element

5K,q Qo)

(Q )
On'r $0 (~o)
cm 00(g )00 o

vy = [2.0, 2.9]

—0.454
0.230
0.223

—1,43
—0.461

q = 14.0, 4.9]

-' 0.480
0.210
0.271-1.47

-0.420

g = [8,4, 9.3]

—0.495
0.179
0.316

-1.50
-0.357
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We introduce a unitary matrix D(t) which instan-
taneously diagona, lizes the matrix V(t); that is,

X,(t) = X,(t) = [R(t)] ' . (cs)

D(t) v (t)D (t) = v' (t), (c2)
and the corresponding eigenvectors

where V'(t) is diagonal. We may rewrite Eqs.
(C1)

i@a '- ND(t)a = V'(t)w',

ilaw' —iTiD(t)w = V'(t)a ',
(csa)

(csb)

where a '(t) =D(t) a(t) and w'(t) = D(t)w(. t). The
adiabatic assumption, whose validity will be dis-
cussed below, allows us to neglect the 5 (t) terms
in Eqs. (C3). Thus, in this adiabatic approxima-
tion, Eqs. (C3) read

a' (t)=[-vt a (t) —ba (t)][R(t)]

a ' (t) = a (t),

a ' (t) = [ba (t) - vt a (t) ] [R (t) ] -',

(C9a)

(C9b)

(C9c)

a' (-~)=a (-~), a' (~)=-a (~),x x ' x x

a ' ( —oo ) = a ( - ao ) a '
( ao ) — a (oo )8 Z

(C 10)

with similar expressions for w'(t). We are in-
terested only in the times t =+ ~ for which

i@a ' = v'(t)w', (C4a)
with similar expressions for the u s. Letting

ilaw' = V'(t)a '. (C4b)

Since V'(t) is now diagonal the problems of non-
commutativity do not enter here, and Eqs. (C4)
may be trivially integrated to yield

(b)= &h 'e'a 2 )T(s 0, al)(' f [R(t)] 'dt,
(cll)

(b)=atf 'e2a 2]T(sO, al) ('f [-2[R(t)] ']dt,

a '(~) =cos[fi f V'(t)dt] a '(-~)

—i sin[5 J V'(t)dt]w'(-~), (C5a)

w(- ~) = - isin[ri f V'(t) dt] a'(-~)

and using the fact that w (-~) =0, Eqs. (C5), (Cg),
(C10), and (C11) enable us to write the wave func-
tion after the collision as

I 0( )&
= - a (- ) cos[}t1(b)] t x; s&

+cos [5 f V'(t)dt] w'(-~). (C5b)

It remains to diagonalize V(t). Equations (C5)
are independent of representation and, for this
problem, it is convenient to choose the basis

I x;s& = (- I/v 2 ) [~ 1; s& —
~

—1; s& ],

iy;.&
= ( /~2[(1;.&+ j- I; s&],

iz; s& =
i 0; s&,

(cs)

so that the matrix V(t), for a collision of the stan-
dard geometry, takes the form

+a (-~) cos[}t (b)] (y;s&

—a (-~) cos[lt2(b)] [z s&

+i a (-~) sin[)t (b)] [s;x)

—ia (- ) sin[}t. (b)] (s;y&2

+t a (-~) sin[y (b)] ]s;z&,

whereas the initial wave function was

ic(--)& = „(--)i;.&

(c12)

V(t) =(q'a '
( T(so, al)[ /3[R(t)] }

2 5
0 +a (-~) (y s& +a (-~) (z s& . (C13)

X;S P;S
x s R'(t) —sv't' 0

X g'S o R'(t)
z;s 3bvt 0

Z'S
3bvt

0
R'(t) —sb'

In diagonalizing V(t), one obtains eigenvalues

X,(t) =-2[R(t) ',

(cv)
Equations (C12) and (C13) then enable us to cal-
culate the change in the density matrix as a re-
sult of the collision. To obtain the asymptotic
average values we average over X,(b) and }f,(b).
Since X, and g, are rapidly varying functions of
b for small b, we take
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&«s[X,. (b)]& =&»n[X;(b) j&av=o
(C14a)

&«s[X.(b)]«s[X (b)]&

=& sin[X. (b)] sin[X. (b)])av

abatac appr oxxmation

K(v/b)«b e a IT(s0 al)I

or

b «[e'a 'I T(e0 al) I'/b v]"' =b
0 o (C15)

i,j =1,2. (C14b)

&bp 11) = ( I& (- )cosX I

+t~ (-")«sx I & -p (- ).2 I
2 av 11

Using Eqs. (C14) and (C6), one obtains

=-'[I (-")I +I (-")I ]-p (- )
I, 2 2 I
11 av ' x 11

3

11 -1-1'

We shall do one such calculation. Using Eqs.
(C12), (C13), and (C6), it is a straightforward
calculation to show that

The quantity bo is the optical collision radius for
resonant collisions. For strong collisions (b«bo),
the adiabatic approximation is valid; this explains
the agreement obtained with the results of Appen-
dix A.

One should note the difference between this adi-
abatic approximation and the one made throughout
the main body of the paper. The latter is always
valid due to the large optical separation of the lev-
els. On the other hand, the separation of the en-
ergy levels of the instantaneous eigenfunctions pre-
sented in this appendix arises from the emitter-
perturber electrostatic interaction. For close
collisions, this separation becomes large enough
so that the collision can no longer induce transi-
tions between the instantaneous eigenstates. At
this point, the adiabatic assumption, in the sense
of this appendix, becomes valid.

Nonresonant Case

so that y'»"(Qo) = ——,
' and &» ' '(Qo) = —,

' in agree-
ment with Appendix A. Similarly, all the other
asymptotic average values may be verified.

We have used an adiabatic assumption for strong
collisions and shall now show that it is valid in
this region. The assumption was to neglect the
D (t) terms in Eqs. (C3). The D (t) matrix rotates
the basis vectors so that the axis of quantization
instantaneously lies along the line connecting the
colliding atoms. Thus, in a rough approximation
D(t)=(v/b)D(t). From Eqs. (C3) and (CV), we
are led to the condition of applicability of the adi-

Here we must start with Eq. (59) (in differential
form),

i@a =(m~)-'v(t) v (t)a.

The procedure is the same as for the nonresonant
case. The same matrix D(t) can be used to diag-
onalize V(t) W(t). One easily verifies the asymp-
totic average values of. Appendix B. In this case,
the adiabatic approximation is valid for impact
parameters much less than the optical collision
radius for nonresonant collision.

APPENDIX D: AVERAGES OVER COLLISION ORIENTATION,
IMPACT PARAMETERS, AND RELATIVE SPEED

In this appendix, we evaluate the average scattering matrix elements given in Eq. (31) as
IX, =2mNJ dbdvdQy(v)F(Q)bvX, (b, v, Q),

where X can be any one of the elements, 1',8,S, or M.

A. Angular Average

We first evaluate
I lX, (b, v) = fdQF(Q)X, (b, v, Q).

The quantity E(Q) is the probability density for a given collision orientation and is easily shown to equal
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(8m') '. " Using this result and Eq. (27), Eq. (D2) becomes

X, (b, v)=(8~ ) Jdn,~,m (n)u, , (n)u (n) S), ,(n)x, "" (b, v, n ), (D3)
m 0 mQ p p. QQ 0

where j and j'are the j values associated with m and m'. Using the formulas in Ref. 56, the average over

angles in Eq. (D3) is easily performed to yield

(b, v)= ~ (-1)p ' ' "X,""(b.v. n) Z (2m+1)
~~C o JMN

(D4)

where the quantities under the summation sign are Wigner 3-J symbols.

Case 1 —j=j'= 1

In this case, one obtains parameters relevant to density-matrix elements involving substates of the

j =1 level only. Using elementary properties of the 3-J symbolsand Eqs. (D4), (A6), (A7), and (23), it
can be shown that the only contributing elements of X,&P (b, v, n ) aremm' ' ' o

X«00(b, v, n ), X, ,"(b, v, n ) = X» ' '(b, v, n ),

X, ,"(b,v, n ) =X„ "(b,v, n ) =X„"(b,v, n ) =X„' '(b, v, n ),

X„"(b,v, n ) =X„«(b,v, n ) =X„-' '(b, v-, n ) =X, ,«(b v n )0 (D5)

X„"(b,v, n ) =X , , ' '(b, v, n ), X, ,'-'(b, v, n ) = X „"(b,v-, n ),

X„"(b,v, n ) = [X„"(b,v, n )j
* = [X, ,' '(b, v, n )] * = X „"(b,v, n ),

X "(b,v, n ) =X ,'0(b, v, n ), X„»(b,v, n ) = X, ,' '(b, v, n ) . (D6)

Thus, we need evaluate only five X~~IPP (b, v, no) elements. The averaged elements Xv,~&pp obey
all the equalities of Eq. (D5) but not those of Eq. (D6). An exylicit calculation of Eq. (D4) yields the
matrix equation

X„"(b,v)

X„"(b,v)

X„"(b,v)

15 Xo,'0(b, v)

X,o"(b, v)

X, ,'-'(b, v)

X', ,"(b,v)

3 8 0 4 4

2 710 6

1 110—2 3

-1 -1 10 2-3

1 6 0 8-2

2 710 6 1

2 2 0 —4 6

Xo,"(b,v, n )0

X„"(b,v, n )0

X„"(b,v, n )0

Re[x;,"(b,v, n ) J

All X Pp (b, v) not equal to any of the above by Eqs. (D5) will, vanish.mm'
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Case 2 —j =1, j'=0 ox j=0, j'=1

In this case, one obtains parameters relevant to density-matrix elements involving both the j = 1 and

j=0 levels. Using Eq. (D4) one finds

m'0
X (b, v)= 0+,X, (b, v, A )= —I+ 0@+(b, v)Q, X»(b, v, A ),

and all other Xm0"0(b, v) vanish. [The 0's refer to the j=0 state, and Q(b, v) is the evolution operator for
the j=0 state. ] One notes that Xm0m0(b, v) is independent of m.

B. Average Over Impact Parameter

We are left with evaluation of
IX, = 2' f dbdv p(v)bvX, (b, v) .mm' mm'

Resonant Case

Using the results of Appendix A and the definitions of the constant A [see Eq. (42)], we perform the in-
tegration indicated by Eq. (D9). The transformation to an integration over o. [see Eq. (A2)] is given by

p I I
2vstf dvt bdb y(v)vX, (b, v) =wAf daX, (of)o.

I
The integration in region I was done analytically using the perturbation solution for Xmm ~ P (o.). In re-
gion II, Simpson's rule was used with step sizes of 0.01 in the range n = [0.01, 0. 1] and 0. 1 in the rangeI
n = [0.1, 4.9]. In region IV, Xmm f'P (n) is varying rapidly compared with n ', and we replace
fdoXmm PP'(o. )o.-2 by Kmm'Pj1' jdo1a 2, where Kmm'PP' is the appropriate asymptotic average given
in Table VIII. Summing the contributions from the three regions leads to the numerical values of
Tmm'PP' and SmmI &&'listed in Table I.

Values for the multipole decay constants in terms of the average scattering matrix elements may be cal-
culated using Eqs. (30), (38), (43), and (44) to be

I
1 ( 10 + 10

r, = —(z„"—z„0-'),

r = —(r„"+T»-' '+ T„"),

0 +» ++11 +~11
II 00 1 1 11)

I'. = F .+I' ., i=0, 1,2,
I II

Z i Z'

mb .r
b

= —T
b

(independent of m), and
ab mb

mb .6 =iR
b

(independent of m).I mb

(Dlo)

The numerical values of these elements are given in Sec. IG and Table III.
The errors quoted in these tables were obtained by consideration of errors introduced in (a) the com-

puter solution of Eqs. (A4); (b) the use of Simpson's rule; (c) the replacement of Xmm~~j' (b, v) with its
asymptotic average value in region IV; and (d) possible errors in asymptotic choices. Error (d) is not
large because of the rapid convergence of the integral in the resonant case.

Nonxesonant Case

The procedure is identical to that for the resonant case. The transformation to an integral over g is
given by

I I
2mNf dvf bdb y(v)vK, (b, v)= &N~S ~'~'(v'I') J d11X, (g)17 '".

mm' ' a

For the nonresonant case the integration in region IV must also be done numerically, since our choice of
average asymptotic solutions in this region leads to an incomplete y function.

The numerical results for the average scattering matrix elements Mmm IPP are,listed in Table II. The
parameters I',N, r1N, and I', can be obtained by use of Eqs. (D10) with Tmm &P~ replaced by Mmm 'P~ .
The quoted errors reflect the error considerations of the resonant case, as well as an allowance for
a nonexponential decay of 3R»«, 5R0000, and II» ' ' [see Eqs. (&6)].
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Finally we wish to calculate yab& and ~ab&. In these calculations, the average asymptotic values
Re(~")= —1 and Im(%"') = 0 in Eq. (B4) are well established by rf = 4.9. As in the text, we shall assume
that the j= 0 level is the lower level. If the j= 1 state dominates the broadening and if the virtual transi-
tions of the emitter are solely of the form ~jE= —1[i.e. , if Id' I» ISf I and Ig I» Id' I in Eq. (B5)],
using the results of Appendix B for M~0~ (t, v, Ao) in Eqs. (D8) and (D9), we obtain

r = (8.9V +0.04)XI I"'&v'"
& ~ = (- 8.51+0.03)~ab a v' ab a v

ab ab (D11)

while if the j = 0 state dominates (Isf I
» I(8~I and Isf I

»
I $&I), the Lindholm-Foley result may be an-

alytically obtained as

y = 14.3Ne ' '(v' '), n =+ 10.4iVS '"(v ")N N
ab '

b v' ab '
b v

/~
l

= 0. 728. (D12)

A positive b, indicates a shift to the violet. Had the upper level been the j= 0 state, the shifts change
sign. The equality of the ratio of In~b /y~f~I for these two cases seems to be an accidental occurrence
as has been noted in Sec. IV.
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