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A purely S-matrix approach to SU(3) multiplet mixing is given. Particular attention is devoted to the
role of strong mixing in the basis states of the S matrix itself and to the role of the inelastic channels in
calculating mixed representations. The dependence of the mixed wave functions on the energy separation
between resonances and on the magnitude of symmetry-violating vertices is considered. The analysis is
applied to the single-octet mixing of the $ baryon system in terms of a multichannel model involving the
states BSI'8, BSV8, and B8V&. The effects of p~ mixing in the basis states are included in the calculation
and a dramatic improvement between the experimental and theoretical values of the branching ratios for
the decays of A(1520) and A'(1700) into XX and ~Z is obtained.

I. INTRODUCTION
' 'N spite of the fact that SU(3) symmetry must be
~ ~ recognized as being far from exact, it is widely
accepted in particle physics and applied as a useful
means of organizing the properties of hadrons. The
physicist's ignorance, at the profound level, of how the
symmetry is broken has not deterred him from drawing
conclusions in its application. The concept of octet
dominance and the mass sum rules that follow from it,
for example, have provided confidence that SU(3)
multiplet assignments mean something. It is also
reassuring that dynamical models, based on analyticity,
unitarity, and crossing, and incorporating exact SU(3)
symmetry, have generally yielded results conforming
with what is known of the SU(3) systematics of the
hadrons.

SU(3) multiplet mixing is a phenomenon expected to
be relevant when a broken symmetry is used. The
properties of the nine vector mesons, the vestiges of a
broken-symmetry octet and singlet, can be organized if
mixing of the (hypercharge) I'=0, (isospin) T=0
members of the multiplets is invoked. Mixing occurs as
the result of symmetry breaking and, moreover, is
understood to be the dominant manifestation of it.
None of the physical states is SU(3)-pure; nevertheless,
it proves to be a useful first approximation to introduce
the impurities only by performing a rotation in the
subspace of states with common (Y,T) quantum num-
bers, and then to examine the implications of SU(3)
symmetry for the resultant set of states. The nine
vector mesons have always been analyzed for their
SU(3) content in this way. Thus mixing, in this
example p-co mixing, emerges or is isolated as the most
pronounced eifect of SV(3)-symmetry breaking. It
would seem of some interest to demonstrate non-

phenomenologically how this can occur for a given
particle system. ' Presumably the eGect is due to the
circumstance of near-degeneracy of the SU(3) multi-

plets that occur in the hypothetical symmetric world.

*Research suppor ted in part by the National Science
Foundation.' The vector mesons have been studied in this respect by L. F.
Cook and H. L. %'atson, Phys. Rev. 174, 2113 (]968).

The aim of this paper is to choose a system, richer in its
details than the 1- mesons, which can exhibit mixing
and to attempt to describe the mixing phenomenon in
a precise way. The vehicle which seems most natural for
explication of the problem is one based on S-matrix
methods, unitarity being the primary consideration.

If we adhere to the belief that the particles should be
viewed as composites, whether stable or unstable, then
the partia1. -wave S matrix is ideally suited for their
description: The particles are identified with the poles
of the multichannel partial-wave amplitude. The
residues of a given pole of the multichannel amplitude
give the components of that particle's wave function
and specify the particle's couplings. If the dynamical
problem that was solved to yield this result were SU(3)-
symmetric, then the wave function would be 5U(3)-
pure. The dynamics could than be modi6ed to include
a specific mode of SU(3) violation. If the basis states of
the wave function for the particle pole can be recon-
structed according to their SV(3) transformation
properties, then the wave function would give the SU(3)
impurities of the particle. If the symmetric problem had
yielded two poles, each with its own SU(3)-pure wave
function, then the problem modified to include SV(3)
violation would give wave functions whose 5V(3)
content should exhibit multiplet mixing as the dominant
sort of impurity. The role of a near-degeneracy in the
poles of the symmetric problem would then be apparent
and crucial in the mixing phenomenon for the broken-
symmetry problem.

For dehniteness, in Sec. III we consider a model for
the system of & baryon resonances, the most likely set
of states among the baryons to involve an interesting
mixing eifect. The dynamics of the 1V~(1518) is believed
to be based on virtual p production, the coupling of xA'
(d-wave) and pcV (s-wave) channels. ' The SU(3)-
symmetric version of this problem, based on coupled
P+s and V+s channels, yields octet and singlet
resonant states. ' The model is driven by the coupling
of P&8 to V&~ due to Ps exchange, as shown in Fig. 1.
In order to describe the mixing of octet and singlet

' L. F. Cook and B. W. Lee, Phys. Rev. 127, 297 (&962).' J. J. Brehm, Phys. Rev. 136, B216 (1964)
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d-wave resonances, we introduce the V»B8 channel,
coupled to P+s by Ps exchange. This modification
involves an SU(3) violation, a nonvanishing l' iPsPs
vertex. This is the only symmetry breaking we shall
assume; in particular, we shall retain the degeneracies
of the P8, V8, and B8 multiplets. In the spirit of @-co

mixing, we shall also assume the nine vector mesons of
the V8-V» system to be degenerate. These assumptions
allow us to isolate the baryon mixing effect neatly,
although we admit at the outset that, in ignoring the
mass splittings within the Ps, V8, and B8 multiplets, we
are leaving out a substantial source of symmetry
breaking that contributes to the mass splittings of the

resonances. Thus the calculations which follow
should be viewed as a simple dynamical model of
multiplet mixing which yields couplings in better agree-
ment with experiment than exact SU(3) symmetry
provides.

II. S-MATRIX VIEW OF MULTIPLET MIXING

Symmetry considerations, particularly those in-

volving broken symmetries, a,re most often presented
in terms of fields rather than in terms of the S matrix
directly. However, many aspects of broken symmetry
are intrinsically related to dynamical considerations,
and the S matrix does lend itself readily to the con-
struction of dynamical models which can provide some
insight into various aspects of broken SU(3) in the
strong interactions. Our goal is to show how such
dynamical considerations can be employed to under-
stand the interrelations between two nearly degenerate
SU(3) multiplets in the presence of broken SZ'(3). A

crucial ingredient in such an approach is unitarity. That
this is so follows from the observation that any discus-
sion of multiplet mixing involves a consideration of
several coupled channels and the principal constra, int
between the channels is unitarity. Further, since we
wish to consider the symmetry properties of a "particle, "
regarded as a composite, it follows that unitarity is
central to the discussion, since the existence of the
particle may be viewed as the result of the unitariza, tion
of a particula, r force structure. Thus in what follows we
will formulate a working definition of multiplet mixing
within the context of the S matrix which we believe to
be useful in discussing the dynamics of broken SU(3).

The method by which a symmetry group is used to
reduce the 5 matrix to disjoint sectors labeled by the
eigenvalues of the Casimir operators of the group is a
familiar one. The partial-wave 5 matrix, itself the result
of such a procedure, is then spanned by states of the
particle basis and, if an exact internal symmetry group
exists, then the particles are assembled into multiplets
and the 5 matrix can be reduced further. The defin. ition
of the states in these multiplets is often carried out by
referring to field operators for each particle with
specified internal-symmetry transformation properties.
The two-body states are then decomposed into irre-

FIG. 1. Ps e exchange in P&B8~ V8B8.
Substitution of V l for U8 involves SU(3)
v»olat»on.
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ducible representations whose Casimir eigenvalues
sufFice to label the sectors of the 5 matrix transformed
to this basis. The content of an internal symmetry then
is simply that an energy-independent transformation
exists which reduces the partial-wave 5 matrix.

If the synunetry is not exact and yet a concept of
approximate symmetry is still to have some meaning,
then it is not obvious how to proceed. The problem of
specific concern to us here is the formulation of SZ&(3)
multiplet mixing in an S-matrix framework. Therefore
we must have in mind an S matrix referred to the same
set of SU(3) basis states that are dictated by the sym-
metric problem, insofar as it is valid to do this. A
perturbative treatment suggests itself; nonetheless,
difFiculties of principle arise. Mixing must have its
origin in SU(3)-symmetry breaking, but this breaking
splits the mass degeneracies of the SU(3) multiplets,
with the result that previously degenerate coupled-
channel thresholds split apart. The transformation used
to reduce the S matrix in the SU(3)-symmetric problem
is replaced by one which is no longer energy-
independent. Moreover, it is no longer possible to form
linear combinations of particle states belonging to the
basis of an irreducible representation of SU(3). Thus,
once threshold degeneracies disappear, it would appear
that contact with SU(3) symmetry is immediately lost.
Xevertheless, among the physical particles, SU(3) re-
ma, ins a useful and meaningful symmetry. For example,
broken multiplets satisfy mass formulas based on first-
order perturbation theory (except where strong mixing
is present) —in spite of the difficulties mentioned above.
No doubt this SU(3) remnant is due to the details of
the strong-interaction dynamics and to the particulars
involved in breaking the symmetry. Although this
feature of broken SU(3) is not thoroughly understood,
it allows us to adopt a pragmatic approach to multiplet
mixing. In particular, based on the spirit of a first-order
perturbation theory, we are motivated to ignore the
departure from SU(3) purity of the particles in the
basis states when none of the constituent particles shows
strong mixing eRects. The content of this approach is
simply the following: The arguments which support
broken SU(3) as a useful property of the strong inter-
actions also support the view of multiplet mixing to be
considered here.

To illustrate this approach with a preparatory
example, let us consider P8B8 scattering in the context
of a dynamical model governed by a particular force
structure and constrained by unitarity. Since neither
the P8 nor B8 multiplets exhibit strong mixing, let us
retain the degeneracies of these multiplets so that we
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FIG. 2. Matrix structure of the
production-dominated Born term in
the SU{3}basis. There are two scat-
tering sectors, 88P8 and 88V8. If
SU{3}-symmetric couplings are not
employed, then 3/I is not diagonal in
the SU{3) basis.

have an elastic problem, in that the phase space is
common to all channels. %e shall assume that a single-
exchange mechanism dominates the potential. To
introduce SU(3) breaking, we admit coupling constants
in the potential which differ from their SU(3)-sym-
metric values, but the mass of the exchanged multiplet
is kept fixed. Thus the Born matrix consists of a matrix
of numbers Lwhich violate SU(3)j times a single
function of the energy. The partial-wave 5 matrix reduces
to blocks labeled by (T Y) quantum numbers; each block
is spanned by the relevant particle states and these can
be transformed, under the conditions given, to a basis
labeled by those SU(3) representations in 88 which
pertain to the particular (T,Y) Since t.he potential is
SU(3)-violating, the blocks in the SU(3) basis will
exhibit transitions between different SU(3) representa-
tions. Under these conditions the potential, for each
(T,Y), can be diagonalized independently of energy and
this same transformation diagonalizes the XD—' solution
of the problem. If the force structure, unitarized in this
way, yields a resonance in one of the amplitudes for the
problem, diagonalized for each (T,Y), then the SU(3)
admixture of the resonance can be read o6 by referring
to the diagonalizing transformation. If the SU(3)-
symmetric version of this problem had yielded two
resonances, both SU(3)-pure and near-degenerate, then
the problem modified to include the SU(3) violation
should exhibit mixing of two SU(3) representations in
the wave functions as the dominant eGect.

The role of unitarity in the above model is in a sense
quite minimal. YVe note that it is really not necessary to
solve the coupled equations for the amplitudes; the
diagonalization of the Born matrix itself diagonalizes
the amplitudes and yields the multiplet structure of the
amplitudes. In this case, the multiplet structure itself is
energy-independent. This feature is a consequence of
the very simple energy dependence of the Born matrix.
Unitarity is only necessary to provide the connection
between the force structure and the scattering ampli-
tudes. Thus to the extent that the dynamics of a
resonance may be understood in terms of a single-
exchange mechanism in an elastic process, the SU(3)
mixing of the resonance is given fina1ly by the diagonali-
zation of the Born term. It is clear, however, that any
alteration of the energy dependence of the symmetric
Born term, e.g., internal mass shifts or incorporation of
more than one exchange, will destroy this simplistic
situation.

The bulk of this paper mill not be concerned with
purely elastic problems with 6xed basis states, but with

the effects of strong multiplet mixing in the basis states
together with sects associated with inelastic processes.
It is not dificult to construct models which illustrate
these effects separately, although they are somewhat
uninteresting physically. In Sec. III we present a calcu-
lation of mixing which includes both effects for multi-
plets of physical interest.

To illustrate the separate e6ects of strong multiplet
mixing in the basis states, consider PsVs elastic scat-
tering and, to be dehnite, let us assume that the
potential is dominated by I-channel Ps exchange with
PsPsVs coupling. For kinematic reasons alone one
would expect PsV~ states to be important, but our
dynamical assumption of the force structure excludes
them since the PSPBVi coupling is forbidden by SU(3).
However, if SU(3) is broken, the T= Y=O elements
of Vs and Vi mix strongly, and this mixing should a6ect
the basis states strongly. To include such an e8ect me
add the Ps Vj channel to the S matrix, consider Vs and
V& to be degenerate, and break the symmetry by taking
the coupling PsPsVi to be nonzero. If we invoke no
other symmetry-breaking sects, then the reduction of
the 5 matrix to (T,Y) blocks proceeds as in our previous
example with the addition of the PsVj channel in the
(T,Y) blocks to which it can contribute. Now SU(3)-
forbidden transitions can take place for each (T,Y)
between the ~PBVS) SU(3) states and the ~PSVi) state.
Because the energy dependence of the Born matrix
remains unchanged, the final diagonalization within
each (T,Y) is energy-independent and also diagonalizes
the ED ' amplitudes. The new basis states are linear
combinations of ~P8Vs) and ~PSVi), and V8 and Vi
have been mixed in the basis states by the diagonaliza-
tion. As before, if the SU(3)-symmetric version of this
model contained two near-degenerate resonances, then
the diagonalization involving SU(3) violation should
exhibit mixing of these two SU(3) representations in
the wave functions as the dominant effect.

To illustrate the separate effect of inelasticity, con-
sider the coupled. -channel scattering problem involving
BsPs and BsVs. In this case, we have two sectors with
diferent phase space, so that the S matrix will be
reduced to (T, Y') blocks, each containing four sub-
blocks which are labeled by the relevant particle states
of the BsPs and BsVs sectors and represent the processes
BsPS ~ BsPs BsVs + BsVs BsPs ~ BsVs,
BsVs~ BsPs. Both of these sectors can be transformed
to a basis labeled by SU(3) representations. If the
symmetry is exact, each of the four sub-blocks is
diagonal (except for the multiplicity of 8 in 88) and
for each (T,Y) we have (again except for octet niulti-
plicity) a number of 2)&2 disjoint scattering problems
labeled by SU(3). If we further assume the force to be
dominated by the production diagram of Fig. I, and
break the symmetry by altering the coupling constants
from the SU(3)-syTnmetric values, then for each (T,Y)
the Born matrix in the SU(3) basis is as shown in
Fig. 2. Separate transformations in each sector. i.e.„
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Using the results of Kqs. (10) and (17), we have for
the .Y m itrix
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(18) Fto. 5. Structure of the Ar a,nd D matrices, transformed to the basis
defined by V and V to yield a set of disjoint 2&&2 problems.

In (18) we have defined
exists one of the Xj's such that P j=0 ~', then F» ——0 for
all jW p. By passing through the various values of p an
reordering the indices p = 1 to m, we see that F consists
of an mXn diagonal matrix and an (m —I)X& block o
zeros, i.e., F is partially diagonalized. Of course, the
diagonal elements of F need not be nonzero, but, in the
case where each P,j is matched by a X„' and m&n, we
will have the situation in Fig. 4. YVe label the diagona

the transformed, A «nd D functions X and D as shown

channels are decoupled from the elastic channels an
we are left with n 2)&2 problems. If we consider only
the coupled amplitudes, then we have for the trans-
formed (2n) X (2rr) system

37=AD '

F= VPU~. (19)

By the use of Eq. (1), one finds the D matrix in the new
basis

1 —AJ„(w) —I'rH (w)
D(w) =

—I'H„(w) 1 —A'J„, (w)
(20)

where we have defined the diagonal matrices

J (w)=

(21)
cD"

H (w) = —-ptm(x).
C/X

Psn(X),IJ„(w)=

(24)

F=A(I„(1 AJ„)+H„m]—Z ',
G= I'Lm(1 AJ )+AI„H ]Z —',
G = I'Ln(1 AJ,)+AH„I„—]Z
1"=A[I (1 AJ„)+H n]Z —',

Z=(1 —AJ„)(1 AJ ) —AEJ„H—

hese equations all matrices are nPn and diagonal.
Finally, one may show that G=G, so that 3f is sym-
metric. Thus Kq. (24) completes the construction of the
reduced, unitarized amplitudes for the given Born
matrix (Fig. 3).

This model illustrates some of the remarks made in
Sec. II, particula, rly those rega, rding energy-independent
transformations. In particular, we note that the reduc-
tion given in Eq. (24) is energy-independent and that
this property stems from the particular form of the
Born matrix, viz. , the presence of a, common energy
dependence. Further, we note that the diagonalizing
transformations given by U and V (see Eqs. (7) and
(14)] certainly need not be identical, which implies that

and
(23)FA =A'F.

Writing this out in components and using the fa,ct that
A and A' are diagonal, we obtain

r„,(~, —X„')=0

for each (p, j). We assume that none of the X, is de-
generate and similarly for the P „.Say that j= 1,2,
a,nd p =1,2, ,m, so that I' is a,n mXn matrix. Assume
that m&n. Now pick a P „', either there exists a Xj suc
that P j= P „' or there does not. If XjQ Xp for any j, then
F .=0 for all j i.e. the pth row of F vanishes. If thereor a

The general reduction and solution of the multi-
channel, two-sector model is nearly complete as given
by Eqs. (18) and (20), together with the solutions o
Kqs. (9) and (16). The details of the struci:ure of the
matrix I', in Eq. (19), remain to be discussed. If I' were
diagonal, then the multichannel problem would be
reduced to a series of disjoint 2)&2 problems, ea,c
c arach acterized by the eigenvalues of A and A'. n genera,
however, F cannot be diagonal since it is in genera no
square. Nevertheless, it is "partially" diagonal, as we
now show.

From Eqs. (7), (14), and (19) we have

F~F =A and FF~'=A. ' (22) In t
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yr =6f,
yo =3f+5'"(1 f—),
vo, =3f—5'"(1—f)
v~o = v—io =2(f 1—),

P =Pr (for P square),

then U and V are identical transformations, which in
fact diagonalize p.

(25)

the mixing parameters differ between the two sectors. plane to yield the following diagonal elements of I'
On the other hand, if the Born matrix is such that

B. oo System: Exact 8U(3}

The previous model forms the basis for a dynamical
model of the —,

' baryon system when we specify the two
sectors as

~
BoPs) and

~
BoVs) and the Born matrix to be

that resulting from the diagram in Fig. 1 with SU(3)
couplings. The details of this model with exact SU(3)
have been given elsewhere, ' and we therefore confine
ourselves to summarizing the results.

The diagonalization procedure of the previous section
is simplified, since the channels ~BoPo) and ~Bo Vo) have
the same SU(3) structure; thus P=Pr, so that U= V.
U is found in two steps, the first being consultation of
the tabulated SU(3) Clebsch-Gordan coeffrcients. o The
transformation of P to the SU(3) basis of de Swart
must be followed by a 45 rotation in the octet (8„8,)

yo7= —2f.
The quantity f is the Yukawa P/D parameter for the
BoBpPo vertex. Note that f enters the description of
the Bo* and Br* oo baryons via the model (Fig. 1). It
should not be confused with the 1'/D parameter for
the Bo*BoPo vertex. This parameter —call it f*—is
determined' from the model by the 45 rotation required
to get Eqs. (25). To be specific, the rotation

implies that f*=(+5)/(3++5) =0.428. To illustrate
how a given (T, V) block is spanned in the new basis,
we have for F(T=0, V=O)

I"(0,0) =

j B8P8,27 )

2f—
0
0
0

}»)

0
3f+(&&)(1 f)—

0

0 0 (+8+8 27 (

0 0 &»t

3f (+5)(1 —f) 0 —&s. i

'

0 6f

(26)

The over-all coupling strengths associated with the
two relevant vertices, scaled by g(1M pr) and g(po.o.), are
such that resonances can be produced for appropriate
values of f If we choos. e f~0.40, then singlet and octet
(8r) resonances are produced. For f=0 40, the sing. let
resonance is at a somewhat higher energy than the octet
resonance; if f=0.428 Pi.e., f=(+5)/(3++5)j, the
two resonances are degenerate; if f)0.428, the singlet
resonant energy is below that of the octet.

Although we do not wish to argue that this model
represents all of the dynamical aspects of the 23 baryon
system, it does yield the dominant features of the data,
viz. , octet and singlet resonant states in the spin-parity
state —,'. In addition, it provides a relatively clean
example of the effects discussed. in Sec. II.Thus a calcu-
lation of SU(3) mixing based on the basis-state im-

purities associated with the vector mesons should
provide some dynamical understanding of the broken
—,
'—multiplets.

C. —',—System: Broken SU(3}

To break SU(3) for the oo hadron system we consider
only one aspect of the broken symmetry, viz. , the SU(3)

~ J.J. de Svrart, Rev. Mod. Phys. 35, 916 (1963).

g(ICEVr) =yg(E'EVppp), (27)

where V800 is the T=I'=0 member of V8.
With the addition of the ~BoVr) channel, p is no

longer a square matrix. Ke will label its columns by the
SU(3) representations of

~
BoPp) appropriate for a given

choice of (T,V), while its rows contain, in addition to
~BoVo), the octet state ~BoVr). Thus, in contrast to

impurity of the vector mesons in the basis states
~BoVo). To accomplish this we proceed as we did in
Sec. II by introducing the additional SU(3) channel

~

BoVf). We consider the Vo and V& multiplets to be
degenerate and thus by kinematical arguments we
would expect the ~BoV~) channel to be an important
part of the —,

' dvnamics. In order to introduce this
channel into the coupled ~BoPo)—~BoVp) model and
still maintain the relative simplicity of the production
model in Sec. IIIA, we include in the Born matrix
terms arising from Fig. 1 when the V8 multiplet is
replaced by the Vr. This breaks SU(3) because of the
presence of the vertex PoPo V&, which is SU(3)-viola tmg.
Since we maintain isospin and hypercharge conserva-
tion, this amounts to only the one new vertex EKV~.
The symmetry breaking, and subsequent mixing, is
thus characterized by a single parameter y, related to
the EKVi coupling constant. We de6ne
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Eq. (26), we find for P(0,0) in this basis

) BSPs,27&

0 &a8vs, 27(

f (o,o) =

+8l

0
(28)

3+(30)

20
7 V27

i i i
(&a~t.8 l

~~(10) v'(10)

The caret on I'(0,0) indicates that the basis states are
SU(3) configurations. The matrix I'(0,0), whose struc-
ture is described in Sec. III A, is obtained from f'(0,0)
via transformations U and V which will be transforma-
tions on the SU(3) basis states.

In order to obtain the multiplet mixing, it is necessary
to perform the transformations U and V which partially
diagonalize the matrix in Eq. (28) in the sense of
Eq. (19). Since we are referring the SU(3) breaking
directly to the SU(3) basis, we will use P and I' inter-
changeably. Once this diagonalization is accomplished,
we may read off the mixed wave function from the
transformation matrices directly.

Thus we seek the diagonalization of PP~ and of P~P,
where il= f' is given in the SU(3) basis. The matrices
involved are large enough to be unwieldy, and, since the
SU(3) violation is presumed to be small, we calculate

only to O(y'). The matrices to be diagonalized, e.g. , Pj:. r,
are always of the form, in the SU(3) basis,

li;„&'——x;+y 2/x;, Xv'=0. (29)

The eigenvectors corresponding to the X form the
columns of the matrix Ur according to Eq. (14). The
result is

PN—1

pl ''' PN—1

where y; is O(y), x; is O(1), iW.V, and x~ is O(y').
Diagonalization of PP~ consists of finding A.

' and V.
For the eigenvalues, one obtains, to O(y'),

V1i-
2x1 X2 X1—X2

Pl P2

X1 X2 X1

P2

2X2

y2

(30)

P2 PN —1 YN—1

XI XQ ] XI X2 XN 1
—X2

.'V2

X2

~ ~ ~

2
sr.V g,)

The rows and columns are labeled by SU(3) states in
the

~
BsU) sector. We will refer to the eigenvectors, the

columns of (30), as v&'&. Of course, if y —+0, then
v, ~"~8,, ; furthermore, the analysis which leads to
Eq. (30) assumes that x;Wx, for iQ j, i.e., degeneracy
is excluded. We note that the eigenvectors in Eq. (30)
have exactly the properties one would expect in non-
degenerate systems. In particular, there is very little
mixing, i.e., only O(y'), unless two of the y; of Eqs. (25)

are near one another. If x, —x;~y, , then the representa-
tions (j) and (i) will mix strongly: O(y) rather than
O(y'). The occurrence of this O(y) effect in the resonant
eigenvectors is the principal result of this paper. Mass
splitting occurs and can only be studied by looking into
the details of the energy dependence. This, however,
follows the eigenvalue shifts which are O(y'). Thus
to O(y), the originally degenerate resonant octet re-
mains degenerate and, to this order, mixing of the



T= V=O members of the singlet and octet emerges as
the donunant effect. If x, —x; 0(y'), then the analysis
leading to Kq. (30) is invalid and the effects of q&&'&si-

degeneracy must be included.
The comments on mixing in the previous paragraph

pertain to mixing of SU(3) representations in the BV
sector. What we learn about mixing as seen in the BI'
sector is of more interest, since these are in general the
resonance decay channels. %'e note again that the
manifestations of mixing should distinguish between the
particle sectors to which the mixed state is coupled.
Mixing in the BP sector is determined by the matrix U.
To And U, we 6rst obtain F from A' = FF~. The sign of
the root in the determination of F is such that F is nea, r

F=,9. Once F is found, U~ is obtained from
V~F ~ =P~ V ~. The result is

U'*.= (Ih.)3'*eV "e. (31)

where y~ refers to the "diagonal" elements of F in the
sense of Fig. 4. %e will refer to the columns of U~ as
u&'&; these give the BI' wave functions in the SU(3)
basis.

In the ~~hadron system, resonant scattering occurs
in the singlet and octet con6gurations. AVe give below
the wave functions of the resonating states for the
pertinent (T,Y) quantum numbers for both the BP
and BV sectors, referred to as u&'&(T, V) and»«&(T V)
respectively.

T=O, I'=0; I'o*:

3v'(») v'v&, v~&
{Z7)

40 1 —
(y& 'y;&)'

3v''(») v'
(27)

40 1 —(y, /y„)'-'

u" '(0,0) =
»
"'(0,0)

where»&'&(0, 0) =1+—,'„.y-',

4q/5

7 Vl 782
(8'}

1 —(v&. y.-,)'

»"&(0 0)

7 7l F81
{8&)

1 —
(v& 'vs, )' &'»(0,0) =

(»)
4&~5 1 —(v& 'vs, )-'

4v'» —h &. 'vs)'

1»&»(0,0)
1~2 (8)

V'V8, /V»

20 1 —(ys, ,:y &)-'

» "f&(0,0)

(z 7)
20 1 —(y», y &)'

1. '»&" (0,0) (st)

u&"'(0,0) =-
»&"(0,0)

yy8, y8,
(s2)

1o1—h~ F82)'
b1

' +82

~2
r&"&(0,0) =

10 1 —(y )'
(Ss),

where»& '(0,0) =1+y~/20;

7 +81 Pl
{t)

(7~ 'Y&) &

(1)
4~/ 1 —h, .'v)'

—y q~(10)

+5—1—3 {27)
20&2 1 (y&&, y~&—)'' (27)

20v2 1 —(p»~/y. &)2
'

1 ''g &"& (-,', 1) (st)

u&" (-' 1)=
v "&(2,1)

~ &" &(2-', 1)

7 781 ' +82

10 1 —(v8, v», )'

{st}

{ss}

(lo)
V~ 1 r Y81 r&0

(10)
~ 4y/(10) 1 —(y, , yi;)' .

where q "'(~~,1)= 1+L(3—+5)/40jy2.
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7' 1

u'"'(-'„—1)=-
~&s&(z 1)

"&v &+1 7 781~ 7z7
3

20%2 1 —(ys„'pzz)-'

v"'(o, —1)

P /81' PSg

10 1 —(rs, 'ys, )'

(zv)

(st)

(s-)

v&" (-' —1) =

+5+1
3

20%2 1 —(ys, /y. z)-"

1, 'n&"&(o, -1)
1 7'

10 1 (rszjVss)

+5+1
4+(10) 1—(vs, !vzo)'

'+1
7

y, '(40)

(27)

(s)

(s)

where»&s&(-'„—1) =1+C (3+~'5)/40]y',

T=1 t'=0 V *.
i3 vz

zz&"'(1,0) =——
»

&"&(1,0)

7 Y 81 Y'-''f

10 1 —(y„:ysz)'-

n&"&(1,0)

v'vS, v82

10 1 —('rsz ass)'

(zi)

(st)

r &'&(1,0) =

10 1 —(ys, :F97)'

1»&"&(1,0)

1

101—
(V 'vs)'

(zl)

P +81 ' +10
{10}

2~(10) 1 —(ysz pzo)'

7 781. 710

,2V'(10) 1 —(Vszj'Vio)s '

where» &'&(1,0) = 1+y-'/20.
v, ~j(10) (s)

(10)
2+(10) 1—(ys, /y»)'

1 7'
(10)

2V'(10) 1 —(vs 'Vzo)'

The superscripts (1) and (8) on u and v refer to new
broken-symmetry wave functions which are close to
the pure I and 81, respectively. The wave functions u
and v are normalized to O(y').

These wave functions yield the particle configurations
in the two sectors when a specific choice of f and y is
made. The Yukawa mixing parameter f is commonly
assigned a value f 0.4. Although this choice off in the
symmetric model leads to resonating octet and singl. et
multiplets, the octet configuration resonates 10 MeV
below the singlet. Since the data indicate that the
singlet is at a lower energy, the symmetric model must
be viewed as representing the dynamics in only an
approximate manner. Since the relative positions of the
two resona, ting states depend on the specific choice of f,
we will view f as a parameter to yield a reasonable
ordering of the resonating states. In fact, f=0.5 yields
a resonating singlet 50 MeV below the resonating
octet. This arrangement is probably not far removed
from a correct description of the symmetric dynamics,
so that we will use f=0.5 as an artifice for ordering the
symmetric levels 1 and 8, and proceed with our calcu-
lations of the mixing.

~

A'(1700)) = cos8~ z~&'&)a p+sin8~ A&'&)z& p,

~A(1520)) = —sin8IA&s')ap+cos8~A&'&)ap
(32)

where, from the wave functions u&s'(0, 0) and u&'&(0,0)
above,

t ine=—
4V'5 1 —(Vsg'Vz)'

(33)

The choice of y is of a diferent nature. It is not
directly accessible to experiment, and its value is
dependent on the proper description of p-co mixing.
However, it is reasonable to assume that it is bounded
by 0(y(1, and, corresponding to this range, we can
obtain a range of mixing angles for the T= V =0 ~

hadrons. In addition, the validity of the mixing calcu-
lation given here imposes an upper bound on y; in
particular, the diagonalization to O(p') is only valid if

y, (x,—x;. For f=0.5, P can be as large as so by this
criterion. '6'e will examine the results for 0&y(1,
keeping this bound in mind.

We confine ourselves to the (T,Y) block where mixing
is strong, i.e., (0,0), and consider only singlet-octet
mixing. We define a mixing angle 8 by
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KN

11Z

I

0.8

Kith f=0.5, we have

I'io. 6. Branching ratios I'(EE)/
I'(~Z) for A(1520) and A'(1700) as
a function of y.

The results in Eq. (34), as we have indicated, ignore
contributions from 27 and 82. This is consistent with the
spirit of the analysis here, and, in particular, these
contributions represent corrections to mixing from the
nonresonant background. Since we have already
neglected such nonresonant background in the form of
neglected states irrelevant to the dynamics, we must
also neglect background contributions from 2? and 82.
Nevertheless, to indicate the size of the effects involved
we give, numerically, the two wave functions of in terest
using f=05:.

tan8 = —0.41'' 0.11''

for y =0.2,
=0.4,
=0.6,
=08
= 1.0,

Thus we 6nd that

7

40.
gO.

—)5;
22 0

(34)

1 0.41'' (sI)
u&'&(0,0) =—

1+0.06'' 0.02'' (s~)

0.11'' ' (27)

(SI)

(35)

For the bound y -'„we have 0 —11 . These mixing
angles are obtained on the basis of a dynamical study
of the ~3 hadrons, and they also spam the values ob-
tained by phenornenological analyses. 4 6 Figure 6 shows
the branching ratio of iEE) to ~~Z) decays Lphase-
space corrections as (Pg~/P x)'g as a function of y for
A(1520) and A'(1700). The dramatic departure from
the SU(3)-symmetric branching ratios toward the
experimental results' is the most striking conclusion to
observe from the figure. ' We note, in particular, that the
sign of 8 obtained from our model is negative and that
this is crucial to correct the SU(3) results in the right
direction. Present experimental knowledge of these
branching ratios is as follows:

I'(E.3') 45' 4

I (&IX) A&1620& 46&4

I'(EA ) 25

r(&r&) w'ovoo&

In our analysis of —,
'—mixing, we have considered y to

be a parameter which characterizes SU(3) mixing in the
basis states, but in fact y is calculable, at least in
principle, from a study of @-~ mixing. ' In such a calcu-
la, tion, y characterizes &-~ mixing and vector-meson
mass shifts. Remarkably enough, the characteristics of
the vector mesons can be reproduced when y=0.78, a
value which reproduces both branching ratios rather
well.

' E. Golowich, Phys. Rev. 17?, 2295 (1969).
7 N. Barash-Schmidt, A. Barharo-Galtieri, L. R. Price, A. H.

Rosenfeld, P. Soding, C. G. Wohl, M. Roos, and G. Conforto,
Rev. Mod. Phys. 41, 109 (1969).

SA similar efkct has been obtained in the symmetric quark
model analysis of D. R. Divgi and 0. W. Greenberg, Phys. Rev.
175, 2024 (1968). See, in particular, D. R. Divgi, ibid. 17S, 2027
(1968).

u&"&(0,0) =
1+O.OSp' 0.02'' (s~)

—0.41'' (i)

Thus we see that 27 is a 10% correction to singlet-octet

mixing, while 82 is completely negligible.

IV. CONCLUSION

We have endeavored in this paper to develop an
S-matrix approach to SU(3) multiplet mixing. Although
certain aspects of such a development are scattered
throughout the literature, generally in other contexts,
little effort has been devoted to the role of inelastic
states or to strong mixing effects among the particles
in basis states of the S matrix itself. Both of these
effects play a crucial role in S-matrix discussions of
multiplet mixing, and both of them can lead to large
mixing e6'ects in resonating states without producing
large mass shifts. The principal goal, then, of such a
discussion of mixing is to understand the roles played by
various aspects of broken SU(3) in the structure of
resonances and ultimately to calculate branching ratios
on the basis of dynamical models.

In practical applications of the notion of particle
mixing, there is a tendency to speak rather loosely of
the multiplet structure of a resonance to the extent that
the resonance or particle itself is endowed with an
intrinsic mixture of SU(3) representations. The com-
posite view of particles implies that this usage is
incorrect. We have treated an example in which com-
positeness calls for more than a single sector of scattering
states in order to explicate what we believe to be a more
accurate description. Once the symmetry is broken, a
resonance or particle has no intrinsic multiplet stn&c-
ture, and it cannot be described by a, single mixing angle
even when one neglects all but the dominant mixing
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effects (say, octet-singlet mLxing). The composite
particle has a wave function with components in several
sectors. The multiplet mixing varies from one sector to
another, e.g. , J38I'8 and 88V8, and each sector must be
separately specified. It is true that many resonances
can only decay, because of energetics, into but one open
sector, and in this case a resonance can be represented
by a single mixing angle to determine branching ratios.
Generally, however, this is not the case, and there is no
reason to suppose that such a simple description holds
for the decays of high-mass baryons, for which there
are several open sectors.

As indicated above, one of our reasons for formulating
an 5-matrix approach to mixing was the availability of
dynamical models for various resonances. The details
of the —,'system are given in Sec. III, but two points
should be emphasized. First, without including any
effects other than strong mixing in the basis states in an
intrinsic, coupled-sector problem, we have been able to
produce a dramatic improvement over pure SU(3) in
the agreement between the theoretical and experimental
branching ratios for the T= V =0 elements. Second, the
use of a mixing angle for these elements must be

motivated in a more logical way than the usual phe-
nomenological methods provide. To be specific, if we

assume, as we did in Sec. III, that the resonance
positions, in exact SU(3), are separated by 50 MeV
and observe that the full widths for both are 40 MeV,
we see there is very little overlap of the resonances. A
conventional description based on the diagonalization
of a two-level Hamiltonian leads to a mixing angle, but
this method presupposes a quasidegeneracy of the two
levels. When we are confronted with nonoverlapping
resonances, it is clear that mixing, parametrized by a
single angle, must be defended in some other way. We
have developed such a parametrization for the coupling
of the A(1520), A'(1700) system to the BBP8 states as a
consequence of the nature of the force structure
(Fig. 3). The energy dependence exhibited in Fig. 3 was
a natural dynamical assumption to make. Such a Born
matrix admits energy-independent transformations of
the basis, and a description of the coupling to BSI's in

terms of a single mixing angle then emerges as the
dominant effect. That a different angle is relevant for
the BSVS sector is an inescapable consequence of our
procedure.
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It is shown that mixing among SU(3) supermultiplets leads to new mass relations. These mass relations
could be useful for the interpretation of some experiments and for further particle assignments to SU(3)
supermultiplets. In this context, some possibilities are discussed for the —,', s+ baryons and 1+ mesons.

I. INTRODUCTION

HE idea of mixing of some SU(3) supermultiplets
arose originally in connection with the so-called

p-~ mixing. These two particles seem to belong to the
mixed {8)+{1)nonet of vector mesons 1 .' ' It has
been suggested that a similar mixing could take place
in the case of 2+ mesons and that the ~~ baryons could
belong to either {8)+{1),{8)+{10),or {8)+{27)
mixed representations of SU(3). More recently, the
mixing of two octets has been proposed for the assign-
ment of the 1+ mesons. '

The necessity to incorporate mixing in the scheme of
unitary syirnnetry is dictated primarily by our wish to

~on leave of absence from Moscow University, Moscow,
U.S.S.R.' J. J. Sakurai, Phys. Rev. Letters 9, 472 (1962).' S. L. Glashow, Phys. Rev. Letters 11, 48 (1963).' R. F. Dashen and D. H. Sharp, Phys. Rev. 133, B1585 (1964).

4 Y. Ne'eman, Algebraic Theory of Particle Physics (%. A.
Benjamin, Inc. , New York, 1967), p. 108.' H. J. Lipkin, Phys. Rev. 176, 1709 (1968).

avoid the difFiculties which exist in the theory concern-
ing the assignment of all mesons and baryons to definite
SU(3) supermultiplets. The present situation seems to
be very satisfactory for the ~+, ~~+ baryons and 0, 1
mesons. It also seems to be satisfactory for the particles
with spin-parity —,', -,', —,', 2+, and 2+, but very poor
for 2 and 1+.

The experimental situation is such that it is impos-
sible to think of just one SU(3) supermultiplet to which
all well-established isospin multiplets of ~, ~, and
1+ particles could separately belong. Furthermore, in
the case of ~~ baryons, for example, it is necessary to
think in terms of at least three SU(3) supermultiplets.

We stress two points which in our opinion indicate
unavoidably the necessity to exploit the idea of mixing
in order to understand some present, and possible
future, experiments.

' A. H. Rosenfeld et al. , University of California Lawrence Radia-
tion Laboratory Report No. UCRL-8030, 1968 (unpublished).


