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Calculation of the Kaon Electromagnetic Mass Difference Based on the
Venexiano Representation*t'

DAvm M. ScoTT

Department of Physics, Ohio State University, CoLumbus, Ohio 43Z10

(Received 2 June 1969)

An expression for the isovector part of the electromagnetic mass shift of the E mesons is derived from
the difference of the first-order (in the fine-structure constant) electromagnetic self-energies of the positive
and neutral kaons. Vector-meson dominance is used to relate this part of the mass shift to strong-interac-
tion processes. A simplified Veneziano representation (including only one Regge trajectory in each channel)
is written for these strong-interaction processes. The results are presented in terms of a cutoff on the four-

momenturn carried by the virtual photon producing the first-order mass shift. A relatively low cutoff value

of about 3 BeV is required to yield the experimental mass difference.

I. INTRODUCTION

KIDEI.Y used approach for calculating the elec-

t

~

~

tromagnetic mass difference of hadrons within

the same isotopic spin multiplet is to relate it to the
forward Compton scattering amplitude for virtual pho-
tons. ' This amplitude is then computed using tech-
niques such as current algebra' or dispersion relations. '
The fact that calculations of the kaon mass difference
based on this approach have been less successful than
similar calculations for pions was partially clarified by
Harari, ' who suggested that the strong-interaction
processes which must be considered for AI= I mass
differences have different high-energy behavior from
those required for AI= 2 mass differences.

In the calculation reported here, the above approach
is followed up to the point where the forward Compton
amplitude is obtained. Then vector-meson dominance
is used so that the relevant strong-interaction processes
are exhibited explicitly. Finally, these processes are
given an analytic form by using a simplified Veneziano
representation' so that the high-energy behavior should
be approximately correct. For completeness, the deriva-
tion of the mass-di6erence expression in Sec. II starts
from the electromagnetic self-energy (to first order in
the fine-structure constant) of the positive and neutral
kaons. The numerical evaluation of the resulting inte-
grals and the results are presented in Sec. III, and Sec.
IV contains a discussion.

II. DERIVATION OF MASS-DIFFERENCE
EXPRESSION

A. Notation and Kinematics

~= (pi+ qi)'= (p~+ q~)',

t= (pi —p2)'= (qi q~)' ~

I= (p q)'= (p q)-', -(2.1)

and the laboratory energy of the vector particle v,

7(q) &(q)

K(p) K(p) K(g) K(p)

The kinematics for the two types of processes which
are considered in this investigation are presented in this
section. The first type of process, shown in Fig. 1, is the
emission and reabsorption of a virtual photon from a
kaon. The four-momenta of the kaon and photon will

be denoted by p and q, respectively. The scattering of
vector particles (either photons or vector mesons) off

kaons, shown in Fig. 2, is the second type of process.
Again the momenta will be labeled by p and q for the
kaons and vector particles with subscripts 1 and 2 re-
ferring to initial and final particles, respectively. The
polarization of the vector particles is denoted by X. The
kaon mass is M and the metric tensor is given by g

'= 1,
g"= —1 (i=1, 2, 3), so that p'=M2

Other kinematic variables which will be used include
those introduced by Mandelstam,

* Part of the work reported here is contained in a thesis sub-
mitted by David M. Scott to The Ohio State University in par-
tial fulfillment of the requirements for the degree of Doctor of
Philosophy.

t Work supported by the U. S. Atomic Energy Commission.
Prepared under Contract No. AT(11-1)-1545 for the Chicago
Operations Office, U. S. Atomic Energy Commission.

'See, e.g. , Riazuddin, Phys. Rev. 114, 1184 (1959); also, V.
Barger and E. lazes, Nuovo Cimento 28, 385 (1963).' See, e.g. , K. Tanaka, Nuovo Cimento 56A, 764 (1968); also,
C. L. Cook, L. E. Evans, M. Y. Han, N. R. Lipshutz, and N.
Straumann, Phys. Rev. Letters 20, 295 (1968).' See, e.g., K. Yamamoto, Phys. Rev. 168, 1677 (1968).

4 H. Harari, Phys. Rev. Letters 1?, 1303 (1966).
5 G. Veneziano, Nuovo Cimento 57A, 190 {1968).
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FIG. 1. Self-energy diagrams.

(b)

v{q,) ) v(q )~ )

K(p, ) K(p )

Fro. 2. Vector-particle —kaon scattering.
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s= M-'+ q'+23fv,
I=-3f'+ q'- —2Nv.

(2.3)

B. Electromagnetic Self-Energy of Kaons

The electromagnetic self-energy of mesons, to first
order in e', is determined from the Feynman graphs of
Fig. j.." Ho~ever, as pointed out by Das et al. ,

' the
"contact" term (in which the virtual photon is emitted
and reabsorbed at the same space-time point) can be
eliminated if the calculation is done in the gauge intro-
duced by Fried and Yennie. ' In this gauge, only the
diagram of Fig. 1(a) contributes, so that the electro-
magnetic self-energy of the positive (neutral) kaon is
given by

gP+ (0)

2

d'q S"'—4q"q"/q-'—-CT..""'—T"3 (2.4)
(27r)' q

'+fe-

where

g =p, qi/cV= (s I,—t)/—4N
= (s M—' q—')/2' f/—4M .(2.2)

Thus, in the forward direction (f=0), we have

where

T„„"=—2'E(2 )'fd'*

&&e "{(K+IT(J„()J s(0))I E+)

+&&+I T(J,'(x)J '(o)) I &+))

4=~&—(2 ) f&'"'(&+.I( J.'( X)&."(o)) I
&")

The superscripts on the currents refer to the isospin
component and ~&T„,~e"* is the invariant amplitude for
the forward Compton scattering' of virtual photons o6
kaons where one photon is an isovector one and the
other is an isoscalar one.

If eI'F„„~e"*is defined as the invariant amplitude for
Compton scattering (not necessarily in the forward
direction as indicated by the bar), then it can be ex-
panded in terms of tensor amplitudes:

7'„„r= A g&P„P„+A»(P„Q„+Q„P„)
+A3&Q„Q„+A4&g„„,(2.6)

where

T +&"' = —i(2x)' d'x

P= ~(pi+p2),
Q= k(qi+qs),

(2 7)

T„„=i(2x)—' d4x e
—'& *(0

I
T(J„&(x)J„~(0))IO).

d4q g4" —4'"q" q2
V" 1

fs&

(2m)' q'+is
(2.5)

' T. Das, G. S. Guralnik, V. S. Mathur, F. E. Low, and J. E.
Young, Phys. Rev. Letters 18, 759 (1967),

7 H. M. Fried and D. R. Yennie, Phys. Rev. 112, 1391 (1958).

In these expressions, the superscript y indicates that
the current is an electromagnetic one. In the calculation
of the mass difference, the vacuum expectation value of
the current drops out, and therefore it will not be con-
sidered further.

The isoscalar and isovector components of the elec-
tromagnetic mass shift are defined by

5%If-+= 5%8+5&y,

Wf ~o = bM8 —8M y.

If it is assumed that the positive and neutral kaon
masses are degenerate in the absence of electromagnetic
interactions, then the mass difference is given by

hM'= 235(8M'+ —kV~O) = 2E(8E+—hE') = 4&8&v.

It can be shown by using the Kigner-Eckart theorem
that the isovector mass shift depends only on the com-
bination of an isovector component and an isoscalar
component of the electromagnetic current, so that (2.4)
becomes

and the A;& are functions of q', v, and t. In the forward
direction, 1'„„ris equal to T r so that

T"'= A ~'P.P +A 2'(P.q+ q.P.)
+A3&q„q.+A4&q„., (2.8)

A;&(q„v)=A;&(q', v, /=0).

Time reversal and parity invariancc were used in
these expansions and now gauge invariance is invoked, '
so that (2.8) becomes

T„„r= (df'/q')A, &(q', v)

X(~'g"+(q'/~')P. P. (~/~)(P. q.+q—.p.))
—A3'(q' ~)LA"—q.q j (2 9)

Before this is inserted into the mass-difference expres-
sion (2.5), an approximate relation for the tensor ampli-
tudes Aiy and A~~ will be derived using vector-meson
dominance and the Veneziano model.

C. Vector-Meson Dominance

The theory of vector-meson dominance (VMD) of
the electromagnetic interaction" will now be used to
relate the Compton scattering to the stroilg interactions

This amplitude is related to the S matrix for Cornpton scatter-
ing by Sf;——8fj ie'(2~)'5'(p&, +q& —p2 —q2) 6f'TP, E."*.' The author is indebted to Professor R. T. Torgerson for point-
ing out that gauge invariance for oG-shell photons is valid within
certain models such as the algebra-of-6elds model.

' Y. Xambu, Phys. Rev. 106, 1366 (1957);J. J. Sakurai, Ann.
Phys. (N. Y.) ll, 1 (1960); M. Gell-Mann and F. Zachariasen,
Phys. Rev. 124, 953 (1961).
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p+E~ y+E and p+E —+co+E as shown diagram-
matically in Fig. 3. If T„„'(where c& refers to q or cd) is
defined by

T„,'= —2iE(2&c)' d3x e "*(K~T(J„'(x)J.'(0)) ~E),

then VMD says"

K K K K K

FIG. 3. Relation of electromagnetic and strong
interactions by vector-meson dominance.

T„„r= 2(C«&T„„p+6&"&T„:), (2.10)

C(~)—

C(")

2frfp

tÃ p 8$
c&c&

2 2

cos81.
q2 yg2q2 ~ 2

g2

2frf.

m cp&

25Z p
2

sln8y
off

—mp g
—meo

(2.11)

where 81 is an angle which is used to relate the source
currents for the y and cu fields to the hypercharge
current.

The couplings of these currents to a E meson, which
will be needed later in the consideration of the kaon
pole term, is also given in this model. The coupling of
the p current to kaons, FKKP(q'), is considered first. It
is broken up into the coupling at zero momentum trans-
fer FKKp(0) and form factor fKK (q'):

FKK'(q') = FKK'(0) fKKp(q'),

f«p(0) = 1.

Now, as shown by Kroll, I.ee, and Zumino, "FKKp(0)
is proportional to the isospin of the states to which it
is connected; thus

FKKp(0) =g,KKI,(K) .

Finally, by universality, the proportionality constant is

gpKK fp y

so that, for the positive kaon,

FK'K+'(q')= 2f,fKKp(q'). (2.12a)

In the same fashion, the p and co currents are related
to the hypercharge and baryon currents, so that

cos8~
FKK"(q') =fr fKK"(q') (2 12b)

cos(8 r —t&K)

sin8~
FKK (q') = fr — fKK"—(q'), (2.12c)

cos(ter —ttK)

"J.J. Sakurai, Currents and Mesons (The University of Chicago

where C«) and C'"' are model-dependent.
For this calculation, the "current-mixing" model for

the system is used because it presently seems to agree
with experiment better than various "mass-mixing"
models. "Thus, C«' and C'"' are given by

where 8~ relates the y and cu field source currents to the
baryon current in the same way that 8& related them to
the hypercharge current.

Finally, we note that if the invariant amplitude for
the strong interaction p+X —+ v+E is expanded in
terms of tensor amplitudes:

T„„'=A i"P„P„+A2'(P„Q„+Q,P„)
+A3'Q„Q,+A 4 "g„„,(2.13)

then the tensor amplitudes for Compton scattering can
be related to these by VMD. Comparison of Eqs. (2.8),
(2.10), and (2.13) shows

A &(q' p, t) = 2[C&p&(q')Ac" (q') s)t)

+C& '(q')A (q', s,t)]. (2.14)

D. Veneziano Model Applied to y+K~ v+K
A model recently introduced by Veneziano' for the

scattering of physical particles has been successful in
explaining some physical scattering results. " In order
to write down this representation of the amplitudes,
their asymptotic behavior must be known. Therefore,
the general scattering case is considered and written in
terms of tensor amplitudes (as in the Compton-scatter-
ing case). Thus,

T„„=A,P„P„+A,(P„Q„+Q„P„)
+As'Q. Q+A4 "g" (2 13)

where P and Q are defined as in the Compton case Lsee
Eq. (2.7)].Using the method of de Alfaro et at. ,

'4 it can
be shown that these amplitudes have the following
asymptotic properties as s —+ ~:

Ai'(s, t) s «'&—',
A2'(s, t) s c &'&

A, "(s,t), A, "(s,t) s «'&,

where u&(t) is the leading Regge trajectory in the crossed
(t) channel. The determination of the asymptotic t be-
havior is accomplished by writing the amplitude for
t (qi)+e( —q2) ~ I'(P2)+&( P&) as—
T„,'= Bi(P„'P,'+Q„'Q,')+232Pp'Q. '+23iQp'P. '+84gp„
Press, Chicago, 1969},p. 48; N. M. Kroll, T. D. Lee, and B.
Zumino, Phys. Rev. 157, 1376 (1967}."R. J. Oakes and J. J. Sakurai, Phys. Rev. Letters 19, 1266
(1967}."See, e.g. , C. Lovelace, Phys. Letters 28B, 264 (1968).

'4 V. de Alfaro, S. Fubini, G. Furlan, and C. Rossetti, Phys.
Letters 21, 576 {1966);V. de Alfaro, S. Fubini, G. Furlan, and C.
Rossetti, Ann. Phys. (N. Y.) 44, 165 (1967).
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F'= s (Pl+ qs),

Q'=s(ps+ql).

The relations between the 2 and the B; which are de-
termined by expanding F, Q, F', and Q' in terms of pl,
gy and g2 are

A l' ———,'(2Bl+ Be+Br),
As' ——-'(28&+38s —Bs),
As' ———,'(—6Bl+9Bs+Bs),
A4'= B4.

has an s-channel kaon pole term"

4F~~&Fg~'
CP&vP»+Plvq»7 v

s —M'

and in terms of the momenta pl, q„and qs, the ampli-
tude in (2.15) becomes

qvv A 1 PlvPlv
+-', (Al'+As )Plvqlv+sr( Ar'+A2 )qsvplv

+-,'(—A, '+A, ') q,„ql.+A4'g„.,
where the conservation of the vector-meson fields has
been used (i.e., ql„=qsv= 0). Thus, we have

For large t, the 8 s behave similarly to the 2;"'s for
large s, and since the leading term dominates, it is ap-
parent that for large t,

Al'(s, t), A. '(s, t), A, "(s,t), A, '(s, t)-t «'&,

where ar, (s) is the leading s-channel trajectory.
The Veneziano representation of the amplitudes

should include all trajectories which can contribute in
the various channels. An investigation of the crossed
reaction p+v~ E+K shows that any intermediate
state in the t channel must have the quantum numbers
F= (—)s and la= 1 . Since the only known meson satis-
fying these requirements is the A2 with J~=2+, only
one Regge trajectory Lwhich is denoted by nz(t)7 seems
necessary in this channel. However, in the s channel,
there are several possible contributors and at this point
an approximation is made: Only the trajectory on which
the kaon lies mill be considered. Ke also use the customary
approximation that this trajectory is real and rises
linearly with s:

nz(s) = nrc(0)+are's= rr'(ns M') . —

Only the two tensor amplitudes A~' and A3' are
needed in this calculation; we therefore write

A, '(s, t) = (p, v/lr) LB(—are(s), 2 —n4(t))
+B(—are(N), 2 —a~(t))

+B(—nx(s), —«(N))7,
(2.16)

A, '(s, t) = (Ps'/&r) LB(—nx(s), ng(t))—
+B(- (), —.(t))

+ B(—a&c(s), —a&r(N))7,

where B(x,y) is the Euler beta function and P," is a re-
duced residue function, which is independent of s and
t. The value of this residue function is determined by
comparing the Veneziano representation and the per-
turbation expansion at a particular point, namely, the
s-channel kaon pole. The perturbation amplitude with
a vector-meson —kaon —kaon interaction Hamiltonian,
given by

QI FE'+ U Eats% p

1
Alv(s=M' t) =—L21'(nrc(s) =0)7

2pl' 1

lr a&r(s) lrnK s —M

2Pl' 1

A, (s=ms, t) =(p, /~)L2r(nx(s) =0)7,

so that
p, v=ps'=—p"= 2rrn&r'F&r&rvF—srrr" (2.17)

Thus the Veneziano representation of the amplitudes
Al'(s, t) and As'(s, t) becomes

Al'(s, t) = —2n&r'Frr&r F«'LB( alt(s), —2 —nrr(t))

+B( nrr(N—), 2 —ng(t))
+B(—a&r(s), —nrc(44))7,

(2.18)
As (s,t) = 2am'Flr&'F—zlr )B( nrr(s), —n„—(t))

+B(—nrc(44), —ng(t))
+B(—«(s) —«(~))7.

E. Application of the Cottingham Procedure

The work of the previous sections shows that the
squared mass difference can be written as

QM'= —2i
d'q a'"—~q"q"/q'

(2&r)4 q'+ie

XIC'"I.A "(q', )5' ..(q', )—A'(q', )~."(q' )7

+C"L-~ l (q', s)5».(q")
—As"(q', s)rs, „„(q',&)7), (2.19)

where A (q', s) =A;v(q', s, t=0) and the coupling con-
stants F~~t and F~~' are given a q' dependence as in
(2.12). The factors Pl,„,(q', v) and Ps,„,(q' &') are taken
from Eq. (2.9):
&l ..(q', ~) = (~'/q') L~'tl:+ (q'/~')P. P

(~/~)(P. q.+q.P )7— (2 20)
+S,vv(q v&) =

q gvv qvqv.

"The vertex function is given by (K(p)
~
Jvv~E(p))=(2vv) '

XOI2v'EE') (P+P') ~«'(Q').
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Now we note that fusing Eq. (2.2)7

q"Sy „„=q"%3,„„=0)

so that the second term in the virtual photon propa-
gator may be dropped. Another way of looking at this
is to note that the Veneziano model (at least in the
approximation of real trajectories) generates inter-
mediate states that are physical (i.e. , on the mass
shell). Since the ksons are also physical, the current
must be conserved; thus we had from the beginning

q~J„=0.

Without this second term in the propagator, Eq.
(2.21) is very similar to the expression used by Cotting-
ham" in the calculation of the neutron-proton mass
difference. Thus, we use his method in which the inte-
gration contour of the energy variable is rotated 90 in
the complex-energy plane so that it extends from —~
to +~ along the imaginary axis. The major advantage
in this approach is that the integration then includes
only spacelike virtual photons, so that the singularities
introduced by VMD are avoided. The use of this tech-

nique on Eq. (2.19) yields

AM2=
4z'

" dq'
C(v)

Q( q2)

dv( q2 v2) ) /2

2v2

X M' 1 ——A) (q' u) —3q'A3'(q-"u)

+Q(v dv( q2 v2)) 2

,)—v(—c

~V2

M& 1 ——4)"(q', u) —3q'. l, (q', s)

The bar over a variable (i.e., over s in this equation)
means that v should be replaced by iv in the expansion
of the variable; thus

8= 352+q2+ 2SiVv,

u= iV2+ q2 —2iNV .

Expanding the amplitudes and collecting terms yields

nnx' " dq' m, 'fzx'(q') m, frr)r"(q') cosgr cosg))( m 'f«(q ) singr sing))(—+
2)r' „q' q' —m, ' q' m„' cos—(gr —8N) q' —m ' sin(gr —gN)

2v2

") ' v (} L~( (~) & (0))+))(— ( ), )— (0))+B( (ii), — (i—i)}]

q LB( n)r(s), e(~(0))+B( ore(u), ——ng(0))+B( —nx(u), —o.x(u))7, (2.21)

where n= e'/4 ri7s the fine-structure constant. This is and
the 6nal expression for the squared electromagnetic
mass difference of the kaons in this model.

fxK'(q') frizx "(q2)
f'"'(q') =

q
—m q

—m
(3.3)

III. EVALUATION OF MASS DIFFERENCE
1The expression for the squared mass difference de- .

y7

The two parameters of the Regge trajectories which are

rived in Sec. II is rewritten slightly for convenience as

where

DSI,2 =
0 gq2—f"(q')

2

+m„2singr sing)) 63E„2),

dv( —q' —v') '"

Qcx~ mp 2

A&2= ——— (m ' cosgr cos8~63I '
2)r cos(8 r —8)(()

ox'=0.8 BeV ', n~(0) =-', .

Now, we would like to write the Euler beta functions in
terms of their integral representations, but since this

(3 1) representation is valid only if the real part of each argu-
ment is positive, the two beta functions having —n~(0)
for an argument must be changed. This is done by using
the I'-function representation; thus, for example,

2v2
M2 1— B —+If- 8 ) 2 —o..g 0

g2

+B(—nx(u), 2 —nz(0))+B(—nx(u), —nx(u))7

3q'I B( —e(rr(u), ——n„(0))+B( nx(u), —ng(0))—

+B(—nx(u) —nx(u))7 (3.2)

'6 W. N. Cottingham, Ann. Phys. {X.Y.) 25, 424 (1963).

r(— (u)) r( —-', )
B(—nx(u), ——,') =

r( —
2
—«(u))

r(- &(u))r(-', )
=2E~x(u)+$7

"(-' — (s))
=2Lnrr(u) +-', 7B(—nrem(u), —',) .

"M. Ademollo, G. Veneziano, and S. steinberg, Phys. Rev.
Letters 22, 83 (1969).
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tation of the beta function,Now the integral representation o e

].87

~z—r 1 ~ v—1B(x,y) = d« -'(1-~

s in E . (3.2). Thus we havecan be used for aall the beta functions in q.

&(—q2)

v( —q' —v')—,f"(q')62M, '=

2 — 1

X M' j.——( „).
1

' " »""'+2(n»'q2 2rnrr'—Mv+ ~~)dt(1 t) 'r't .—»'-' '-*.»-—3q' 2(n»'q'+2in»'Mv+

—a(—q')

Eq —— ' —a~' q2—I+2i aE'ftrlv—a»g z—1—2ia»'M (1z( —a1 2 —a»'ir —l(~—2iz»'.Vrz+~2izz»' z2inE'Mv dt t
—aEq

1

E q — ' ' —a~' q~l+2ia&' Mvzz»'q—z—1 zia»—'Mv(1 ~)
—u» g

'd -- ---'-"---+ d--dh(1 ~) 'r't—»-~-

where

+, o. ;, (3.4)+ (K3+Ei)+3o'(K +E6+Kr)-
0"2

2%0
Eg(o) =-

6

—se '-(1 e')'"—Ji(bo"),
p S

2' o' d'w e

w (1+e ")'Kg(o) =
b

—zz 1 e
—z 1/2E3(a) =2xo' dse "(1—e

J&(bos) 3J.(bas)

b(rs (bos)'—

Ei(o) =2rro' dw
p

4xo-
E5(o) = (-', —a)

b

(1+e )"
-J,(bow) 3J,(bow)-

bow (birw) '

dS—1 —e '—(1— ') '"e "Jg(bos),
Q S

Zz—(1 e*) 'r'e "Jr(has),— — —Ke(o) = —4rra' ——e
Q

0 = 0 b =2MQ&=G~ 0',
2 — 21 The ne~ variables are related to the o o

z= —lnt, and m = —lnLt/(1 —t)j.

terms within the first square raracketw er m
d f h d

d the integration is per-i terchanged an
'h h f blformed. This yields (with a c an

—f&"'(o') 3f'(Kr+K2)a&„2=—

'
n of the first kind andthe Bessel function o eand J„(xis e

y
routines. "Two unc iquadrature subrou in

"( ') were used. In theform factors firrr ovo ) and frr»" a w . e

set e ual to unity anth form factors were se equ
bo th d ibed b.in the second case, they were o

»»z o ')= f»» "(o')-= ~'/(o'+~')

- and E6 produce a dive gr ence in theThe integrands E; an
'

ed. This cutoff wasa cutoff was require .first case so that a cu
integrals and theer limit for all seven inused as an upper imi

1 ted for various valueskaon mass differenence was calcu a e ues
d'ff erence'Q of —3.931 kaon mass i erenf it. The experimenta
b t 2.38 BeV. For

0 i .
d with a cutoff a ou

de'll the integran s pro
e u er limit was ain eg pp

he lot of the integran inPo - Po o
f ~ ~ dsible contribution.si

' '
n. The value o was

r 4=2.82 the experimenta 1for this case, and for A=
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however, the same problem done with hard-pion tech-
niques did require a cutoff. "

One possible physical explanation for the cutoff is
given in the vector-dominance model, which says that
the strong-interaction vertex (of the vector meson con-
necting to the hadron line) has an unknown form factor
associated with it. Even though the concept of a cutoff
(or effective cutoff A) is accepted, any derivation of its
value from 6rst principles is lacking. The empirical
"double-pole" form of the nucleon form factors would
suggest an effective cutoff in the range of the vector-
meson masses (i.e. , 0.7—0.8 BeV) for that case. Since this
is smaller than the hadronic mass to which it connects,
it has also been suggested that a cutoff in the neighbor-
hood of the hadronic mass is reasonable.

The above discussion would suggest that, for E
mesons, a reasonable cutoff would be in the range 0.5—
0.8 BeV. However, previous calculations of the kaon
electromagnetic mass difference have typically required

"M. B. Halpern and G. Segre, Phys. Rev. I.etters 19, 611
(1967).

cutoffs in the range of 20 BeV and higher. "Therefore,
the present calculation shows a signiicant improvement
since the cutoff has been reduced to 3.0—3.5 BeV. One
might wonder if the inclusion of other s-channel trajec-
tories such as the ones on which the E*or E~ mesons
lie would further decrease this value. Since the present
calculation has a change of sign of the mass difference
for a cutoff of about 1.5 BeV, it seems doubtful that the
inclusion of these other trajectories would reduce the
required cutoff to a "reasonable" value.
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The structure functions for deep-inelastic lepton processes including (along with other hadron charges
and SU& quantum numbers) e +p ~ e +"anything, " e +e+~ p+"anything, "v+p —+ e +"anything, "
f+p~ e++"anything" are studied in the Bjorken limit of asymptotically large momentum and energy
transfers, q' and tv, with a finite ratio ar —=2%v/q'. A "parton" model is derived from canonical field theory
for all these processes. It follows from this result that all the structure functions depend only on m, as
conjectured by Bjorken for the deep-inelastic scattering. To accomplish this derivation it is neces-
sary to introduce a transverse momentum cutoff so that there exists an asymptotic region in which q~ and
3fv can be made larger than the transverse momenta of all the partons that are involved. Upon crossing to
the e+e annihilation channel and deriving a parton model for this process, we arrive at the important result
that the deep-inelastic annihilation cross section to a hadron plus "anything" is very large, varying with
colliding e e+ beam energy at fixed m in the same way as do point-lepton cross sections. General implica-
tions for colliding-ring experiments and ratios of annihilation to scattering cross sections and of neutrino
to electron inelastic scattering cross sections are computed and presented. I'inally, we discuss the origin of
our transverse momentum cutoff and the compatibility of rapidly decreasing elastic electromagnetic form
factors with the parton model constructed in this work.

I. INTRODUCTION

~ 'HE structure of the hadron is probed by the vector
electromagnetic current in the physically observ-

able processes of inelastic electron scattering and of
inelastic electron-positron pair annihilation

(i) e +p —+ e +"any thing, "
(ii) e +e+ ~ p+ "anything. "

* Work supported by the U. S. Atomic Energy Commission.

It is also probed by the weak (vector and axial-vector)
current in inelastic neutrino or antineutrino scattering

(iii) vq+ p ~ +"anything, " f= e or p

(iv) v~+p ~ t+ "anything. "

In process (i), the scattered electron is detected at a
fixed energy and angle, and "anything" indicates the
sum over all possible hadron states. The two structure
functions summarizing the hadron structure in (i) are


