
P H YSICAL REVIEW VOLUME 187, 5i'UMBF. R 5 25 NOVF. M B ER 1969

Compton Scattering and Regge Cuts
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Multiple Pomeranchuk-trajectory exchange is studied in nucleon Compton scattering as an alternative
means to a wrong-signature fixed pole in order to obtain a constant total asymptotic cross section and
avoid paradoxes involving the vector-meson-dominance model. It is argued that the multi-Pomeranchon
branch points interfere constructively, and an estimate is made of their contributions. One 6nds that the
inclusion of up to 6ve-Pomeranchon branch points leads to some 40~/~ of the total nucleon Compton cross
section. The implications of these results for the Pomeranchuk trajectory are discussed.

I. INTRODUCTION

HE application of Regge-pole theory to processes
involving photons, in particular Compton scat-

tering, has led to difhculties which are essentially
caused by the crossing properties of zero-mass par-
ticles." For example, one would naively expect the
Pomeranchuk trajectory to contribute to nucleon (or
pion) Compton scattering, thus obtaining a constant
total cross section at large energies. However, when one
crosses the s-channel helicity amplitudes (the s channel
is given by y~Y —+ psV, t by yy —+ XX), which contribute
to forward scattering into t-channel helicity amplitudes, '
one finds a nonsense zero at n(f) = 1.' ' This, of course,
implies that a Pomeranchuk trajectory with n(0) =1
does not contribute to the forward scattering of real
photons on nucleons. 4

The above result, however, is true only if the e6ects
of the third double spectral function (p,„)are negligible.
Inclusion of these eftects would allow for the existence
of a fixed pole at J= 1 in a wrong-signature amplitude, '
which in itself would not contribute to the high-energy
behavior because of the signature factor. In particular,
it can occur in the residue of the Pomeranchuk trajec-
tory, thereby allowing it to dominate the forward
amplitude, and then the high-energy cross section
would tend to a constant.

The existence of such a fixed pole is incompatible
with the vector-meson-dominance model, since, for
example, the photoproduction of transversely polarized
p" mesons does not need a singular residue function for
the Pomeranchuk trajectory ." A way out of this
paradox is to include the effects of the third double
spectral function by examining the contribution of
branch points due to multiple Pomeranchuk-trajectory
exchange.

' V. D. Mur, Zh, Eksperim. i Teor, Fiz. 44, 2173 {1963);45,
1051 {1963) LEnglish transls. : Soviet Phys. —JETP 17, 1458
(1963); 18, 727 {1964)].' H. K. Shepard, Phys. Rev. 159, 1331 (1967}; H. D. I.
Abarbanel and S. Nussinov, ibid. 158, 1462 (1967).

3 T. L. Trueman and G. C. Kick, Ann. Phys. (N.Y.) 26, 322
(1964); I. J. Muzinich, J. Math. Phys. 5, 1418 (1964); M. Jacob
and G. C. Wick, Ann. Phys. (N.Y.} 7, 404 (1959).' This can also be seen by noting that Yang's theorem forbids
the decay of a spin-1 object into two photons.

f' S. Mandelstam and L-L. Wang, Phys. Rev. 160, 1490 (1967).' J. J. Sakurai, SLAC Report No. TN-68-11 (unpublished).
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In Sec. II a discussion is given of how the need for
third double spectral function effects arises and how
their inclusion by means of fixed poles or Regge cuts
can give rise to a nonvanishing7 asymptotic total cross
section for Compton scattering.

Section III contains a discussion of the relative signs
of the multiple Pomeranchuk-trajectory branch-point
contributions by using a Reggeon diagram technique, '
as well as a suggestion for avoiding the previously
mentioned paradox from vector-meson dominance.

In Sec. IV, a numerical estimate is attempted of the
effect of the Pomeranchuk branch points by means of
an optical prescription. Finally, in Sec. V, the con-
clusions are summarized and discussed.

II. EFFECT OF THIRD DOUBLE
SPECTRAL FUNCTION

The purpose of this section is to review briefly the
difhculties encountered in the coupling of the Pomer-
anchuk trajectory to the two-photon system and show
how the inclusion of a fixed pole or a branch point
avoids them. For our purpose, it is sufhcient to con-
sider Compton scattering on pions. Ke have two
s-channel helicity amplitudes (1~ T'~1) and (1~ T'~ —1),
of which only the former survives at t=0. Crossing
into the t channel is very simple; indeed, the photon
helicity is simply Ripped:

If one makes a partial-wave expansion of T+ ', '
one finds that, since the leading terms of d...~(e,)
vanish for J= 1, it appears that a Pomeranchuk trajec-
tory with a(0) =1 cannot contribute to the total cross
section. Then the total y~ cross section goes to zero
with increasing energy. However, as a consequence of
the absence of bilinear unitarity for processes to lowest
order in weak or electromagnetic interactions, one may
have fixed poles at nonsense values of the angular
momentum. ' Also, for a nonzero third double spectral

' Up to possible energy-dependent logarithmic factors.
8P. M. Gribov, Zh. Eksperim. i Teor. Fiz. 53, 654 (1967)

LEnglish transl. : Soviet Phys. —JETP 26, 414 (1968)j.'A. H. Mueller and T. L. Trueman, Phys. Rev. 160, 1296
(1967};160, 1396 (1967); H. D. I. Abarbanel, F. E. Low, I. J.
Muzinich, S. Nussinov, and J. H. Schwarz, ibid. 160, 1329 {1967).
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function, one may have, in the presence of suitable cuts,
fixed poles for strong-interaction processes at nonsense
wrong-signature points. '

The total photon cross section is given by

ar ———,'s Im(T+ ')g, ,

and normal Regge behavior implies

(2.2)

C(i) t.a(s) -Ij
T+-'(J) =

t:J—a(&)1
(2.5)

whereas a Regge cut from J=—~ to J=n. (&) would
have the form

y(t, )Lna'(t) —1j
T+ '(J) =2m-i da' (2.6)J a'(t)—

with a contribution to the high-energy limit like

a, (&) P (in)
da (1+e ' )s .

sine o.
(2.7)

In Eq. (2.6), y is a spectral function that depends on the
details of the dynamics. It is clear that in spite of the
nonsense zero in the integrand of Eq. (2.6), there is no
a priori reason to expect Eq. (2.6) or P, in Eq. (2.7) to
vanish for I,=O if n(0) =1. Thus we expect that a cut
generated by multiple Pomeranchuk-trajectory ex-
exchange gives a nonzero contribution to forward

'0 S. Mandelstam, Nuovo Cimento 30, 1127 (1963); 30, 1148
(1963);J. C. Polkinghorne, J. Math. Phys. 4, 1396 {1963).

ImT+ '~P(t)La(t) —1js~&'& ' (2.3)

For the Pomeranchuk trajectory to contribute, it is
sufhcient for its residue to be singular at J=1. Thus
we would have

e(i) =v(t)/(J —1) (2 4)

for the residue function of the Jth partial wave near
J=a(t) 1, =where, of course, y(0) WO. Hence the
presence of a multiplicative axed pole at J=1 allows
the Pomeranchuk trajectory to contribute to the
forward amplitude.

However, the effect of the third double spectral
function need not manifest itself only through the
existence of a fixed pole at a nonsense wrong-signature
point, but can also arise through the consideration of
the Regge-cut contributions due to multiple Pomer-
anchuk-trajectory exchange. Indeed, it is known that a
high-energy behavior for the scattering amplitude corre-
sponding to a moving branch point in the complex
angular momentum plane is obtained from the examina-
tion of nonplanar perturbation-theory diagrams" or
Reggeon diagrams. These graphs have a nonzero third
double spectral function and are characteristic of a
fully relativistic crossing-symmetric theory.

The contribution of a Regge pole near J=n(i) to a
signatured partial-wave amplitude of a given parity is
of the form

Compton scattering. The high-energy behavior is

generally given by the position of the leading branch
point which, for the case of the Pomeranchuk trajectory,
is expected to coincide with the pole at t=O."~~ The
multi-Pomeranchon branch point is also expected to
have the same signature as the Pomeranchuk trajectory
itself. Ke shall later return to these points. Thus we
see that in the latter fashion we can also obtain a con-
stant asymptotic total cross section for Compton

scattering. v

The difliculty with the vector-meson-dominance
model can be seen to arise in the following fashion. '
Vector-meson dominance relates invariant amplitudes
for vector-meson photoproduction to those for Compton
scattering. Crossing from the s to t channel for the case
of vector-meson photoproduction does not lip the
vector-meson helicity. Then one does not obtain a
nonsense zero for Pomeranchuk-trajectory exchange at
t=O for the photoproduction of transversely polarized
neutral vector mesons. Thus one does not need a
singular residue function in contrast with Compton
scattering. It can also be shown that the fixed-pole
approach leads to a definite total photon hadron cross
section' once the Pomeranchuk-trajectory slope is
known, and, in particular, one finds that the total yA
cross section vanishes. This, on the basis of vector-
meson dominance, would imply the surprising result
that the pA cross section also vanishes.

If, on the other hand, one considers the contribution
of multiple Pomeranchuk-trajectory branch points to
Compton scattering, no such inconsistencies are ob-
tained. %e shall examine how this occurs in Sec. III.

III. CONTRIBUTIONS OI' MULTIPLE
POMERANCHUK-TRAJECTORY

BRANCH POINTS

The purpose of this section is to examine the relative
contributions of the multiple Pomeranchuk-trajectory
branch points to a process, such as nucleon Compton
scattering, for which single Pomeranchuk-trajectory
exchange vanishes at t=O.

Normally, in a Regge-pole model for elastic scatter-
ing, one prefers the orthodox picture of a single simple
Regge pole with intercept unity together with the
associated branch points. The importance of the branch
points should be emphasized in view of the mysterious
nature of the Pomeranchuk trajectory"; moreover, it
has also been speculated that cuts may actually
dominate elastic scattering. "Also, since experimentally
one finds a nearly flat Pomeranchuk trajectory, '4 one

"H. Rothe, Phys. Rev. ].59s 1471 (1967)."J.H. Schvvarz, Phys. Rev. 167, 1342 (1968)."E.J. Squires, Phys. Letters 268, 461 {1968).
Ap 0&0.1 ~as obtained from superconvergence relations

by V. Barger and R. J.N. Phillips, in Proceedings of the Fourteenth
International Conference on High-Energy Physics, Vienna, 10M
(CERN, Geneva, 1968).
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where gi= Gi/f'i, and Eq. (3.12) has been obtained from

Eq. (3.11) by using Eq. (3.5). Three-Reggeon exchange

may be calculated by taking for f' a form such as Eq.
(3.5) rather than a simple form as given by Eqs. (3.4)
and (3.8). Similarly, using such an iteration procedure,
one can obtain, for the n trajectory exchange, '

d'ki
X . 6(q —Q k;)b(j+n —1—Q f;)

(2w)' (2s.)'

XiVi, ...&„'(ki k.)glg(ki')gi, (k22) gi„(k.'), (3.13)

where cV)1 ) is the n Reggeon generalization of $/1)2'.
From the above, if gi, (k;2). =t'i, '0;. n;—(k;2)P', one can
obtain the discontinuities across the singularities of

i',
af =(—1)"n.(sin-', 7rj) - -(2s.)'5(q —Q k;)

(2ir)' (2x)'-'

Ke immediately note the alternation in sign for the
discontinuities. Let us see how this arises. From the
product of the n signature factors, we have

The iteration of Eq. (3.5) n —1 times gives a factor
(i)" ' and the relative sign of the one Reggeon and cut
contributions a factor (—1)" '. Thus, we obtain the
factor (—1)" ' in Eq. (3.13).

Before studying our particular case, let us note a
few points. The above alternation in signs is what one
would expect on the basis of absorption corrections to
single Regge-pole exchange. "The signs would not alter-
nate had the corrections been due to rescattering. '
These corrections diGer insofar as the Pomeranchuk
trajectory is considered to consist of different parts of
the amplitude. "Let us further note that in the usual
Regge picture one expects the discontinuities for
n-Reggeon exchange to become less and less important
as n becomes larger.

Let us examine a situation for which the single-
trajectory-exchange contribution vanishes in the for-
ward direction. We shall assume that the above
hierarchy structure for cuts is still. true. Then the sign
of the cut contribution must be positive because of the
optical theorem, in contrast with the usual case for
which the single-trajectory exchange does not vanish
at t= 0. One can then have a positive relative sign of the

"M. Jacob and J. Finkelstein, Xuovo Cimento 56, 681 (1968).

one-Reggeon exchange input f and the cut contribution

f, A.s a result, the factor (—1)" ' on the right-hand

sides of Eqs. (3.13) and (3.14) will disappear.
From the above considerations, we note that the

total amplitude fr does not coincide with f, since fr
also includes the branch-point contributions. If, as in

the usual case, the amplitudes alternate in sign, one

may speculate that the two-Reggeon exchange may be
cancelled by the three-Reggeon exchange the four- by
the five-, and so on. Thus fr f, that is, single-trajectory
exchange may be a suitable approximation to the
amplitude. If, on the other hand, f does not contribute
to fr, then the total amplitude in the forward direction
will consist of the branch-point contributions obtained

by iterating f.
Let us apply the above considerations to a relevant

physical situation. In the photoproduction of trans-
versely polarized vector mesons (or the scattering of
transversely polarized vector mesons) off nucleons, the
Pomeranchuk trajectory can contribute in the forward
direction. One may then repeat Gribov's procedure and
And that the branch-point contributions alternate in

sign, and one is practically left with single Pomeranchuk-
trajectory exchange. On the other hand, for nucleon
Compton scattering the Pomeranchuk trajectory does
not contribute to the total amplitude in the forward
direction. One is then left with the branch-point con-
tributions. We can try to estimate them by suitably
iterating the neutral-vector-meson photoproduction
amplitude. "As we have discussed, we expect the branch
points to interfere constructively, in which case the
total contribution will be the same as if the Pomeran-
chuk trajectory contributed to forward nucleon
Compton scattering. We also note that the signature of
the multiple Pomeranchuk-trajectory branch point is
the same as that of the Pomeranchuk trajectory itself.

In Sec. IV, we discuss in detail how the branch-
point contributions can be estimated and our choice of
the photoproduction amplitude for iteration.

IV. ESTIMATE OF POMERANGHUK
BRANGH-POINT GONTRISUTIONS

In Sec. III, we found how the inconsistency between
a fixed pole in Compton scattering and vector-meson
photoproduction can be avoided by considering
multiple Pomeranchuk-trajectory exchange. The pur-
pose of this section is to estimate the magnitude of a
few of the branch-point contributions.

As we have mentioned, the examination of nonplanar
graphs leads to a high-energy behavior for the amplitude
on the physical sheet of the s plane corresponding to a
moving branch point. This branch point is analogous
to the one found on the unphysical sheet by Amati,

"By this we mean that we iterate the strong-interaction part
of the photoproduction amplitude; thus each branch-point con-
tribution is of the same order of magnitude in the electromagnetic
interactions. See, in particular, Sec. IV.
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FIG. 2. Diagram giving rise to AFS cuts in
nucleon Cornpton scattering.

Fubini, and Stanghellini (AFS)" for planar graphs. One

may expect the coe%cients of the two graphs to be
similar, since they are related to a contracted diagram
which is topologically the same for both graphs. """
Thus we may attempt to estimate the Regge-cut con-
tributions by calculating the discontinuity across the
two-particle cut. ' " The two-particle intermediate
states in our case are a nucleon and a vector meson,
which means that we shall need the vector-meson
photoproduction amplitudes'7 (see Fig. 2).

We may write the neutral-vector-meson photopro-
duction amplitudes" in the following form:

3 i(s, t) =iP(0)e"(s/so), (4.1)

where P(0) is real. Equation (4.1) states that the
Pomeranchuk trajectory contributes to the photo-
production of vector mesons' and all t dependence has
been put in the residue function. Ke note that the inte-
grated cross sections, with the above form for the
amplitude, agree with the quoted channel cross sections
(except for cu photoprodudtion for which x exchange is
fairly important at measured energies), indicating pre-
dominance of the diffraction mechanism. ~ A last point
worth noting about the above form, Eq. (4.1), is that
it corresponds to a fixed-pole Pomeranchuk trajectory.
This, of course, implies the existence of shielding cuts'4;
however, let us note that our conclusions are unaltered
if the Pomeranchuk trajectory has a small enough
slope. '4

We have the following form for the magnitude of the
n-Pomeranchuk-trajectory exchange2' contribution to
Compton scattering:

where

&(t,t', t")= —(P+t"+t'")+2(tt'+t't"+tt")+4tt't"/s,

and fy is related to the photon —neutral-vector-meson
vertex. On substituting Eq. (4.1) into (4.2), one finds

that the integrals can be performed exactly for A~ and
approximately for A 3, 3 4, and A ~. ' ' The results are,
for 1=0,

iQt (0)j' s
A2 ——

327l esp sp
(4 3)

iP(0)j'
38471 "s 8 so

i[j9(0))4 s 161 fy'
A4 ———

a'8'(2xso)' so 132 e'

ig(0)j' s 388 fy'

a48'(2~so)4 so 149 e'

(4 4)

(4 5)

(4.6}

P=37.8 (GeV'tib)'", a=3.8 GeV ',
for p photoproduction,

(4.8)

p=90 (GeV'tabb)'" a=1.75 GeV ' (49)

In Eqs. (4.7)—(4.9), we have omitted the errors, which
are always at least 10%.We may also use e'/f, '.e'/f '.
e'/f '=9:1:2and (e/fp')~1/340. '

On substituting the above in Eqs. (4.3)—(4.6), we
obtain the following result for the total photon cross
section on protons:

or= L(16.2+8.3+5.8+5.8)p+ (3.75+2.7+1.5+1.5)„
+ (0.9+0.3+0.1+negligible)„j

=47 pb, (4.10)

As input, we may use the results obtained from neutral-
vector-meson photoproduction data at a primary photon
energy of 4.5—5.8 GeV.23 These are:

For p photoproduction,

P=80.4 (GeV' pb)'" a=3.95 GeV ' (4.7)

for co photoproduction,

e(tc)
X dt "A,(s,t') A „;*(s,t") , (4.2)-

gE
' D. Amati, S. Fubini, and A. Stanghellini, Nuovo Cimento 26,

896 (1962).' R. Oehme, in Strong Interactions and High-Energy Physics,
edited by R. G. Moorhouse (Plenum Press, Inc. , New York,
1964), p. 129.

~ P. G. O. Freund and P. J, O'Donovan, Phys. Rev. Letters 20,
1329 (1968)."P.J. O'Donovan, Enrico Fermi Institute Report No. 68—84
(unpublished).

~ The amplitudes are normalized so that ImA (s,o) =sat, ~.
~ S. C. C. Ting, DESY Report No. 68/29 (unpublished).
'4 R. Oehme, Phys. Rev. Letters )8, 1222 (1967). 2~ The approximation becomes poorer as n becomes larger.

where the different vector-meson contributions are
identified and we have written the two-, three-, four-,
and five-Pomeranchuk-trajectory contributions in order.
It is clear that the dominant contribution is given by
the p term.

Experimentally, the total proton cross section is of
the order of magnitude 110 pb. Thus we have ob-
tained some 40% of the total cross section by limiting
ourselves to branch points caused by two- to five-
Pomeranchuk-trajectory exchange. It is not unreason-
able to expect that the higher branch-point contribu-
tions will yield most of the remaining total cross section.



One need not be concerned about the apparent lack
of convergence of the p or a& contributions in Eq. (4.10)
since these results are sensitive to the input values of
a and P. The values that we have used are not the
asymptotic values; moreover, the evaluation of the
integrals is only approximate, and we are only inter-
ested in an order-of-magnitude estimate. The approxi-
mation that we have used may be regarded as an
optical prescription for the calculation of the eBect of
cuts in a Regge model.

V. CONCLUSIONS

The examination of the problem of obtaining a
constant total cross section for nucleon Compton
scattering consistently with vector-meson dominance
has led to some observations about the Pomeranchuk
trajectory. The reason for this is that because of the
particular nature of the two-photon Pomeranchuk-
trajectory coupling, we have a situation for which the
trajectory does not couple in the forward direction, ' '
unless third double spectral function eRects are taken
into consideration.

As has been pointed out, one way of doing this is to
include the eRect of fixed poles at wrong-signature
points'; however, it may be more interesting to observe
that Regge cuts are intimately connected with the third
double spectral function. This is particularly interesting
because of the unknown nature of the Pomeranchuk
trajectory. Indeed, various speculations about this
trajectory have been made in order to explain the non-
shrinking of the diRraction peak. It has been suggested
to be a fixed pole with a suitable shielding cut'4 in
order to avoid difhculties with unitarity or a self-
reproducing branch point. "Alternatively, it has been
suggested that if it is a Regge pole, the eRect of cuts
obtained from absorption must also be included. The
latter picture is the more orthodox one, especially if
one believes in the importance of cuts for elastic
processes. "

Once one follows the above line of thought, it is
natural to examine the situation in Compton scattering
with respect to cuts and see what can be stated about
their properties. One observes that in cases for which
the Pomeranchuk trajectory can behave like a pole,

that is, the coupling of a Regge pole with o.(0)= 1 does
not vanish at 1=0, the multiple trajectory-exchange
contributions alternate in sign and can be expected to
give a negligible contribution. If, on the other hand, a
Regge pole with u(0) = 1 cannot couple in the forward
direction, as is the case in Compton scattering, then the
multiple-exchange contributions can interfere con-
structively and lead to the same eRect as the pole
itself. Thus there is no need for singular residue func-
tions. At this point, one sees that the difficulties with
vector-meson dominance are avoided by the apparent
pole-cut duality for the Pomeranchuk trajectory.

On the basis of the above considerations, we have
examined the multiple Pomeranchuk-trajectory branch-
point contributions to the total Cornpton cross section.
The estimate of these contributions is made by what is
essentially an optical prescription for calculating the
eRects of Regge cuts and the identification of the
position and magnitude of the Regge cut with the second
sheet cut of AFS."One finds that a rough estimate of
the contributions of the two- to five-Pomeranchuk-
trajectory exchange cuts, using as input the vector-
meson photoproduction data, '3 leads to some 40% of
the total proton Compton cross section. It is not
unreasonable to expect that the higher multiple trajec-
tory exchanges contribute most of the remaining cross
section.

cVote added in proof. Actually one can obtain a
closed form for the contribution to the total cross
section of an infinite number of Pomeranchuk-tra-
jectory branch points. The result one arrives at depends
on what part of the total amplitude is identified with
the Pomeranchuk trajectory Lsee P. J. O'Donovan,
Phys. Rev. (to be published)j. Thus the results in
Sec. IV can be made more definite. This and other
points will be discussed elsewhere.
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