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A scheme for truncating the r-function equations appropriate to charged-scalar-meson theory is pre-
sented and solved in the one- and two-meson approximations. The basis of the truncation scheme is a
restriction of the number of mesons occurring in bare intermediate states. The resulting equations are
modihed so that the same diagrams which account for the dressing of the nucleon also account for meson-
nucleon scattering. A meson-nucleon bound state is present, for large enough coupling constant, in the
two-meson approximation. It occurs in the channel where the interaction takes place entirely through
exchange diagrams. It is found that the masses and cutoff function of the theory can be chosen in such a way
that the probability of 6nding the physical particle as a bare particle decreases in going from the one-
meson to the two-meson approximation.

INTRODUCTION
' 'N order to understand the role of field theory in
~ ~ describing strong interactions, the situation with
regard to dynamical bound states must be clarified.
There is now a large body of literature on meson-
nucleon scattering that is based on the classic work of
Chew and Low. ' In this work, it is assumed that there
are no bound states lying between the single-nucleon
state and the meson-nucleon continuum. The general
analysis of solutions of the Low equation in the one-
meson approximation by Castillejo, Dalitz, and Dyson
showed that meson-nucleon scattering cannot be deter-
mined from this equation in the presence of bound
states. In this work, the authors conclude: "It appears
that the Low equation expresses the information we
can deduce from the 6xed space dependence of the
interaction, knowing nothing about the internal struc-
ture of the scatterer. " Recently, a two-meson solution
to the Low equation for charged-scalar-meson theory
has been obtained. ' In this work, it is also assumed that
there are no bound states.

Two basic questions immediately arise. Are there
necessarily bound states present in meson-nucleon
theory when one takes into account multimeson inter-
mediate states? If these bound states do occur, what is
the proper equation determining meson-nucleon scat-
tering? In order to investigate the possibility of bound
states, including those with the quantum num. ber of the
nucleon, we treat the single-particle nucleon states on
an equal footing with the meson-nucleon scattering
states. For simplicity, we work with scalar rather than
pseudoscalar mesons, and consider the g-function
equations that describe the single-nucleon propagators
as well as the meson-nucleon scattering and production
amplitudes. In order to truncate these equations, we
use a Tamm-Danco6 treatment, 4 where the number of

~ Work performed under the auspices of the U. S. Atomic
Energy Commission.' G. F. Chew and F. K. I.ow, Phys. Rev. 101, 1570 (1956).'I.. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 101,
453 (1956).

~ J. B.Bronzan, J. Math. Phys. 7, 1351 (1966).
4 I. Tamm, J. Phys. (USSR) 9, 449 (1945); S. M. Dancoff,

Phys. Rev. 78, 382 (1950);F. J. Dyson, ibid. 90, &94 (1953).
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mesons occurring in bare intermediate states is re-

stricted. The truncated equations are then modified so

that, for a meson-nucleon state, the nucleon is dressed

only by those diagrams that are allowed according to
the order of truncation. In other words, if one meson is

already present with a nucleon, that nucleon is dressed
according to the X—1 truncation scheme, if we are
working in the .V truncation scheme. The advantage of
this method is that in any order of truncation, the
nucleons are dressed by the same set of diagrams that
are responsible for meson-nucleon scattering. The
disadvantage is the absence of crossing syrrunetry. '
This is not considered to be a serious problem, since, at
this stage, our emphasis is on the presence of dynamical
bound states rather than scattering amplitudes.

In Sec. I, the Hamiltonian is written down, and the
field equations and commutation relations are given.
Then the v functions appropriate to the lowest non-
trivial sector with one baryon are defined, and the
equations determining these functions are written
down.

In Sec. II, the truncation method is introduced and
the one-meson scheme is applied to the lowest sector.
It is immediately seen that the truncated system of
equations must be modi6ed if the nucleon propagator
is to have the proper analytic structure. The necessary
modification is made and explained in the context of a
solvable model for which the truncated system of
equations is exact. Solutions to the one-rr eson equations
are given.

In Sec. III, the two-rr, eson scher e is app1ied to the
two lowest nontrivial sectors with one baryon. A
symbolic representation of the ~-function equations is
given. Lsing this representation, the equations for the
nucleon propagator and meson-nucleon four-point
function are reduced to the expansion of these functions
in terms of Feynman diagrams. The necessary modi6ca-
tion of the two-meson equations is made and explained

' Crossing symmetry is meant in the usual sense as the relation
or set of relations arising from the symmetry of sets of Feynman
diagrams when incoming and outgoing meson lines are exchanged.
See M. Gell-Mann and M. I.. Goldberger, Phys. Rev. 96, 1433
(1954).
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using these Feynman diagrams. A general rule is given
for modifying the lV-meson equations. Then the solution
to the modified two-meson equations is obtained. In
solving for the renormalization constants, it is found
that the parameters of the theory can be picked in such
a manner that the wave-function renormalization con-
stants in the two-meson scheme are less than in the
one-meson scheme. This result suggests the possibility
of an interesting theorem regarding elementary and
composite particles in field theory and this point is
discussed. From the solutions for the v functions, it is
seen that there can be no bound state in the channel'
~here the interaction proceeds through uncrossed
diagrams. On the other hand, a bound state does occur
(for large enough coupling constant) in the channel
where the interaction proceeds entirely through crossed
(exchange) diagrams. Finally, the reason for the absence
of crossing symmetry in the modified truncation scheme
is pointed out.

In the concluding section, we discuss the relation
between the method that is presented in this paper for
solving meson-nucleon theory, with emphasis on the
spectrum, and the method based on the work of Chew
and I ow for calculating meson-nucleon scattering. Then
we summarize our results and indicate the direction of
future work.

I. HAMILTONIAN AND ~-FUNCTION EQUATIONS

We will call the particle that is associated with the b

field the 8 particle.
There are two conserved quantities in this theory:

QI = ZV4'V Iirv+ZNlpN AN

Q.=Zvtlr v/Ifrv+p (a2 ra a b1'b—1) .

(4a)

(4b)

(ql, q2)

(0,0)

(0,1)

(1,2)

States

Io&, lee&, ",l~(88)),".
I 8&, I

8, (88) & I
8 22(88)) ~

~

I V), I V, (88)), , f
V,22(88)),

Ixe), f

'i 8, (88)&, , lxe, n(88)),

I ve), I ve, (88)&,",
I
ve, n(eI/)),

I
x28), I

x28, (88)), , I
x28,n(88)),

where n(88) denotes n 8-8 pairs. From Eq. (1), we see
that the Hamiltonian has the symm. etry

Thus the model breaks up into sectors designated by
the integer eigenvalues of QI and Q2. It is obvious from
the form of Q, that any number of 8-8 pairs may be
added to a given state to obtain another state with the
same quantum numbers. Therefore, there are an infinite
number of states spanning each sector.

We list the first few sectors in order to familiarize
the reader with the notation:

We add a term E~ V+8 to the conventional I-ee-
model interaction' V~E+8 to obtain the renormalized
Hamiltonian'

Under this transformation, we have

(6)

&=mvz&v/pv+mNZN4 NtpN+Q ~(aara2+b2tb2)

+bmvz&v'4 v+bmNZN&rVN

+g r. L (~)l (2~) '")LE'v'O'Na 2+AN'aI '4'v

(ql, q2)

(0,1)~(0,—1)

States

le), Ie(88) ,&, Ien(ee),&

I x&, (x, (88)&, , I
x,n(88)&,

I
ve&, I

ve, (88)&, , I
ve, /2(88)), (f)

I
~8& I-~e(»&&, , I

~ 8~(«) ,&"

I
V28&

I
v28 (88&» ",

I
v28, ~(«)&, "

(1,1)~(1,0)

+pN pvb2+4'v b2 AN), (1) (1 2) (]
where co= (f22+/12)'" and /I is the meson mass. In order
to have stable V and S particles, we insist that

(2)my&m~+p and m~&my+p, .

The usual commutation relations hold:

(Z I/2y Z I/2P 2) —(Z I/2$ Z I/2$ t}—
1 (3a)

La2, a2 "j=Lb2,b2'j= 822' (3b)

Since Zy and Z~ will be expressed in terms of my and
m~, we only need to make the replacement my ~m~ in
the solutions for the sectors listed in (5) to obtain the
solutions to the corresponding sectors2 indicated in (7).

Since there is no interaction unless a nucleon is
present, the physical states spanning the sectors (0,0),
(0,1), and (0,—1), can be taken to be the bare states.
Therefore, the lowest nontrivial sector is the (1,1)
sector. We shall denote this as the V-l'It8 sector to be
consistent with the notation of I.

6 We use the expressions "sector" and "channel" inter-
changeably.

~ M. S. Maxon and R. B. Curtis, Phys. Rev. 131, 8996 (1965},
hereafter denoted as I.' Since many of the results obtained in Refs. 7 and 11 will be
used in this work, we use the notation developed in these articles.
To obtain the more conventional notation such as that used in
Ref. 3, make the replacement V —+ p, X —+ n, 8 ~ sr+, 8 —+ m,
my=md= m, and therefore Zy=Z~=Z.

' If we restrict ourselves to sectors where pi = 1 (one nucleon),
and use the notation of Ref. 8, then the (1,1) and (1,2) sectors
correspond to the scalar-meson —nucleon systems with total electric
charge +1 and +2, respectively. Making the replacement
mv+-+ m& in the solutions for these sectors yields the solution to
the (1,0) and (1, —1) sectors. These sectors correspond to scalar-
meson —nucleon systems with total electric charge 0 and —1,
respectively.
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From (1) and (3), we obtain the field equations

d u(co)
Zv i —m—pv, gv(t)=g P

Ct o (2co)'"

X4/v(t)Lao(t)+bo'(t) j, (Sa)

'L——tÃp, g —Go Tv $; co

Eds

g g uz(cd' )=—Tv'(s)+ P —Tv (s;cop& ),
ZN Ie 2M

(10b)

~
z——~p y —co —co rv qs;cv, ~ ~

ds

g g uz(cd" )
rv'(s;o/)+ —p — Tv'(s;co, co,co ), (10c)

Zv Zv ~" 2'u(co)
i —cp ao(t) =g ~/v'(t)4 v(t),

dt (2cp) c/2
(Sc)

( d
tt 6t' . t tth~p, N

kds
and

u(cp)
i —~—bo(t) =g Pv'(t)P—~(t),

d't (2~) c/2
(Sd)

LTV (S co ~ )+TV (St ~ ~~ )7

u(co)
Zo/ i —m—oN, 4N(t) =g P

o (2co)'/z

Xgv(t) Lao/(t)+bo(t) j, (Sb)

(Se)
where

mp, y =mv+8nsv.

The 7 functions appropriate to the V-Ã8 sector are
g u'( "')

+—P rv" (s; cp,co',co",cp"'), (10d)
Z k" ' 2'N

~ '()—= (0ITL'4 ()& '(o)jlo&

(2co) '"
s;M

u(co)

X (0 I
2'L4 ~(s)ao(s)P vtj I 0&, (&b)

and so on.
Let us de6ne

1
r (kV;cd, co', )=-—

1
ds e'~'r" (s; co,co', . ) . (11)

(2co) '/z

r v (s;~&=- (0I 2'Lfv(s)a~"a. ji0&, (&c)
u(co)

The r-function equations in momentum space become

(lf: —mo, v) r v'(ll )

(4/dco') '/'

, «I ~L~.()"()
u(co) u(cd' )

1 g u'(co)=—+—Q r"vz(IV; co),
Zv Zv ~ 2'

(12a)

(8 / I/)z/z

T v (s; cd&cp, cp )—=

u(cp) u(co') u(cp")

(s)cfcvt) I 0& (9d) (W mp, /v )cTov(W op)

g g u'(co')
TV'(W)+ P TV'(W; ~,~'),

Z~ It' 2M
(12b)

X(0I 2'L4~(s)ao(s)a'(s)

xb' (s)yvt]lo&, (ve)

(16coco'co"co"')' "
u(co) u(co')u(co") u(co'")

Xbo- (s)bo".(s)cf/v/)I 0), (9f)
and so on.

From Eqs. (8) and (3), the r-function equations are

(
d

1——

tippy

7v s
ds ')

(W —mo, v —co —co') Tv'(W; cd,~')

g
r"v'(W; cp)—

Zy
g u'(co")

+ g 'Tv (5 i co,co &co ), (12c)
Zy & 2'

(W mppr co cd—
'

co,")—rv'—(W; c—o,cp', co")

LTv (W; co,co )+—r v (W; oo,co )7
ZN

g u'(co" ')
+ P Tv (O'; co,co,co,co ) ~ (12(l)

Z I Ttt 2 ttt
N

i g u'(co)=—b(s)+—P rv'(s; cd), —
Zy Zy It' 2Q)

and so on. To solve this sector exactly, we must solve
(10a) this infinite set of equations. In the next section, we

present a truncation scheme that restricts the number
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of 8's and 8's that can occur in bare intermediate states,
and apply the lowest-order scheme to the V-E8 sector.

II. ONE-MESON MODIFIED TAMM-DANCOFF
APPROXIMATION

Let us expand rv'(s; co,co'), defined in Eq. (9d), in a
complete set of intermediate states. %e obtain

(4coco') "2
r v'(s; co,co') =- II(s)

u(co) u(co')

corresponding to multimeson production, but also
handle the S particle as if it were bare. The only states
present in the V-E8 sector in the one-meson approxi-
mation are the

l V) and i%I|„)states, and the X must
be handled as a bare particle, since it is already accom-
panied by one meson. Therefore, with respect to the
V-E8 system, the interaction S—+ V+8 is absent in
the one-meson approximation. In fact, by comparing
with Eqs. (41a) and (41b) of I, it can be seen that
Eqs. (14a) and (14b) are just the equations of the
conventional Lee model. Therefore, we set

XP (Ol Pvaebe
l n)(nlPvt( —s) l0), (13)

mo + mpf (17a)

g
(W —mo, iv —co) rv'(IV; co) =—r" v'(II') . (14b)

If we solve Eqs. (14a) and (14b) as they stand, there
will be a branch cut in r"v'(W) for

mo, ++p&'~'& ~ . (15)

Expanding rv'(W) in a complete set of physical
states, and using the asymptotic condition on the V
held, ' we obtain

where we choose the set ( l n)) to consist of bare states.
The bare V and E-8 states are annihilated by the
operator b~ . Therefore, states which contribute must
contain at least one 8-8 pair. In this manner it is simple
to see that restricting the sum over intermediate
states to those which contain E mesons (m 8's and n 8's,
where m+n=Ã) implies that rv'~+'+'=0, where
p=0, 1,2, This is just the Tamm-Dancoff approxi-
mation. 4 Let us now apply the one-meson scheme to
the V-$8 sector.

For %= 1, rv'(s;co, co') and all higher-order r's will
vanish. In this approximation, the system of equations
(12) becomes

1 g u'(co)
(W mo, v)rv'—(W)= +—Q-rv'(W;co) (14a)

Zv Zv I 2'

(17b)

in Eqs. (14a) and (14b) to obtain the modified one-
meson Talnm-Dance equations

1 g u'(co)
(W —mo, v) rv'(W) = + Q rv'(II'; co), (18a)

Zv Zv j4: 207

(W mme co) r v'(—W; co)—=gr v'(W) . (18b)

From I, the solution to these equations is

cfco u'(co) (co' —u') '"
(20)

(mv mar —co)—(W —mme —co+ee)

The renormalization constants are

I'v'(W) = (W —mv+ie)-'l 1 —P(W)]—' (19)
where

P(W) =g'(W —mv)

u'(co) 1

e 2co (mv mar co)—'(W —mme cd+—i e)—
g2

(W —mv)
4~'

r"v'(W) = +Q
(W mv+ie—) e (W mdiv co—+ie)—

g' u'(co)

Zv e 2co (mv —mx —co)
(21a)

l(0I~. I
I ~-~"(~)) I+ZZ — + " (16)

&' (W mv co —co'+—ie)—

where lXe„(&))denotes the "in" or "out" cV-tI scat-
tering states defined in I. From Eq. (16), we see that
the analytic structure of the V propagator should
consist of a pole at 8'=mv with residue +1, and cuts
for m~+p, &t4'& ~, mv+2p&lV& ~, etc. If we solved
the infinite set of equations (12), the solution for 7"v'(W)
would certainly exhibit this analytic structure.

When we truncate the set (12) according to the one-
meson approximation, we not only lose the cuts

and
u'(co) 1

Zv ——1—g' Q
2co (m -ms —co)'

(21b)

The r function appropriate to A-8 scattering is

rNe (s I co&co )

(4coco') '"
(Ol TQ'ie(s)ae(s)gestae. ~gl0). (22)

u(co) u(co')

The modifi. ed one-meson Tamm-Dancoff equations
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determining this g function are

g u'((a')
(W —mo, y)rv'(W;co) =—P ——

Z y Ic' 260

X rzve'(W; co',ca), (23a)

V V

N N

/ 'I /
/ c ~ z z z \

V N V

/ q I
u a + z aa z

N V N

2~~I;I
(W mzz—cz) r—z/z'(W; co,cd') =-

u'((u)

F&G. i. V and X propagators in the one-meson approximation.

The solution to these equations, using (21a) and (21b),
1s +g"-(II' —my —cz) '(IV —my —(o')—'(IV —m~)

—'

+grv'(IV; ~'). (23b)

u'(co) (IF—my —cv)

rz/ct'(W; cd,cd') =
uz(co) (W —mzz —(u) where

Pzv(IV) =g'(IF —m~)

X Li —Pzv(Hi')]-', (30)

(IF—mzv —a))(W —mzv —cd' ) (W —my)L1 —P(II')]
(24)

u'(co)
Szzz =II i+cz2 zz(rczoc—Gp )

2(d

where

g2X—
(my —mzv —cd) L 1 p(~+mzz—)]

(25)

g2

p(o)+mzv) = (my —mzv —co)
4m'

(/co'uz(a ') (co"—ic') "-"

(my mzz (—o') '(e'—~ '-ze)—(26)

which, of course, agrees with the expression found in I.
Using the reduction formula of I, we 6nd the 5-matrix
element for E 8scatterin-g, using (24), to be

u'(co)
Xg

2cd (mzv my c—d)'(IV—my c—v+ze)—

=—(II' —mzz)
47r2

Ckou" ((u)((u' zc'-)'zz—
(31)

(mzy my —(u) '(I I—mv —cu+zc—)

The perturbation expansion of rv'(IV) and riv'(IV) is
shown in Fig. i. By inspection, it is obvious that the
X particle occurring in the X-8 intermediate state is
treated as a bare particle in the one-meson
approximation.

Finally, we remark that the V-8 system has no inter-
action in the one-meson approximation. Let us now
proceed to the two-meson scheme.

III. TWO-MESON MODIFIED TAMM-DANCOFF
Collecting results, the solutions to the V-E8 sector

in the one-meson approximation are
V-N6 Sector

ryz(II') = PI' —mv+zc) zL1 —P(II )] '

2G)

rzzczz(IV; co,(v') =-
u (ccz) (IF mN —cv)—

+g'(W —mx —~) '(IF —mzv —u&') '(ll —my)-'

(27)
For E= 2, ry (s; co,&o') and all higher r functions will

vanish. In this approximation, the system of equations
(12) becomes

1 g u'((a)
(IF—mo, y) r v'(N'c) =—+—P r y'(IF; cz), (32a)

Zy Zy & 2'

Xt 1 —P(IV)] '. (28) (IV mozz co)ryz(—IV; co,)—
The results for the cV-VO sector in the one-meson
approximation are obtained from the above results by
making the replacement my+-+m~, as discussed in
Sec. I.

g g u'(co )=—z"v'(IV)+—g —r v'(ll; co,cu'), (32b)
Z~ Iz: 2M

Theref ore,
/ ~ 4 r lz m g r(IV —mp, y —cz —co') rye(IF; cd,(o') = rvz(ll", co) . (32c)

rzvz(II') = (IV mzv+zc) z(1——Pzv(II )]—' (29) Zy
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e
v + v'N~v

-.e
V

V

8

i8
N V V +

8

r N V

8

~e

N
...y-;. V

Frc. 2. Two-meson equations for the V propagator.

W'e represent Eqs. (32) s)mbolically in Fig. 2. Using
these diagrams, it is simple to obtain the perturbation
expansion for rv'(W). This is shown in Fig. 3. We see
that the cV particle that occurs in the intermediate state
is dressed according to the one-meson approximation.

In order to write the appropriate two-meson equa-
tions for )7-tI scattering, we must define

(S&d&d'&d") ' &'

7Ny S) (d)GO )hl

u(&d)u(&d') u(&d")

X(0
~
TL&pv(s)ap(s)bp (s)&pp&)ap-& j ~

0). (33)
tSp y= my (35a)

set of diagrams that dress the V particle are responsible
for ~Y-8 scattering. Therefore, we are naturally led to
the following rule for modifying the truncated equations
from an examination of the sets of Feynman diagrams
which contribute in the E-meson scheme.

IVe mo&fify the r function equations of the N meso-n

truncation scIEenze by dressing a nucleon according to the
N —M modif&ed truncation scheme zohen it appears in a
state saith M mesons.

To demonstrate this rule, consider the two-meson
equations (32) for the V propagator. The function
rv'(W; &d,&d') represents the V- V88 vertex. By comparing
Eq. (32c) and its symbolic representation in Fig. 2,
Eq. (iii), we see that the V particle associated with the
parameters mp, v, Zv in Eq. (32c) is accompanied by
a 8-8 pair. Therefore, in the two-meson approximation,
it must be handled as a bare particle. This is analogous
to the situation in the one-meson scheme of Sec. II,
where the X particle was handled as a bare particle in
the calculation of the V-cV8 vertex, because it was
always accompanied by a 8 particle. Therefore, in
Eq. (32c), we set

Then the truncated equations are

(W mp, v) r"v'(—W; &d)

and
Zy= 1. (35b)

(34a,)

and

g u'(~")
+ Q rp&p (IV; &d,&d,&d ),—(34b-)

ZN &" 2'

(W mp v —&d —&d )—r"p&p)(W; &d,&d'p& )

g u (&d)
r&v'(IV; &d',—&d),

Zy Ic 2M

(IV —mp, ~ —&d) r&v (If; &d,&d )

2' 8)I„-lcr g+ rv'(If ;&d'—)— '

u'(&d) Z&v Zp&

Making this replacenlent, we obtain

r" v4(IV; &d,&d') =
gr" v" (I'V ) &d)

(I'f —mv &d &d +)p)

Substituting this result into (32b), we obtain

(36)

g
)t rv)(W; &d) = rv'(W) . (37)—

~N

g u (&d) 1
W —mp, p&

—&d—

ZN &' 2&d' (W n) v &d &d—'+)p)— —

rp& )'(W; &d,&d")—,
Z p'

(34c)

where r v'(W; &d) and rp&)'(lI'; &d,&d') are de6ned by
Eqs. (9c) and (22). The symbolic representation of
Eqs. (34) is shown in Fig. 4.

If we carry out the reduction of the equations shown
in Fig. 4 to the perturbation expansion of rp&)'(IV; &d,&d')

in the same manner that we did for rv&(IV), the results
to sixth order are shown in Fig. 5. By comparing
Figs. 1, 3, and 5, we see that the external X particle
in Fig. 5 is dressed according to the one-meson approxi-
mation, while the intermediate V is dressed according
to the two-meson approximation. We also note that, if
we close oR the meson lines in the diagrams of Fig. 5,
we get all the diagrams of Fig. 3 except for the bare-V
term. This is what we mean when we say that the same

V V

r~W
~ r )) ~ I p p

V V N V

I ~ ~ ~
~ s p I p

r~ (I ) ) ~
p a I r p a

P e p d g+ p p a d a

I
~ ' )ri. )+ ~ p s ~

'I
I

+ ) rp&i)4 ~

d P

+

I
) +i ) e p

+ J

Pg
s \

I ~ & I+ le l as~ s ~

FIG. 3. V propagator to eighth order in the
two-meson approximation.

r v'(IV;&d) "represents the V-N8 vertex, so that the N
associated with the parameters mp, p&, Zpr in Eq. (37) is
accompanied by one meson. Therefore, we dress the
E particle according to the one-meson approximation.
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From Eqs. (18a), (18b), and (29) of Sec. II, we have

[r l(gT)]1-meson

,e e.
VY'

N N
+ a

g2 u2(~)
=ZN ' ~' —mo, 2I—2

Z~ 2 2Ql (ll —m v (8+22)

=(ll m—~+i2) '[1—p~(H'')] '. (38)

Substituting the values for mo, .~, Z~ from the one-
meson approximation [Eqs. (2 la) and (21b), with

mv~m&, Zv~Z~] into Eq. (37) yields

gr v'(lV)
r" v2(W; (v) =— (39)

(IV (v —mII—+i2)[1 P~(—ll' co)]—

Substituting the result (39) into (32a), we obtain

g'-u-'((u)
ri'(lit) =Zv ' ll' —mo, v-

Zg /' 24)

~ ~

\ ~ e II 2
LI 2 ~ s I

ra 2 ri I
2

a a I a I
I I

I s ~

\
/

II'

~ I /+
1

I

!. ~ aI

+ a

I
I Se\II 2 I 2

I a a ~

I
2 2 2 I I

I 2, a s 2

FIG. 5. E-8 four-point function to sixth order
in the two-meson approximation.

These two cuts arise from the contribution to the
propagator from the X-8 and V88 intermediate states,
respectively.

Ke now determine the renormalization constants by
insisting that rv'(W) have a simple pole at lV=mv
with residue 11. After a bit of algebra, we obtain

X—
(H m~ —(u+—i2)[1—P~(il —~)]

g"-u'(cv)
(40) (gm )2-meson

Zv & 2M

as the solution for the V propagator in the two-meson
approximation. Comparing this result with the one-
meson result from Eq. (18) and

X (43a)
(mv mv —~)[1 A(m—v ~)]—

g' u2(co)
[vv'(W)]™~n=Zv ' W —mp v ——Q

Zv / 2

X— (41)
(O' m~ 6)+22)—

and
tnN+p, &W& ~

nsv+2p&lV& ~ .

(42a)

V N

8 r8

V N

we see that the only difference is that the .V particle in
the intermediate iV-8 state is dressed according to the
one-meson approximation in Eq. (40), whereas it is
handled as a bare particle in Eq. (41). This can also be
seen by comparison of Figs. 1 and 3.

From inspection of Eq. (40), we see that rv'(ll') will

have branch cuts for

u2(co)
(Zv)2-meson —

1 g2 P
2'

1 pII(m-v —co) dp2—I(mv (a)—
+

mv —mx —~ ZGO

(m v —mII —co)[1—P~(m v —cv) ]' (43b)

where, according to Eq. (31),

pN(m v —co) =g2(~+ mx mv)—
u'((o') 1

(44)
2~' (mx —mv —~')'(~+~')

We denote the renormalization constants in Eqs. (43a)
and (43b) as (Pmv)2 memo and (Zv)' meson in order to
distinguish them from the same quantities determined
in the one-meson approximation [Eqs. (21a) and (21b)].
To ensure that

8 i
N N

8. 8

N

i8 8r

+
N V N

8i 8

V
r N N

8 8r

V ~i N

P( (Z )2-meson( 1 (45a)

we define (g.2)2 mem" from the equation

[Z (g 2)2-meson] 0 (45b)

and restrict the coupling constant to lie in the range

Fro. 4. Two-meson equations for the E-8 four-point function. p(g2((g 2)2-meson (46)
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in the two-meson scheme. Ke obtain

II'((u-)

(g
—2)2-n&eson —Q 2'

Using Eqs. (47) and (51), we obtain

212(CO) d
(g

—2)2-n& s&&n

(g
—2)1-meson — Q f(~) (54a)

2' 1co

1 pN "(mv —I&I) dplv (mv —
c&)I—+-

(mv —mls —a&) GOO

(mv m~ —~)L1 Px-—"(mv ~)]' (47)

The function p2I "in Eq. (47) is defined as in Eq. (44),
with g'= (g,')'-me"". It is impossible to solve Eq. (47)
analytically for (g,2)2 -'" in order to compare directly
with (g,')' '"". Instead, we will now show tha. t it is
possible to choose the parameters N(cd), mv, and mlv in
such a manner that

px '"(mv —Id)
(cv) = . (54b)

[1—Px "(mv —~)](~ymlv —m, )

Using (44), with g'= (g ') meson, and (54b), we obtain

[1—P~'""(mv —~)]'—f( )
(/CO

212((u')

(g 2)2-meson P 2'' (co'+mv —mlv) 2(&u+&u')

or, from (45b),

(g 2)2-meson ((g 2) I-meson

(g )2-meson ((g ) I-meson

(48a)

(48b)

II-'(co') 1
(g

2)2-meson P (55)
2~' (~'ymv —mx)'(~+~')'

212(co) 1
(g

—
2) I- meson

2I&I (mv —mIv —c0)
(4qa) as ~~ -. vow,

[g ((g 2)2-meson)]1-meson
u-'(co) 1—2h 1-meson

(ge )K is certainly small, so that
21&I (m~ —m v —I&I)

The function [1—pv '"(mv —co)] ' rises from the
From Eqs. (21a) and (21b), we choose (g,')' '"-'" to value 1, at co=mv —m~(p, to the value

be the smaller of
[g —2((g 2)'I-meson)]1-meson

then
fg g)PE+ )

(g 2) I-meson( (g 2) I-meson

With the choice (50a), we must take

(g
—2) I-meson —

(g
—

2) I-meson

212(cu) 1

2 2co (mv —mls —(a)'

From Eq. (50b), and the relation

If we choose the parameters my and m~ so that

(51)

[Z .—2((g 2)2-meson)]l-meson

will be quite large. We choose the cutoff function N(co)

so that the major contribution to the integrals in
Eqs. (54a) and (55) comes from the region where
co))co'. This can be done since the integrands of (55) fall
off more rapidly in a&' than the integrand of (54) falls
o6 in o). Thus

(l.

co2[1 P,v '"(mv —co)]2 f(a)— —
dGO

~[1 g&((g 2) 2-meson)]2 [1 g ((g 2) 2-meson)] (56)

From (53),
(g ) I-meson —1 g2/[(g 2) ]I-meson (52a)

so that
g ((g 2)2-meson)( 1 (57)

we have
(g )I-meson ((g ) I-meson

for a given value of g lying in the range

0(g2 ((g 2) I-meson

If Eq. (48) is satisfied, we will have

[g ((g 2)2-meson)]1-meson

~ [Z ((g 2)2-meson)] I -meson

)[Z ((g 2)2-meson)]2-meson —0

(52b)

(52c)

(53)

co'[1 pw '(m v ~)]' —f((o) (-0. — —
QCO

(58)

Using (58) and (54a), we obtain (48a).
Ke have shown that it is possible to choose the

parameters occurring in charged-scalar theory in such

(g ")2-meson( (g 2)1-meson Or fOr a gIVen
value of g, it is less probable to 6nd the physical V
particle as a bare V, when VH states as well as A'8 are
included in the calculation. This is certainly a reason-
able situation and suggests an interesting possibility:
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As me include more and @sore mesons in the calculation,

it is less and less probable to find the physical particle as

a bare particle, for a giren value of the coupling constant.

This would certainly be in the spirit of constructing a
theory in which none of the strongly interacting particles
would be more elementary than another. '

vPI') =vr(IV)+72(II') —vi(H') (60a)

Substituting (43a) and (43b) into (40), we obtain
the V propagator in the two-meson approximation

rv'(II') = (H —mv+c~) 'I 1—7(I&')3 ', (59)
where

u Gp 1
pc(IV) = (IV —mv)g' Q

2co (mv —m~ —co)'(IV —mv —co+ce)L1 —piv(mv —co)j
u2 M

— u"- M (II —miv —2co —co')

y2(IV) =—(H' —mv)g' Q g' Q2' c' 2co' (mdiv
—mv —co') (ca+co') 2(IV —m v —co —M')

(60b)

(m v —mn —co) (IV—mn —co)L1 —P~(m v —a&)g, (60c)
u'((u) 1

»(IV) —= (IV—mv) g' 2
2co (II' —miv —co)L1 —Piv(mv co)jC1 —Piv(IV —co)]

cc-'(~') g' P, I u'(~")!2~"]P(m~—mv —~")(~+~")(II'—m, —~—~")j-'
X g'P ——

(m~ mv—co') —(co+co') (IV mv—co —)co—
(60d)

very much alike. This also follows by comparing
Figs. 1 and 3, where it is seen that the Feynman
diagrams in both schemes have no crossed lines. It
turns out that crossed diagrams appear in this channel
for the 6rst time in the three-meson scheme.

Let us now turn to the scattering and production
processes rV+ 0~ %+0 and ~V+8 —+ V+8+6. In addi-
tion to the V-iV8 vertex rv'(s; ~) and the lV 8four-point-
function rive'(s; , c)ocdoeaned in (9c) and (22), we have

Note that
u-'(co)

y&(IV) .- g'-' P
2'

(61a)X- )

(m v miv co)—'(1 p—iv (mv —c)]—
u'(co)

v2(II') — g" 2
2co (mv mn co)[1 —Pn(m—v co)]— —

and

u (geoid co )
g'Q ——,(61b) r&e (sico)co 8' )=

2co' (miv —mv —co') (cd+cd')' ucouco uM

y3(IV) ——+ 0.

(.".omparing with (43b), v;e see that

(61c)
X(0j Tgfv(s)ai, (s)bi, (s)iPntai, tj[0). (63)

The two-meson modified equations for the Fourier
transforms of these functions are

+(If),(Z )2-meson (62) (IV —mo, v) r v'(IV; ~)

Also, it can be seen from (60) that yc(II') has a cut for
m~+p& l4'"& ~, so that it contains part of the contri-
bution due to Ai-8 states. y.(IV) and ys(IV) have cuts
for m~+p& N'& ~ and m&+2@& Ft'& ~, thereby
containing contributions due to both iV-8 and V80 states,
Furthermore, the function y(IV) behaves in the same
manner as the function p(IV), for W(miv+tc, where it
is real. Therefore, there can be no bound state in the
V-E8 sector in the two-meson approximation. In fact,
by comparing Eqs. (59) and (27), it is seen that the V
propagators in the one- and two-meson schemes are

W. Heisenberg, in I'roceedzngs of the 1958Annua/ International
Conference on High-Energy I'hysics at CERN, edited by 3.Ferretti
(CERN, Geneva, 1958); G. F, Chew, 5-Matrix Theory of Strong
Interactions (%'. A. Senjamin, Inc. , New York, 1961},Sec, 1.

g u'(co')
r»'(IV; ~',~), (64a)

Zy &' 2'

(II: —mo, iv —c0) rive'(N; co)co )

2' 6@kr g+ r v'(I V; co')
u (co) Ziv Zn

and

(I —mv —co co )me (II
&

cd&co
—
&co )

=gree'(H~; co)co"), (64c)

g u'(co")
+ Q v"tre'(IV; co,co",co'), (64b)

ZN lt." 24)
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where mp ~ and Z~ in Eq. (64b) are calculated in the eliminate mp, ~ and Z~. We then substitute the result

one-meson approximation. We solve these equations into (64a) and use (40) and (59) to eliminate mp v

by substituting (64c) into (64b) and then using (38) to and Zv. In this way we obtain

'v'(lv cd) =g(W —m, )-'(W —m~ —cp)-'[1 —Pp (W —cp))-'[1—V(W)]-', (65a)

2GO

pP~e (lV i cpp& ) =-
u'(co) (W —m~ —a))[1—P~(W —a))]

+ g
(65b)

(iV —m~ —cp) [1 P~—(lV co)—)(W m—~ co'—)[1—PN(W —(a'))(W —mv) [1—y(IV)]

p ~e'(IV; cp,cp', cp") =greee'(W; cd,cd")/(W mv —pp —pp'+—i p) (65c)

as the solutions to the system (64). Note the similarity between the expression for the X-8 four-point function in
the two-meson approximation (65b) and in the one-meson approximation (24). The reason for this similarity is
seen by inspecting Fig. 5. The only difference between the Feynman expansion for Tece (s; cp,cp ) in the one- and
two-meson approximations is that the Ã particle is dressed by the iterated bubble diagram whenever it appears
in the two-meson case, while it is bare in the one-meson case. There are no crossed diagrams, so that the same
kind of dynamics operates in the V-E8 sector in the one- and two-meson schemes. This situation will change in
the three-meson approximation where crossed diagrams appear for the first time in this sector.

Using the reduction formula from I, and the expressions (65b) and (65c), we can write down the S-matrix
elements for ~V-8 scattering and E8—+ V88 production. They are

and

u'(cp)
SNe"' ——hpp +2erib(cp —cp')-

2cp (mv —mec —co)[1—7(mN+cp))
(66)

u (cp)u (pp ')u (cp")
Seep vee ' =2pl ig(mN+cp —mv —cp —cp )

(8pppp cp )
g3

X (67)
(cp +mv mN)[1 PN(—mv+cp —))(mv mN cp")[—1 y(—m~—ypp"))

It can be seen that the production amplitude (67) is essentially the product of E-8„~elastic scattering in the two-
meson approximation (66) and VH„,scattering in the one-meson approximation [Eq. (25) with mv c-+ mac, P+-+ P~).

Now let us turn to the V-8 sector in the two-meson approximation.

V-8 Sector

Let us define the r function appropriate to V-8 elastic scattering and V8~%28 production as

and

(4cpcp') '"
Tve'(s; pp pp') =— (0 j TL4'v(s)ap(s)Pvtap t]

~
0)

u ((o)u ((o')

(8cpcp'cp" ) ' i P„.(s,...,.")= (ol 2'L4„(s)a,(s)a, , (s)yvta. „t)lo).
u ((v)u ((a') u (a&")

(68a)

(68b)

The two-meson inodified equations for the Fourier-transf ormed g functions are

and

2cd 8pp g u (pp )
(W —mp, v —cp) Tve'(lV; cp,cp') = + P 7Pvee(W; cp",cp,cp')

u'(s&) Zv Zv p" 2&v"

(IV mN cp cp') rv—e'(W;—cp,cp—',pp") =g[fve'(W; cp' pp")+. fve'(W cp cp")].

(69a)

where mp, v and Zv are given by the one-meson expressions (21a) and (21b). But these are precisely the equations
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for the U-8 sector of the conventional Lee model. "From II, the solution to these equations is

~11 g
r" ve'(W+ m/e, ce,ce') = +

u'(ce) II (ce) (W —ce —mv+m~)(fV —ce' —mv+mN)

1
(mv m—~ ce —)I(v (ce )

(f'V —ce —ce +ze) I
1 —p(ce'+me/)]t 1 —p(I4' —ce'+me()]

(mv —mN —W+ ce')'Icv+(IV —ce') (fV —ce —mv+m~)'(W —2(e')Icc+(fV —cd)+—
(m v —me( —ce') (ce —ce' —ic) (m v m—~ ce'—) (W cd —ce'—+i e) (ce ce'—i e)—

G+(W mv—+me() DW ce —mv—+mN) I(v+(W co)+—(2mv 2m&—W)—I(v+(W mv+—meI) ]
(mv me( —ce') (m—v me( —(d) f(1+—G+(W mv+ —me/) I(v+(W mv+ —mN) ]

1
X (mv —me( —ce')I(v+(cd') (mv —mN W—+co'—)Iev+(H' ce')+— (70)

L1—P(ce'+m~)]i 1 —P(W —ce'+mN)]

where

G(s) =—(s —m v+me() L 1 —p(z+ m~)],

H(s) =—G(fV —z),

G~(ce)=—lim G(comic),
e ~0+

and

(71a) 5ve-wee

(71b)

(71c)

u(cd) u(ce') u(ce")
=2~iS(mv+~" mN ~—~')-

(ffcecd'ce") '(e

H+(ce) =—lim H((erie) = lim G(W celtic—),
e ~0+ e ~0+

(71(j)
where

X,(74)
G+(ce)G+(cd")Li —G+(ce")/I (ce")]

1ITv(z) = dce' Im——
G+(ce')

1
/I (ce)=——I„+(ce)=— dce'

X (72)
LI —P(W —ce'+mN)](ce' —z)

Using the diagratnmatic representation of the Eqs. (69)
and "calculating" the Feynman expansion for
7"ve'(W; ce,ce') up to sixth order, we obtain the perturba-
tion expansion shown in Fig. 6. It can be seen from
Fig. 6 that the interaction takes place entirely through
crossed diagrams or exchange diagrams. Since exchanges
of particles give rise to forces, we may expect that a V-8
bound state may exist, for large enough coupling con-
stant. Indeed, this is precisely the case, and the V-8
bound, state of the conventional Lee model is a well-
known phenomenon. "It arises from the vanishing of the
denominator (1+G+(W mv+ me/) Iev+(W —mv+ m//)]-
in Eq. (70) for the V-ff four-point function.

From II, we can write the 5-matrix elements for V8
elastic scattering and V8~%28 production in the
two-meson approximation. They are

for
mv —nsx+~a+ p,

g~ +C &C

(76)

(77)

where inequalities for g~ are given in II. Therefore,

a, .8
Y—~—Y

/

+

X&m (73)
G+(ce') G+(mv —mN+ce —ce')

The S-matrix element for E-28 elastic scattering is
given in II and will not be rewritten here.

An analysis of the denominator 1 —G+(cd)/I (ce),
carried out in II, shows that G+(ce)/I(ce) passes through
the value 1 at some ~=co~,

Sve'~'= ~I f,

u'(cd) g' -1+G+(ce)/I (ce)
+2!(ib(ce ce')—

2(e G+(ce) 1—G+(ce)/I (ce)
(73)

/

I % / I e s

I
/

I r
r c / . e !

/
/

/ g yg

"M. S. Maxon, Phys. Rev. 149, 1273 (1966), hereafter denoted
as II.

"See II and the references contained therein for discussions of
the t/'-tIf bound state.

/
/

~ /
~e! r a /

/ c / 1 / (

FIG. 6. V-8 four-point function to sixth order
in the two-meson approximation.
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r I l

Fro. 7. Crossed diagram obtained from fourth term of Fig. 5.

if (77) is satisfied, a. bound state of the V-8 system will
occur with total energy m~+~~, .

Now that we have obta, ined solutions in the V-X9
and V-8 sectors in the tv o-meson approximation, let us
turn to the question of crossing symmetry. ' The reader
may have noticed that, although we have the proper
poles and righthand cuts in our r functions and S-
matrix elements, the left-hand cuts are entirely absent.
This is due to the complete absence of crossing sym-
metry in the modiGed Tacan-Dancoff scheme. This can
be seen most easily by comparing Figs. 5 and 6. Al-

though there is an obvious correspondence between the
perturbation-theory diagrams for .V-8 (V-8) scattering
and V-8 (.V-8) scattering, it is not the simple exchange
of incoming and outgoing mesons. If we perform this
exchange on the second terni in the expansion of Fig. 5,
we obtain the second term in the expansion of Fig. 6.
However, if we perform the exchange on the fourth
term in Fig. 5, we obtain the diagram shown in Fig. 7,
which has a three-meson intermediate state and is
therefore absent in the two-meson-approximation
diagrams of Fig. 6. Likev ise, the fourth term of Fig. 6
goes into the diagram shown in Fig. 8, which is not
included in the two-meson diagrams of Fig. 5 because
it has a three-meson intermediate state.

Therefore, the absence of crossing symmetry in our
scheme seems to be an inherent feature of truncating
the w-function equations by restricting the number of
mesons occurring in intermediate states. Ke discuss the
relationship of our method with meson-nucleon calcu-
lations which include crossing symmetry in the con-
cluding section.

CONCLUSIONS

In this paper, we have presented a scheme for solving
the in6nite set of equations that arise for the z functions
of charged-scalar-meson theory. The basic idea of the
scheme is to treat the single-nucleon states on an equal
footing v ith meson-nucleon states. The advantage of

/
/

/

/

/ /
I

FIG. 8. Crossed diagram obtained from fourth term of Fig. 6.

the method is that we can investigate the spectrum of
charged-scalar-meson theory, allowing for the possi-
bility of dynamical bound states with the same quantum
numbers as the nucleon. The disadvantage is the
absence of crossing symmetry inherent in the finite-
order truncation schemes. However, we do not feel that
this poses a problem since v e are primarily interested
in the spectrum of the exact solution rather than an
a,ccurate description of scalar-meson —nucleon scattering.
Let us explain this statement.

Current methods for calculating meson-nucleon
scattering, which take into account crossing symmetry,
are based on the classic work of Chew and Low. ' This
work assumes that the spectrum of H (pseudoscalar
mesons) includes a single-nucleon state followed by the
meson-nucleon continuum. The resulting equation,
describing P-wave pion-nucleon scattering, is solved
in the one-meson approximation, and reproduces the
essential feature of low-energy scattering, the (3,3)
resonance, as well a,s determining the renormalized
coupling constant from the experimental data
(f'=0.08). Since only one nucleon is observed experi-
mentally, and a meson-nucleon scattering experiment is
carried out with real nucleons (completely dressed), th e
Chew-Low approach is certainly a reasonable one.

Ke have taken the attitude, in this paper, that the
field theory describing the strong interaction between
mesons and nucleons may have a spectrum that differs
from the one usually assumed, namely, a single-nucleon
state appearing as a simple pole, followed by the meson-
nucleon continuum. In order to understand the role of
Geld theory in describing the strong interactions, it is
essential to establish the nature of the spectrum that
arises from the exact solution to the theory (if one
exists), and whether this spectrum has anything to do
with the experimentally observed one. Therefore, we
give up crossing symmetry in order to be able to handle
the single-particle states on an equal footing with the
single-particle —multimeson states.

Ke have obtained results in the one- and two-meson
truncation schemes. It is found that the one-meson
solution to the V-E8 sector and the two-meson solution
to the V-8 sector are just the results obtained from the
conventional Lee model. ' " These results are inter-
preted in the present context as demonstrating that a
bound state (V8) occurs, for large enough coupling
constant, in the channel in which the meson-nucleon
interaction proceeds entirely through exchange
diagrams.

The two-meson solution in the V-E8 sector is the
simplest probleni in our scheme in v.hich the conven-
tional Lee-model dynamics are inappropriate. The
solution does not give rise to the possibility of a bound
state (i%8) as in the one-meson case. The reason for this
is the complete absence of crossed diagrams as in the
one-nieson case. However, we find an interesting result
in the course of solving for the renormaliza tion con-
stants. Namely, we can choose the parameters of the
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theory so that LZ]2-m'~" ([Z]' ""for a given value
of the coupling constant. If this situation persists when
we go to the higher-order truncation schemes, an
interesting, and indeed reasonable, result arises. As we
include more and more multimeson states, the connec-
tion between the physical particles and their fields

becomes steadily weaker. This situation is certainly
compatible with the point of view that, among the
strongly interacting particles, no one particle is more
elementary than another. '

Work on the three-meson solution is now being
carried out. Results obtained so far explicitly show that
the V-ISI bound state, found in the two-meson approxi-

mation, makes its presence felt in the V-E8 sector in the
three-meson scheme. Since there are crossed diagrams
in this sector for the first time, the possibility of a bound
state (X8) arises. Whether or not "enough" of the
interaction proceeds through exchange diagrams to
produce this bound state will be settled by the complete
solution to the three-meson equations.
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Neutron Beta Decay in a Strong Magnetic Field
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The P decay of a neutron in a strong quantizing magnetic field is studied by making use of the exact
Dirac wave function for the electron in a magnetic field of arbitrary strength. The general conclusion is
that the lifetime is unafFected by the magnetic field for H &10~G. For H &10~G, the lifetime in a vacuum
is appreciably decreased. This conclusion is still valid when the decay takes place in a degenerate electron
gas at densities lower than 10' g/cm'. At higher densities, the lifetime in a magnetic field tends to reach the
value in the absence of the field, for any field strength.

l. INTRODUCTION

HE properties of an electron gas in an external

magnetic held, constant in time and homogeneous
in space, have been extensively studied in a number of
recent papers, ' and results indicate that intense mag-
netic fields will be produced in the gravitational
collapse of a star and in collapsed objects. BrieQy, in a
magnetic field the energy states of the electron are
quantized and the properties of an electron gas are
modified accordingly.

In this paper, we are interested in the modi6cation of
a P-decay process in an intense magnetic held. First, we
compute the decay probability of a free neutron in a
magnetic 6eld; our results can be readily generalized
for all elements whose lifetime and the energy of the
electron from decay are known. This problem is of great
interest, since it is now believed that in a gravitational
collapse, fields as high as 10" G can be produced. The
nucleosynthesis process, which involves neutron cap-
tures, can be strongly affected by the presence of an
intense magnetic held. In addition, strong magnetic
6elds could also have existed during the early phase of
cosmological evolution. The modihcation of the neutron

~ Present address: New York Institute of Technology, New
York, N. Y. 10023.

' V. Canuto and H. Y. Chiu, Phys. Rev. 173, 1210 (1968); 173,
1220 (1968};173, 1229 (1968}.

decay lifetime could also have caused a change in the
helium production rate during the early evolution
phase of our universe.

The most important effect of a magnetic field on the
decay of a free electron is in the modification of the 6nal
state, the phase space. Strictly speaking, all states of
the neutron and proton are a6ected by a magnetic 6eld.
However, the effect is smaller by a factor (m/M„)', and
for relatively small fields (compared to 10" G), the
rnodification of the proton and neutron states by mag-
netic fields can be entirely neglected.

The neutron mean life r is calculated in two cases—
namely, in a vacuum and in a highly degenerate
magnetized electron gas—and the result is compared
with the corresponding values of ro in the absence of
the magnetic field. The general result is that the neutron
mean life in a magnetic 6eld is decreased with respect
to the "free" case, if the neutron is in a degenerate
electron gas at a density lower than 10' g/cm'.

Figure 1 shows the modified P spectrum for 0~=1,
and 0.1, where 0 is a measure of the magnetic field
strength, O=H/H„H, =m'c'/eh=4. 414&(10i3 G.

Figures 2—4 show the neutron lifetime in a vacuum as
a function of 0, and in a degenerate gas as a function
of the matter density. In both cases, the general
behavior shows that the lifetime is decreased with
respect to the free cases.


