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By using the current algebra and the asymptotic SU{3) symmetry imposed only on the charge operator

U~, which is the SU(3) raising or lowering operator in the symmetry limit, we obtain two sum rules for
the two-photon decay amplitudes of the H, p, and p' (958). These sum rules, which are consistent with
the Gell-Mann-Okubo mass splittings of the SU(3) multiplets, exhibit an interesting interplay between
the physical masses, mixing and coupling constants, For example, in the first approximation, we predict
E= (yy~n')/—(yy~H)= (I/v3)(1/coarr)f(m„' m'—)/(m„' mp—)W(1/V3)X1 Sin .place of the SU(3) predic-
tion R= 1/VS. Here a is the 7/I-q' mixing angle. In an improved approximation, we obtain R~(1/V3))&1.7.
The result indicates a significantly larger width for the p ~ 2p decay than the SU(3) value —a conclu-
sion that is consistent with the present experimental observation.

I. INTRODUCTION
' EXACT SU(3) symmetry predicts for the ampli-

~ tudes of s —+ 2y and r)e ~ 2y the equality (gye s)
=+43(yy~r)). If we use the experimental masses and
this exact SU(3) relation, which is certainly not justi-
fied in view of the large mass splittings involved, we
obtain I'(r) ~ 2y)/I'(~ ~ 2y) =

a (m„/m )'. From pres-
ent experiment, ' I'(~~ 2p) =7.37&1.5 eV, this pre-
dicts P (r) ~ 2y) = 165&34 eV. However, present experi-
nzent, though preliminary, e indicates a value I'(t) ~ 2y)
= 1.00~0.22 keV, which is considerably larger than the
above SU(3) value. In reality we have to take into
account the g —q mixing which brings the hitherto un-
known p' —+ 2p decay amplitude into the sum rule. The
usual SU(3) approach (with r) r)' mixing —angle rr) as-
sumes the sum rule'

(gy e
s) —v3 coscr(yy

~
ri)+v3 sinn(yy~ r)') =0. (1)

However, there is some doubt as to whether this is a
realistic sum rule in broken SU(3) symmetry. For ex-
ample, consider the vector meson~i+i decays. The
first spectral function sum rules4' for the ratio of these
decays are different from the ones [similar to Eq. (1)]
obtained by using the conventional SU(3) symmetry
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with ~-P mixing. In this paper we discuss the following:
(i) There appears tobe a correction term to Kq. (1). (ii)
Using a reasonable model of SU(3) breaking which gives
many good sum rules in other places, we can derive an
additional sum rule. (iii) From these two sum rules we
can predict both I'(r) ~ 2y) and I'(r)'~ 2y) from
I'(s ~ 2y). The I'(g ~ 2y) thus determined turns out
to be considerably larger than the SU(3) value. The
value of I'(r)' ~ 2y) seems also reasonable. In one place
of the computation we use the idea of field-current
identity. '

II. CURRENT ALGEBRA AND ASYMPTOTIC
SU(3) SYMMETRY

Write the electromagnetic current as V„™(x)and the
charge operator which is the SU(3) raising or lowering
operator in the symmetry limit as Vz. In a quark model,
for example, the V~' will be the space integral of the
time component of the current

V„x'(x)= iq(x)q„-',(),+8,)q(x)

and, in this notation,

V ' (x) = V "(x)+(K3)—' V &'(x) .

We then notice that the following commutator is valid:

[V„™(x),Vrco] =0.
We now consider a simple model of SU(3) breaking. '

Suppose that the SU(3) breaking is given by H'
' N. M. Kroll, T. D. Lee, and B.Zumino, Phys. Rev. 157, 1376

(1967); T. D. Lee and B. Zumino, ibid. 163, 1667 (1967); T. D.
Lee, B. Zumino, and S. Weinberg, Phys. Rev. Letters 18, 1029
(1967).' For example, see S. Matsuda and S. Oneda, Phys. Rev. 174,
1992 (1968). The following remark may be useful in judging the
validity of our asymptotic symmetry. Ke consider the commuta-
tors t Vlto, V~&1=0 and LV~o,Artois=0 which are also valid in the

resent model. Taken between the states (n(q) ) and
~

'(q)) with
q~ = ~, both commutators lead to the same well-satisfied GMO

mass formula for hyperons. Therefore, our broken SU(3) sum
rules are always compatible with the GMO mass splitting (in-
cluding mixing if it exists).
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=J'q(x)X8q(x)d'x. Then Vrro=i(Vrro, H'] and the fol-
lowing commutator also holds:

I V„-(x),V, j=O. (3)

One may forget the above model used for its derivation
and assume that these commutators between the cur-
rent and the SU(3) charge operator, Vir, are valid in
the broken SU(3) world.

We now introduce our asymptotic symmetry. 7

Crudely speaking, this assumes that the vector charge
operator Vic will act as an SU(3) generator even in the
presence of broken symmetry but only at the zero-
momentum-transfer limit. In the real world where the
mass splittings take place, this limit can only be
achieved by taking an appropriate infinite-momentum
limit. In this infinite limit only, we assume that VK
connects the states belonging only to the same irre-
ducible representation of SU(3) group and its matrix
elements take the SU(3) values. We also take into ac-
count the partide mixing in this limit. '

III. BROKEN SU(3) SUM RULES FOR THE TWO-
PHOTON DECAYS OF THE ~', g", AND q'

We now demonstrate some of the direct consequences.
Insert Eqs. (2) and (3) between, for example, the states
(~ (q) I

and
I
It* (y)). We obtain two equations:

&~-(q)
I V.-(*)

I
p-(p)&&p-(p) I Vx

I
lt* (p)&

=& -(q)IVx Ifc-(q)&&I~-(q)IV.-(x)lit* (p)), (4)«q)IV™(x)l~(»&&p (»IV Il~* (»&
=& -(q)l Vx Ilt-(q)&«(q) I V.-(x)lit* (p)& (5)

Here we have taken a limit
I p I

= ~ and
I q I

= ~ but
s= —(p —q)' is kept arbitrary. In this limit we have
used our asymptotic symmetry for the matrix elements
of VKo. For example, write

( (q)l V.-(o)l p (p))=(2vo2Po) '"
Xg; (s)r„.p~e qpP„-

where ~ f' is the p-meson polarization vector. After
summing over the intermediate spin states, we obtain
from Eq. (4)

gp (s) =g»* rr (s).

This implies that the p ~m +y and K* ~K +y
coupling (s =0 for these processes) satisfy the same sum
rule as in exact SU(3) symmetry under our asymptotic
symmetry. ' In this way we can derive sum rules for
other electromagnetic processes such as the baryon mag-
netic moment in broken symmetry. This will be dis-
cussed elsewhere. We now consider Eq. (5). Equa, tion
(5) is compatible with Eq. (4) only when E,(p) —EK*(pl
=E (q) &rr(q) at

I y I
= ~ and

I q I
= ~, which implies

the SU(6) mass formula,

~K~2 yg 2 y~K2 Pg 2

This is obtained without assuming SU(6) syimnetry.

In a similar way we can derive many intermultiplet
ma.ss formulas. ' Another example: Insert Eqs. (2) and
(3) between the states (n'(q)

I
and

I
E*'(p)& and take

the same limit as above. Now or and p appear as the
intermediate states. However, if we assume that
I'($ ~ n. +y)~0 from experiment, these two equations
are consistent only if m,2~m„2,which is also well satis-
fied experimentally. Conversely, if we use m, =m„asan
experimental input these equations predict that
I'(P ~~+&)~0. Therefore, our asymptotic symmetry
and the model characterized by the commutator (3)
look very reasonable, ' and we proceed to the problem
of two-photon decays.

Insert Eqs. (2) and (3) between the photon state
(y(q)l and the IKO(p)& and again consider the same
limit lql =~ and lyl =~ but s= —(p —q)' is arbi-
trary. We write here the photon state with the under-
standing that it will be identified with the appropriate
hadron states, i.e., the vector-meson states according to
the idea of field-current identity. ' We then obtain two
equations:

&v(q)l V.™(x)l(p))& (p)I V 'Ift"(y)&

+&&(q) I V.™(x)In(y)&&~(y) I
Vx'IIt'(y)&

+6 (q)l V.- ln'(y)&&~'(y)l Vx'IIt'(y))

=2 &v(q)I Vx'I ~(q)&&~(q)I V ' (*)Ilt'(y)&, (6)

h (q)I V.-(*)f~(y)&&~(y)I I'x'Ift"(y))

+&&(q)I V„--(x)f&(y)&&&(y)IV fit"(p)&

+ (y(q)f v„'"'lq'(p)&&g'(p)l v 'I E"(p))

=2 &v(q)I Vx' ii(q)&(»(q)f V.""(x)lf "(p)& (7)

H ' (v(q)I V.' (*)l~'(p)) with s=0, for example, can
be identified with the amplitude of s —+ 2y decay (to
order o), &pylw'). We write to the first order in sym-
metry breaking

&& &p) I

=cosrr &~s(p) I
+sinn &vi(p) I

and
(~'(y)l =cos~ &~ (p)l —»n &~ (p)l

in the limit
I pl =

~ Lq ~ gs and g' —gi in the SU(3)
limit. j Using the asymptotic symmetry (I pl ~~), we
obtain

&»(y') I Vx Ilt'(y) =(2~)'»(p —p')(g-;)

&~ (y')
I

V Ift'(p)& =0,
etc.

' Depending on the processes, our broken SU(3) sum rules for
physical couplings occasionally take the same form as exact SU(3)
sum rules. However, usually the sum rules involve the physical
masses and mixing angle. See, for review, S. Matsuda and S.
Oneda, Xucl. Phys. B9, 55 (1969).' We can also derive m~' —m~~m~++' —xz~~mIt& —m~P, etc.
Here E~*and E~ are the kaons of 2+- and 1+-meson octets and A 2
and AI are the (/=1) 2+ and 1+ mesons, respectively.
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Comparing with Eq. (1), we see that the right-hand
side of Eq. (g) represents the modification of the con-
ventional sum rule (1). To estimate this contribution,
we use the field-current identity Ice(q)) =cos8ltr(q)& sin8lgs(q)&

in the limit
I ql ~u . Lin the SU(3) limit p ~ gs and

re ~ Qr.]With the 8 defined above, we have previously
obtained' the following sum rules from our asymptotic
symmetry:

V„"(x)= —(m, '/g, )p„(x)

'r (x) = ——gr tl cos8r ms $~(x) sln8r mph' cop(x)).

Ke note that for the isovector photon y~, Gs ——(1/42)G, (ms/m, ) cos8,
G„=—(1/~2G, (m„/m,) sing.

Equation (6) (with s =0) can be written as" the &p(q)l, i.e., from the (p(q)l, g(q)l and &te(q)l
states, via the operator Vz in our asymptotic limit

(yylrr'& —y$ cosu (yylr}'&+v3' sinu &yyI q'&
I ql ~u, will be (K*(q) I. Namely, themost important

(„)Ig ( )& (g) contribution on the right-hand side of Eqs. (6) and (7)
will come from the state represented by the IZ*(q)&
state. %e write to the first order in symmetry breaking

I Q(q)& =cos8IQ(q)&+sin8I Pt(q))

(2qe)'I'(yr(q)
I

= (0 I
V„'(x)e'&*d'x=—(m '/g ) (0[

x .(*) *"d'*=—( 'ig )
g +tÃp

1
j„(x)e"*d'x=———(p(q) I,

gu

since qs=0. Here j„&(x)is the source of the p-meson
field, and &p(q) I

denotes the p-meson state with its
mass extrapolated to zero. In a similar way we can re-
place the isoscalar photon state &ps(q) I by

s(q)
I

= —s'gr —'Lcos8r &@(q) I
sin8r &to(q) I j ~

where &p I
and &to I

are the states of g and to meson with
zero mass. %e now define' the couplings of the p, or,

and qh
—+ l+& decays, G„G„,and G~, by, for example,

(2vo)'"«I V."(o)
I p (q)) =G."'.

%e then obtain

G, =v2(m, '/g, ),
Gs ——(v3/2) (ms'/gr) cos8r,

and
G = (—v3/2)(m '/gr) sin8r.

The p, p, or, and E* form a nonet. The field-current
identity implies as above that we can simultaneously
extrapolate the masses of the p, fQe), and or to zero to
identify the states, p, @, and or with the photon state.
Correspondingly, the E*-meson state will also be extra-
polated to zero inass I and denoted by (K'*(q)

I j accord-
ing to the Gell-Mann —Okubo mass formula" which com-
pletes the nonet vector-meson states with zero mass.
Therefore, according to the spirit of our asymptotic
symmetry, the state

I m(q)& which can be reached from

' Using /V~0, V~0)=0 and asymptotic symmetry, the a de-
6ned above takes the usual value sin'a=~3(3m, '—4m~a+m ')
X (m„.2—m„2)-~."Consider (X*0(q) ( L V~o, V'I;0)

I antiparticle of X*0(q))=0 with

This leads to the first spectral function sum rule

Gp/m p' 2(G„'/——m„'+Gs'/ms') .

%e see that 8& is related to the 8 by

tan8r ——(ms/m„) tan8.

Thus one can express &y(q) I =(y (q) +(~3) '&Y (q) I

in terms of the G, and 8 (in the limit q I
= oo)

&

G, 1 G, 1 cos8
&v(q)I =—

,&p(q)I + &4(q)i
Vlm, ' +6m, ms

G~ 1 sin8
&~(q)l (9)

+6m, m„
Therefore, one can evaluate" &y(q)l Vrcolanti-X*'(q))
using the asymptotic synunetry for the nonet &pl, &gl,
&tel and (It*I, i.e., with Iql =~,
(&(q) I

v~'I&*'(q)&

8$pm/ fg f/~= (sG~)—1—— cos'8 — sin'8 (10)
8lp

2 ms 2 2

mi and ms denote the masses of the py and p8, respec-
12 For example, from co„(x)=cos8 p»(x) —sin8 +„(x),we obtain

(q'+m„') '{B{p')
~
j„"(x)~A (p)) =cosp (qr+rnP) '

X(B(p') (y„&(x) (A (p))—sine (q'+e, ,')-'(B(p') (g„4'~(x}(A (p)).
A and J3 are the appropriate arbitrary states and the J„'sare the
source currents of the vector mesons. q„=(p —p')„.Let us con-
sider the limit (q( = [p( = ~ so that g =0; then we get

m„'(B]j„[A)=cose mr '(B [J„~~jA)—sins ras '(B)J 4~[A).

Multiplying both sides by I i//(2qp) /'je 'q* and integrating overd'x, we obtain

nr„~&B(p')l~(q)A (p))=cosS mr '&B(p') lgr(q)A {p))—»np ~s &B(p')
I or(q)A (p))

Thus, with this infinite-momentum limit in mind, we can write
(cu) = (r /m, )'aco p( Qx) —s(rN„/ra,)' sins [@,)

and
I&)= {mr/ra )'cose les)+(n r/rai)'~y, )
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tively (see Ref. 12). Next we reexpress

(anti-Z" (q) I
V -(x)

I
Ito(p) ).

Consider

V, we may assume exact SU(3) symmetry if we tolerate
an error of the order 10—20%. We note the relations

hv'I ~'& = l bv I +) 6'v'In) = 3—b'v'In&

with
I pl =~ Iql =~, and s= —(q —p)'=O. nur as-

ymptotic symmetry leads to

&anti-It" (q) I
V ' (x) I

It'(p) &
= (p'(q) I V.™(x)

I ~(p) &

—v3 cosa(p'(q)
I
v„-(*)

I &(p))
+v3 sinn(p'(q) I

V„™(x)
I
rt'(p) ) .

Noting that (yr(q) = —(v2m, s) 'G, (p(q) I
and, for

example, (pl V„'m(x) a) rr &&pris&, Eq. (8) can fina1ly
be written in the form

(yy I
s &

—v3 cosa(yyl rt&+K3 sinn&yylri'& =XV, (11)

where

X =I 1 —(m, me/ms') cos'0 —(m, m /mrs) sin'8), (12)

I'= L(yy' I
rr& —v3 cosa(yp'I q&+@3 sinn(yy'Irt'&). (13)

In the 5U(3) limit (8=0, ,m= m——s ms, and n=0),
X=O. Thus Kq. (11) reproduces the SU(3) limit. In
the broken world, we find that X is still not very large.
Using the commutator I Vxa, Vx~) =0 and the asymp-
totic symmetry, we can show' that the value of 8 can
be given by the usual co-P mixing angle determined from
the vector-meson mass formula. Ke then 6nd X=0.10,
which seems reasonable as a first-order breaking eRect.
We now return to Kq. (7). We obtain

(m.p mx p)—(yy I
rr) v3(m„—p mxo') —cosa(yy

I g&

+@3(m„mx~)—sinn(yy I
q') =0. (14)

The mass factors come from the time derivatives. On
the right-hand side of Kq. (7), &y I

Vx o
I
anti-E*o&

vanishes in our limit since both the y and E*'have zero
mass. If we tentatively assume X=O in Eq. (11), we
obtain from (11) and (14) (taking a 29')

1 1 (m„'—m ' 1
hv I n&/&vv I

~&=
I

— =—&1.5. (»)
v3 cosa km„'—m ' K3

Therefore, we see that the interesting interplay of the
mass splitting of pseudoscalar mesons tends to make
this ratio considerably larger (about 50%%uo) than the
SU(3) value. We can make a better estimate. The term
X is already of the erst order in SU(3) breaking and is
small (~0.10).Therefore, in the evaluation of the term

&v'v'I n'& =3(v'v'I n'),

in exact SU(3) symmetry. Therefore, in Eq. (11)we can
write

XF=O. io
x &-', (yy I

1r) —-',A cosa (yy I
rt&y-,'v3 sinn&//

I
ri'&) .

Combining with Eq. (14), this leads to

b~l~&/6~i &=(V3)-'XI.7.

Therefore, I'(ri —+ yy) will be larger by about a factor 3
than the 5U(3) value, i.e., I'(ri dgy)~400 —600 eV.
This is not very far from present preliminary ex-
perimental value. For the g'~2y decay we obtain
I'(rt' —+2y) 5 keV. This also seems to be a reasonable
value. "Although we cannot make an absolute estimate
of the I'(rr ~ 2y) in our approach, Adler'4 recently was
able to derive I'(s' ~ 2y)~9.7 eV by using the hypoth-
esis of pion partially conserved axial-vector current.
However, neglecting q-g' mixing and assuming I =Ii„
and also the validity of soft-g extrapolation, Adler found
the standard SU(3) prediction for the (yy I q), i.e.,

&vein)/(vvl~) = Y~) '

It is very interesting to notice that a similar result is
also obtained in our approach if we neglect g-q mixing,
namely, if a=0, Eqs. (11) and (14) lead to

&vein'&/hei~'&=K&) '&I 1

This indicates an important role played by the p-p'

mixing. Though the g-q' mixing angle is not large, the
large mass of q' plays a significant role. Combined with
Adler's result for x ~ 2y decay, the present work seems
to imply that the two-photon decays of pseudoscalar
mesons are no longer very mysterious.
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"This corresponds to (yy~rl')~1. 4(y7 ~s1; i e., ail three decays
have comparable coupling constants, which seems reasonable.
Compare with Ref. 3."S.L. Adler, Phys. Rev. 177, 2426 I'1969).


