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This falloA is quite rapid and no such eEect has been
seen as yet in the data. This indicates trouble with the
model unless something drastic happens to the asymp-
totic behavior of G(pi2, t) as / is varied from the physical
mass of the exchanged particle to t= —1(2co(2co—1).
%hen ~& 1, this extrapolation is not large and v e can-
not theoretically justify such a change in behavior.

It may be that the data are not yet in the asymptotic
region. In present experiments, —p~' is not large com-
pared to the above mentioned extrapolation of
Assuming that this is the case, and that the model is
still applicable, we can make a simple prediction on
final-momentum distributions.

If we de6ne the final-particle ordering for multi-

particle-production events by decreasing lab momentum

(decreasing n;), we should find most events with

si= (q&+q2)'& —Pi', whereas further s,= (q;+q+, )' will

tend to lower values. Furthermore, as we increase the
lab energy v with 6xed co/0, the average multiplicity
should decrease to two. These are e6ects that may
begin to show up at nonasymptotic energies and should
be looked for.
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%'e consider a system of three pseudoscalar mesons in which one of the mesons can form a two-particle
resonance with either of the other two. The models we discuss include the Lee model, approximations to
the Lee model, and a fully relativistic isobar model. As an example for the nonstatic model we discuss
the 3x state containing two overlapping, identical p resonances. There have been claims that resonance
projections can lead to enhancements in the three-particle mass when there are overlapping two-particle
resonances. We show that these enhancements are caused by approximations which are not actually res-
onance projections, and we show for our models that properly made resonance projections do not lead
to enhancements. We discuss briefly some alternatives to the isobar model for treating overlapping
resonances.

I. INTRODUCTION

N this paper we consider an example of overlapping
~ - resonances, namely, a state containing three
pseudoscalar mesons in which one of the mesons can
form a two-particle resonance with either of the other
two. Experimentally, such a state usually occurs as a
subsystem for a final state in a meson-nucleon produc-
tion reaction, and experimental data are becoming
available with good enough statistics to allow a de-
tailed study of such subsystems. Two cases of particular
interest are the 3m system with two identical +'s either
of which can form a p with the third x, and the charged
E~x system which contains the appropriate quantum
numbers for one p and (at least) one E*. Much of the
interest in these particular systems comes from the fact
that there are experimentally observed enhancements
in the three-particle mass spectrum for both these cases

near the overlap threshold, called the A i(1080) and the
&*(1300),respectively. One of the motivations of this
work was to investigate the possibility that such en-
hancements could be caused merely by the resonance
overlap.

In Sec. II A we discuss overlapping resonances in the
Lee model and in other static models. The Lee model is
of particular interest because it presents the overlapping
resonance situation within the context of a completely
soluble field theory, and the static kinematics is useful
for gaining understanding of some of the mechanisms
involved in overlapping resonances. In Sec. II 8 we
develop a nonstatic isobar model using the helicity-state
formalism introduced by Kick. ' The model developed
here, although equivalent to other approaches, ' 4 is
particularly simple to work with when calculating total
or differential cross sections. As an example we discuss
the 3x case referred to above.

~ Supported in part by the National Science Foundation, under
Grant Nos. GP-45376 and GP-10770.

t Based on parts of the Ph. D. thesis submitted to Yale Uni-
versity, 1969.
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' G. C. Kick, Ann. Phys. (X. Y.) 18, 65 (1962).
J. Kerle, Relativistic Theory of Interactions (John Wiley R

Sons, Inc. , New York, 1966).' T. W. Ludlam, Ph. D. dissertation, Yale University, 1969
(unpublished).

' C. Y. Chien et al. , Phys. Letters 28$, 143 (1968).
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It has been shown'~ for a large class of models
(including most of those developed in Sec. II) that
overlapping resonances will not lead to an enhancement
in the three-particle mass. However, there have been
some claims' ' that enhancements occur in these models
if one makes a projection which involves treating the
resonances as though they were stable particles, or if
one only- includes the resonance bands of the Dalitz plot
when calculating the three-particle mass spectrum. In
Sec. III we dehne what is meant by a resonance pro-
jection, and we discuss the significance of resonance
cuts when there are overlapping resonances. We show
that the enhancements found in Refs. 7—9 result either
from an incorrect application or from an incorrect
interpretation of these projection techniques.

Our approximations to the Lee model, the isobar
model, and the resonance approximations are all based
on a form of the amplitude which is linear in the two
resonances. In Sec. IV we discuss briefly some alterna-
tives to this linear form.

II. MODELS

A. Static Models

1. Background

A static model is one in which some of the particles
obey relativistic kinematics while others are treated in
their static limit. In terms of a particle s three-momen-
turn y and its mass m, the particle's energy Po is given by

p'= (p p+m')'"=m+p p/2m+ . (1)

The static limit is obtained by keeping only the first
term on the far-right-hand side of Eq. (1) so that the
energy is independent of the three-momentum and is
constant. The applicability of the static limit in physical
processes in particle physics is limited to a few special
cases such as low-energy pion-nucleon scattering where
taking the nucleon as static is equivalent to ignoring the
nucleon recoil.

We now indicate some simpliGcations which occur
when one works with static kinematics. For a three-
particle state with all particles treated relativistically
we obtain the following well-known relation among the
two-particle invariant masses s;,'~', the individual
particle masses ns;, and the three-particle mass M:

$$2+$32+$3$ M'+mp+m, '+m3'. (2)

It follows from Eq. (2) that two of the three invariant
masses are independent. If the three-particle state con-
tains the possibility of two-particle resonances either

' R. D. Amado, Phys. Rev. 158, 1414 {1967).' C. Schmid, Phys. Rev. 154, 1363 (1967).' F. S. Chen-Cheung and C. M. Sommer6eld, Phys. Rev. 152,
1401 (1966). See Ref. 33 for some comments and corrections.

A. M. Gleeson and W. J. Meggs, Nuovo Cimento 55, 584
(1968).

IA. M. Gleeson and W. J. Meggs, Nuovo Cimento 62A, 181
(1969).

between No. 1 and No. 2 or between No. 3 and No. 2,
the transition amplitude to that state will have a non-
trivial dependence on both s~2 and s32, so that in calcu-
lating a cross section, the nontrivial part of the inte-
gration will be at least two-dimensional. Also, the range
in M for which s» and s» can simultaneously be at their
resonance values (the overlap region in M) may be
quite large; for example, for a 3x state with two p
resonances, the overlap region is 1.1&M&3.9 BeV.
Thus if one is looking for structure due to the overlap,
effects may be spread out over a 2-BeV range in M.

Now we take as static both No. 2 and the two-
particle resonances. Equation (2) is replaced by

P'= Pg'+m2+P3',

from which it follows that if P', the total energy, is
given, only one energy, pP or P30, is independent.
Resonances are now characterized by particular values
of p~' or P~'. Thus there will be only a single nontrivial
integration in the sum over Gnal states. Also, the overlap
region in P' reduces to a single point (neglecting the
resonance widths). It would therefore appear that any
structure due to overlapping resonances would be more
likely to occur in static models than in nonstatic models.

Another simplification which occurs is that the
Dalitz plot which is an area in the nonstatic case
reduces to a line in the static case.

Z. Lee Model and Other Static Models

The basic Lee model contains three fields, V, E, and
8, where V and E represent static particles, and 8
represents a particle with relativistic kinematics. By
restricting the dynamics to V ~~ EH, the Lee model is
an exactly soluble Geld theory. Chen-Cheung and
SommerGeld' have extended the basic Lee model to
include two U Gelds. For appropriate choices of the Lee
model parameters, one can have both a stable V particle
(called the V) and an unstable V particle (called the
V*). For such a choice, the renormalized momentum-
space propagator Gp(p) for a definite linear combination
of the two V fields (called V) has a pole in p at pa= m,
with m below the X8 threshold p, ,

" and a pole on the
second sheet in p' at P'=P~m~ —2'il', where I')0 and
m*&p. The parametrization for the Lee model used in
Ref. 7 leads to m«g, m*»p, and I'/m*=0. 2. Thus, X8
elastic scattering will be dominated by the V*.

In the (V8) sector, there are the following two well-
deGned processes:

(b) 8+V~8+V,
(c) 8+V~8+X+8.

The production process (c) has a three-particle final
state with two overlapping two-particle resonances Lsee

' The mass of the 8 is p,.Because of the static kinematics and the
selection rule V ~~ N8, the mass of the N can be taken to be zero
with no loss of generality. The residue of —i'(P) at the pole at
P=szlsg.
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point vertex, and we remove all information concerning
the initial state aside from its total energy P'=or+m
Lsee Fig. 1(c)].The cross section cr &,&(co) is replaced by
an effective cross section r(co) which is essentially the
total transition probability per unit time

1 2P 1
r(co) =-,' dv k(v)k(v) +

A(v) A(v)
(6)

BORN

+
. V

(b)

where A(co) is given by Eq. (5). r(co) is also included in

Fig. 2. Again, there is no structure in the overlap
region, and with the simplified dynamics we can see this
explicitly. Ke write

v

m* —m*+zT'1 1
+

A(v) D(v) Z~h(v)h(v)
(7)

The residue of the pole at, v=P m*——,'&F in Eq. (7) is
given by

FzG. |.Static production models. (a} The amplitude for the
exact Lee model; (b} the amplitude for the Born approximation to
the Lee model; (c} the amplitude for the simplified static model.
co, v, v, and nz are the energies of the particles.

m* —m'+ir ~~—m*+ir
=Z*

m* m,*+-ii

Fig. 1(a)]. The cross section for (c) can be written in
the form~

1 o iL(co, v, v) i'k(v)k(v)
o&.&(~)=-

/
a(v)

/

'
f a(v) )

'

where A(co) = g'&c iGv(P)]—', k (co) = Lco' —p']&", a
=or+m —x; or, v, and v are the energies of the initial and
final 8's; and L(co, v, v)=L(co, v, v) is a slowly varying
function of v. o &,& (co) is plotted versus (co— c)o/oI' in Fig.
2, where oro ——2m~ —m is the overlap energy.

There is a nearby double pole in Lh(v)h(v)] ' when
v=m~ and m*=m~. If I. were slowly varying in or as
well as in v, this double pole would lead to an enhance-
ment in o.

&,&(co) at the overlap energy. As we see in Fig.
2, no such enhancement occurs. Amado' explains this
lack of an enhancement using an argument which is
based on unitarity. We give a slight variation of
Amado's argument in Appendix A.

There is no evidence of any structure in the exact
expression cr&,&(co) which is not already included in the
one-iver exchange or Born approximation (see Fig. 1(b)7.
We also make the approximation that A(co) is given for
all cd by itS apprOXimate fOrm fOr or near m*:

a(~)
~
„...,..=Z'-'(~ —~'+-,'ii).

The resulting cross section for process (c) is included in
Fig. 2, and we see that little has been lost by these
approximations.

The part of the amplitude associated with the
production process is slowly varying for the final-state
8 energies near the resonance value, so as a further
simplification we approximate the production by a

Thus there is no double pole in the integrand and hence
nothing to single out the overlap energy.

The other curves in Fig. 2 are cross sections for the
quasi-process

(d) 8+V ~8+V*.

These are discussed in Sec. III.

0
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FIG. 2. Cross sections for the static model production processes
along with some resonance projections. The I.ee model curves are
labeled cr and the simplified static model curves are labeled ~.



OVERLA VP l NG RESo i%A iN CES r N r H REE-M ESo N S TA r vS 2099

B. Nonstatic Model

J. De0eloP233ej3t of the Morlel

The model we now discuss is a fully relativistic
version of the simplified static model of the previous
section. We limit the model to a single value of the total
angular momentum and parity, J&, because we are
primarily interested in coherent effects and experi-
mental situations in which a single eigenstate is believed
to be dominant. Also, we introduce no structure in M,
the three-particle mass, that does not follow directly
from the final-state interactions and kinematics.

An effective transition amplitude for describing
interactions among three pseudoscalar particles can be
defined as follows:

ml

(a)

i*4
M~J

m

52l=j
~m

ft'd'P„'

II l
T (pi', p2 123')(pi, p2, n3I121'*&2 123 ) (g)-i 'E2p„'0

where the function T' includes any correlations among
the particles. With a normalization convention for the
states given by Eq. (Bi) (see Appendix B), no correla-
tions among the particles leads to

T'00 T~ 1 (no correlations), (9)

where the proportionality constants are unity if there
are no identical particles. For our purposes, two other
sets of variables introduced by Wick' are more useful
than the three three-momenta for describing the three-
particle system: {P,83,1t13,$»,832,1f »} and {P,J,A,$»j,li},
where the variables are defined below in Appendix B.
We differ from Wick in our normalization convention
for the states defined in terms of these sets of variables
because we want Eq. (9) to continue to hold when the
right-hand side of Eq. (8) is written in terms of either of
these sets. Gleeson and Meggs" have used a model
which is similar to ours except that they used Wick's
normalization conventions so that their function cor-
responding to T has some extraneous momentum
dependence.

The parity operator p has the following effect on the
angular momentum state'.

2t
l
I',J,A, $12,j,X)= (—1)$+'l P, J, A, $»,j, —X),

where we have evaluated I' in the (12)3 center-of-
momentum frame so that it is invariant under parity,
and we have used the fact that the three particles are
pseudoscalars. Thus the angular momentum state is an
eigenstate of parity only if X=O. In this case, the
eigenvalue 2t is (—1)J+', which is usually called the
natural parity. One can, of course, form eigenstates of
parity by taking linear combinations of the states of the
form

l
ti)&

l

—X) where the + leads to a natural-parity
eigenstate and the —to the opposite parity. Unless
J=0 or j=0, the choice of a particular linear combina-
tion will depend upon one's choice of a dynamic model.
emote that we had no such ambiguity in the static case.

I'IG. 3. Amplitudes for the nonstatic model.

J' j'A')t'

p» $3d'I" d$12' -A J P, 3 "(M',$12')
4m» W'

X8JJ'8jj'(J'383y1f13p12$12q412l J yJ 3A @12 yJ 3~ )

=+JN3 Q A A J&(M3)$12)D. 33(R3)d3 0(812) r (10)

where 3 is a weight function which includes the two-
particle resonance propagator, the parity projection,
and any additional dependence on M and s» which
follows from the specific dynamics. We assume that the
weight function can be written in the form

3 J"Aji(Mq$12) = fj($12)BJ"3'3(g3)~

Using either two-particle unitarity or a comparison of
two-particle and one-particle phase space, "we find that
f is a well-defined function given by

L(23312/p») Imaj($») J
f, ($12) =

A, ($12)

where 6, is the inverse propagator for the resonance.
LFor small P», f, ($») ~ (P») j.j The simplest dynamical
model for the momentum dependence of B gives"

"J.D. Jackson, Nuovo Cimento 34, 1644 (1964).
'~ Reference 13 gives a nonrelativistic derivation. Relativisti-

cally, one can get this by writing down the covariant interaction
Hamiltonian with the lowest-order derivative coupling Lsee, for
example, R. Blankenbecler, R. L. Sugar, and J. D. Sullivan, Phys.
Rev. 172, 1451 (1968)j.

We first consider the case in which there are no
identical particles and there is a two-particle resonance
with spin j in the (12) subsystem l see Fig. 3(a)g. Using
some of the definitions given in Appendix 8, we can
write the e6ective transition amplitude for this final
state as

T= T$3, (M)$»)8», R3)
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'+i
Bs",), (qo) — P 4",iz~—

where j3 is a constant with the dimensions of momen-
turn so that the dimensionality of 8 does not depend
upon L. Nonrelativistically, L is just the relative orbital
angular momentum between No. 3 and the (12) system.
It has been shown by Fabri" that for low energies, the
lowest possible values of L compatible with a given J,
j, and q would be favored. Dalitz" obtained essentially
the same results without introducing L by arguing that
only the lowest powers of the

~ p; ~

should occur which
were compatible with a given J.Zemach" has rephrased
Dalitz's model in relativistic terms, and %erie' has done
the same for Fabri's model using the results of Mac-
Farlane" and McKerrell, I7 who showed that L could be
defined in a covariant fashion. I states (or canonical
states) can be written as the following linear combina-
tion of helicity states"':

~P,J,h,s»j,L).
=(~,/~, ) g (LOgy~ yy) ~P,g,A,s„,g', P), (12)

where (LOjh~ JX) is a Clebsch-Gordan coeScient. A
useful property of L states is that they are eigenstates
of parity with eigenvalue (—1)~ +'. If only a single
value of L contributes to T, Eq. (11) reads

Bs,g(qo) /„„oi,g=(1Vg/Xs)(LOj X/ J)(qo/jo) . (13)

We now consider the case in which there are reso-
nances in both the (12)3 and the (32)1 channels Lsee
Fig. 3(b)). If Nos. 1 and 3 are not identical, there is a
second term in Eq. (10) corresponding to the second
diagram in Fig. 3(b). The two terms add coherently,
and there is an arbitrary relative magnitude and phase

T=T$»;»(M, s»,8»,R2)+Xe" Ts»i» (M,s»8», Ri). (14)

We have included the subscripts on j and j' to em-
phasize that they refer to different systems, so that even
if j=j, the system will not be in an eigenstate of j. If
Nos. 1 and 3 are identical, the symmetrization in the
state normalization in 1 and 3 leads to a second term in
T which is the same as Eq. (10) except that1 and 3 are
interchanged. The resulting expression for the total
amplitude is a specific case of Eq. (14) in which j=j,
X=1, and F=O.

By analogy with Eq. (6) for the simplified static
model, we dehne an effective cross section

As written in Eq. (14), T is a function of both the (12)3
set and the (32)1 set. When calculating r, this causes

no problem for the incoherent part of
~
T ~2 because we

need only choose the variables of integration appro-

priately. However, both sets appear in a nonseparable

way in the interference term, so that we must express
the (32)1 set in terms of the (12)3 set. In Appendix B
we write expressions for so2 ——s22(M, sii, cos8i2) and

cos8»=cos8»(M, s»,s») so that the only function left
to be rewritten in terms of the (12)3 basis is D~s&, (gi).
This can be done by proceeding as Kick did in calcu-

lating what he calls the "recoupling coefFicient. '" Our
situation is slightly different from the one he considered
in that he calculated ((12)3~ (23)1), which involves a
cyclic permutation of the particle indices, while we

want an interchange of %os. 1 and 3." Some of the
algebra for this calculation is given in Appendix 8, and
the 6nal result for T is

Ts»(M, (12)3 set)

=.ys p Ds „,(Zo)(E,f, (si2)&ii Bs»ii(qo)di'o(8io)
h)')"

+Xe' lVr,'f', '($)B»' ,'J»(qii)d vz(~)do"i(8»)j ~ (16)

The primes on B and f in the second term are there
because these functions might differ from the B and f
in the first term.

Using Eq. (14), we see that the integration over U~,
in Eq. (15) is trivial. Because of the orthogonality of the
D's, the double sums on A and 'A' reduce to single sums,
with the resulting sum on A. giving a factor of 2J+1.
Equation (15) then becomes

21+1 pj gq3
rs»(M) = — dsi2 d(cos8i2)

8M

Xg
~
(2j+1)'i2f (si2) $$"'Bs"&x (qo)dk'o(822)

+Xe"2 L2j'+1)'"f''(»2)

XB $,'i(qi)di'), (*)do'i(822) ~', (15')

where

=0, otherwise.

The two-dimensional integral in Eq. (15') can be
transformed quite easily into an integral over the usual
Dalitz plot variables sio and s32 using

P12$3
rs»(M)=& dsi2 d(cost42) dUg, ~T~2. (15)

my~

P12$2 1
d$12 d(cos812)

2M'
dsio ds». (17)

"E.Fabri, Nuovo Cimento II, 479 (1954)."R.H. Dalitz, Phil. Mag. 44, 1068 (1953).
'~ C. Zemach, Phys. Rev. I33, 81201 (1964)."A. J. MacFarlane, J. Math. Phys. 4, 490 (1963)."A. McKerrell, Nuovo Cimento 34, 12g9 (1964).

Thus the quantity Pz ~
~2 in Eq. (15') is just the

Dalitz plot density.

' This was not taken into account in Refs. g and 9.
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The above results are easily extended to the case of
three overlapping two-particle resonances in a three-
particle system. Following the procedure used above
one can reexpress the third resonance term in T in the
same basis as the other two. Some of the angles and
relations are given in Appendix 8 for the case in which
the third resonance is defined in the (31)2 basis. Note
that because of the linear form of the amplitude, the
resonances can only interfere two at a time even though
there are three of them. Thus, we would not expect 7.

for the three-resonance case to have any appreciably
different structure from v for the two-resonance case. 6

2. Another Form of the Model

Two groups of experimentalists'4 have used a model
which is equivalent to ours for studying overlapping
two-particle resonances in the charged Kxm system near
i.3 BeV. For the two-resonance case, their total transi-
tion amplitude takes the same form as Eq. (14) above
but, instead of Eq. (10) for the individual channel
amplitudes, they have terms of the form

T J"jL(M)S12)e12 )$12 )ei~)$3 )

XI'z" "(ei',$3') I'P (Ai', 4 ip') . (18)

All quantities are defined as before except that the
coordinate system for measuring the angles appearing
in Eq. (18) is fixed in space. This is not the case for the
helicity-inspired system defined in Appendix 8 and
used in the previous subsection. In the helicity frame,
only 8;k is an observable, while in the "canonical" frame
used in Eq. (18) all the angles can be determined
experimentally.

A nonrelativistic form of Eq. (18) was derived by
Fabri" and the above form was derived by Werle'
starting from I. states. We have derived Eq. (18)
starting from helicity states, and we have shown ex-
plicitly the equivalence between Eq. (18) and Eq. (10)
for B given by Eq. (13).'9 The canonical framework is
much more cumbersome to work with than the helicity
framework when calculating cross sections because
there is no easy way to reexpress the (32)1 set of vari-
ables in terms of the (12)3 set using angles defined in the
canonical framework.

3. Exump/e with Two Identzcc/ Partzcles: 3m System

As an example we consider the 3m system in which the
first and third pions are identical and the overlapping
resonances are p mesons. "

If we set J= j=O, our model reduces to that of

' J. A. Snoke, Ph. D. dissertation, Yale University, 1969
(unpublished) .

'0 We have chosen m*= 770 MeV and F =128 MeV for the p.

Chang, ~' who reported an enhancement in the three-pion
mass near the overlap threshold. Repeating Chang's

calculations, we find no enhancement, and we conclude,
as did Sweig, " that Chang's calculation is erroneous. "

We now give the p its correct spin, and we set J»= i+,
which is the popular favorite for the Ai(1080).24 The
choice for B in Eq. (11) is now model-dependent'4:
Hard-pion techniques lead to predictions for 3&—+ pm.

to be dominated by s waves" so that only L=O con-
tributes to 8; quark model calculations of pion emission

by quarks, neglecting recoil corrections, predict" that
A&~ pm. is purely transverse —only X= ~1; and chiral
SU(2)XSU(2) predicts2~ that the decay should be
longitudinal, which means only X=O survives for each
px part of the amplitude. A difhculty in reaching a
decision concerning the correctness of any of these
alternatives is that there is enough additional structure
in the 3~ spectrum in the A~ region so that it is not
certain that there is an 3~.28

Most experimental analyses approach the A~ from
the point of view that if there is an A ~, and if it has
J&=1+, then it is characterized by an s wave for each
p7r system even though there could be some d wave. The
justification for this assumption is essentially a carry-
over of the nonrelativistic angular momentum barrier
that inhibits higher orbital angular momenta relative to
lower ones. There is, however, a group at SLAC'9 which
favors the longitudinal mode of decay on the basis of
their data and method of analysis. The formalism we
have developed, particularly with respect to our treat-
ment of the two-particle resonance and the form of 8 in

Eq. (11), is based on the simplest possible momentum
dependence consistent with two-particle unitarity and
the threshold behavior, so that the formalism is prob-
ably on its firmest footing when one uses only the lowest
possible value of L. Keeping more than one L means
that results will necessarily be dependent on the choice
of the normalizing factor j of Eq. (11).This will have
an effect of setting the scale between contributions for
different values of L. We therefore concentrate on
s-wave dominance.

For 1.=0, J=1, and j=1, Eq. (13) gives

Bi+g, (q) ~
z=o ——(1/v3)(001'~ j 1X)= 1/v3,

"N. P. Chang, Phys. Rev. Letters 14, 806 (1965).
~ M. Sweig, University of Chicago Report No. EFINS 65-70

(unpublished).
~ See Ref. 19 for more details.
'4 H. Harari, Rapporteur Talk, in Proceedings of the Fourteenth

International Conference on High-Energy Physics, Vienna, 196$
(CERN, Geneva, 1968), p. 195.

"H. Schnitzer and S. Weinberg, Phys. Rev. 1', 1638 (1968).
26 H. J. Lipkin, Phys. Rev. 159, 1303 (1967)."F. J. Gilman and H. Harari, Phys. Rev. 165, 1803 (1968).
"N. Barash-Schmidt et al. , Rev. Mod. Phys. 41, 109 (1969).
2 J. Ballam et at. , Phys. Rev. Letters 21, 934 (1968).
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Pro. 4. EfFective cross sections for the 3x model with J&=2+
and each pm system in a relative s wave.

P1 q~
Tl (M) I s wave pv = d$12 d(COS812)

SM m12

XQ I ft(»2)4, 'e(812)+fi($22)de'1(822+~) i

P12g 3

d$12 d (Cos812)
m]2

&&(I ft($12) I'+
I fi(»2) I'

+2 ReLft($12) ft($22)) cos(812+822+&)l . (19a)

61($)= $—m*+ im*I m"Pa/ ($P"')'

where p"=p($= m"'), Eq. (19a) becomes

3m'2F
P12IIt

&1+(M)
I s wave pv = d$12

NIP" m12

P12 P32
X — +

I
a, ($„)I' I St($22) I'

3

(cos812)

1
+2p, ep22 Re cos(812+8,2+X) . (19b)

-61($12)61($22)—

If we use the simplest form of 111($) consistent with
two-particle unitaritv, "

rt+(N) is plotted versus M in Fig. 4 (labeled "total" ).
Note that the curve is smooth throughout with no
peaking at the overlap threshold (which is also the 3 1

region).
It is interesting to calculate some of the two-particle

projections for this model and to compare them with the
projections for the hypothetical case in which there is a
32r system with only a single p. Curves for dr/d$12 versus
$12 and for dr/dQ12 versus cos812 are given in Fig. 5 for
three different values of the three-particle mass;
M=1.1, 1.555, and 1.875 BeV using Eq. (19b) for r.
These differential cross sections can be obtained from
experimental data by including both of the two-particle
masses or angles which occur for each event. The two-
particle mass spectra are given in Fig. 5(a), (b), and (c)
for $ in the interval Im"—2mal', m*2+2m*1'). The
dashed curves are the distributions for the single-p case.
We see that while there are some differences in the shape
of the curves for the two models, the peak position and
the width are not appreciably changed. The angular
distribution for the single-p case would be isotropic, or
a straight horizontal line in Fig. 5(d), (e), and (f), and
we see that dr/d012 (labeled "total" ) differs consider-
ably from this for all three values of M. Also included in
these subfigures are some angular distributions which
do not treat the identical particles symmetrically; we
include them because such curves were given by Bou-
chiat and Flamand. ' In the curves labeled "resonance
projection, "

m12 is set equal to m*, and in the curves
labeled "one resonance band, "we have only integrated
s12 over the region m*' —2m*1'&s12&m"+2m*I'. We
see that these projections have somewhat less structure
than the "total" curves, but they are still not isotropic.
Thus the two-particle mass distributions in the reso-
nance region are only slightly affected by approximating
our coherent model by an incoherent model, whereas
the angular distributions are affected to a fairly signifi-
cant extent. The analysis of Ref. 29 has not used a
coherent model, calling into question the interpretation
of the px angular distribution therein.

The longitudinal or zero helicity model would contain
contributions from both L=O and L= 2 (L= 1 has the
wrong parity). To compute 8&, for this case, one first
decomposes a X=O helicity state into I. states, multi-
plies each L state by (q/q)z, and then rewrites the
I- states in terms of helicity states. The result is

&1+11(q) I ton 2 it

=2 P I 2L+1)(L010I10)(L01XI1X)Iq/q)z. (20)

It is only for q= q that the right-hand side of (20) re-
duces to bqo so that our results look like a zero-helicity
model. If there is an A1 with central mass M= M*, and
if q is defined to be q=y(M*', m', m')/2M*, then the

~ Q. Bouchiat and G. Flamand, Xuovo Cimento 23, 23 (2962}.
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transition amplitude for each p~ system becomes

T,+,(M*,sig*,ging, Rg)
I
iongig

= (3/4g)g f~(s~g*)Dg'g(Rg) cose~g.

Thus it is only when the 2 ~ and p are on shell that X=0
and our dynamical approximation for 8 lead to a cos'8
prediction for each px system.

A similar analysis for the transverse case leads to a
sin'8 prediction for each pm system only when both the
3 ~ and the p are on shell.

-2 lo I2

( „- "')/ "r

RESONANCE PROJECTION
d+tp

d
M= I.lBeV

ONE RES. SAND

Ip II

cps eig

4. ExamP/e with Xo Ident~'ca/ I'artie/es: Elm. System

Another case currently of interest is the charged K~m

system for M near 1.3 BeV. %hen this system contains
a charged E, there are two overlapping resonances, a
p and a, E*, and when there is a neutral E, there can be
three overlapping resonances, a p and two E*'s."

%hen there is a charged E and the particles are
ordered (K+, 7r+, g+}, the above definitions of f and 8
(at least for 1.=0) are such that if the E7rg. system
transforms like a E under SU(3), pure f coupling
(d coupling) Lcorresponding to an octet with C=+1
(—1)j leads to X= 1 and I'= 0 (g ) in Eq. (14).We have
found" that for X near unity, the 2m-mass distribution
is quite sensitive to I'. This fact could prove quite
useful in testing the hy~othesisgg that the E*(1300)
enhancement contains two 1+ resonances belonging to
octets with opposite C.

-2 lp 12

(s, -m" )/m" r

(s, -m' )/m" r

M= l.555BeV

dT
dQ, z

M=I.875BeV

cps e„

ONE RES. SANO

cos 8„

III. RESONANCE APPROXIMATIONS

A. Theoretical Resonance Approximations

A resonance projection entails treating the resonance
as though it were a stable particle. This can be accom-
plished in the models discussed in the previous section
by keeping only the lowest-order term in F/rtg~ when
calculating the cross section. Two attempts~ ' at making
resonance projections in situations in which there were
overlapping, identical resonances have led to anomalous
peaks in the three-particle mass spectrum —anomalous
in that these peaks do not occur in the total cross sec-
tion. Elsewhere, "we have shown that the anomalous
peak in the Lee model7 resulted from an invalid approxi-
mation in the calculation of the cross section for the
quasiprocess (d). We now show that the anomalous

Fxo. 5. Differential cross sections for
the model used in Fig. 4.

peaks in both Refs. 7 and 8 can be attributed to higher
order terms in F/m*.

If there is only a single two-particle resonance in a
three-particle state, the resonance projection takes the
form

Ima, (s)//I a, (s) I' ~ g b(s —m"')

for the nonstatic model of Sec. II 8, and

Imh (a&)/ I
6 ((a) I

' ~ g.Z*b((a —ra*) (21b)

for the static models of Sec. II A. The anomalous peaks
of Refs. 7 and 8 follow if one applies these projections
directly to Eq. (4) or to Eq. (15'). However, if one
writes

I
TI' for an overlapping resonance model in the

form

I
TI'=

I T((12)3)
I + IXT((32)1)I'+2 Re(T((12)3)Xe ' T((32)1)),

(incoherent) (interference)
(22)

a little algebra shows that the interference term of Eq.
(22) is of a higher order in F/m" than the incoherent
part. Thus the interference term must be dropped

"T.W. I.udlam and J. A. Snoke (to be published).
"Meson Spectroscopy, edited by C. Baltay and A. Rosenfeld

(K. A. Benjamin, Inc. , New York, j.968), p. 209.

before applying the projection Eq. (21a) or Eq. (21b)."
A resonance projection for the ease of two overlapping,

~ J. A. Snoke, Phys. Rev. 179, 1620 (1969).
'4 Another way of saying this is that in the Dalitz plot for a

three-particle 6nal state containing two two-particle resonances,
the density in the overlap region is approximately a factor of 2
times the density in the nonoverlap part of the resonance bands.
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identical resonances is therefore the same as the reso-
nance projection for the case of no identical particles
and a single resonance. " These arguments are easily
generalized to the case of overlapping, nonidentical
resonances if one uses the fact that the identical reso-
nance amplitude can be viewed as a specific choice of
X and V in Eq. (14). The resonance cross sections
resulting from these projections for the Born approxi-
mation to the Lee model, " the simplified static model,
and our nonstatic model are, respectively, given by

g"-I'k (I,*)8(m* —p)
Th 0'(ef) y/Born =

2k (m*)k (re) (or —m*)

T"r (re) = (2rrZ*/I') k (m*)k (m~)8 (me —p),

w(2J+1)
Thr r(M)— $8(M —m, —m„')q,*

4M

l fg Bg,), (rjs*) l' +8(M mt —mrs—*)X'qt*
) —j

x P lb"& ~"'~(et*)l'j.

These cross sections are plotted along with the cor-
responding total cross sections. Ke see that the reso-
nance cross sections have no anomalous structure, and
that they are quite reasonable approximations to the
total cross sections.

B. Resonance Cuts as Experimental
Resonance Projections

Working from data, a two-particle-resonance cut is
made by accepting (rejecting) an event if the appro-
priate two-particle mass is inside (outside) an interval
Lm" —si', m*+ AT], where s and s' are usually chosen so
that the selection region has a width Am of about 2I'.
If the final state contains two identical, overlapping
resonances, the cut is most naturally defined as selecting
an event if either of the appropriate two-particle masses
falls in some designated region.

The reason for such a cut is that it provides a simple,
model-independent way of suppressing events in the
final state which do not result from processes which
produce the resonance. There is the implicit assumption
that the background can be taken to be incoherent to
the resonance production ', when the coherence cannot
be ignored, the interpretation of these cuts becomes
model dependent. Such is the case with the differential
cross sections shown in Fig. 5 where the coherence of the
second resonance has a large effect particularly on the
angular distributions.

"The fact that there are two terms in the incoherent part of
~

2'~'in Eq. (22) is cancelled by the factor of -,'which we pnt in the
sum over final states when calculating the cross section because of
the identical particles.

~6 This is also the theoretical resonance approximation for the
exact Lee model. See Refs. 33 and 19.

Resonance cuts can be simulated in our models by
restricting the region of integration to the selection

region. As the width of the selection region decreases,
the eftect of a resonance cut approaches a multiple of

the result of applying the resonance projection Eq.
(21a) or Eq. (21b) directly to the expressions for the
cross section. The resonance-cut procedure is therefore
often interpreted as a simple form of a resonance pro-
jection. It should be clear from the discussion in the
preceding subsection that this interpretation is not
valid when there are overlapping resonances; the
Anz —+ 0 limit of the resonance cut in this case is not the
theoretical resonance projection, but instead a projec-
tion which leads to anomalous peaks in the three-
particle mass spectrum.

In Fig. 2 we have included curves for resonance-cut
cross sections (labeled Exp) for the Lee model and for
the simplified static model with An&= 2I'. There is some
structure in the overlap region, but no peaks. In Fig. 4
we have included curves for different choices of Am for
the 3x model with J&= 1+ and each pm system in a rela-
tive s wave. As Am decreases, there is an enhancement
near the overlap threshold which becomes more pro-
nounced, which is what we would expect from our
discussion above.

A mistake which has been made in the calculations of
resonance-cut cross sections when there are overlapping
resonances' ' is to integrate over one resonance band
and then to double the result. This has the effect of
counting the overlap region twice. For static models,
this leads to an anomalous peak. v ""For the nonstatic
model, this procedure introduces structure, but the
effect is not as pronounced as in the static case (curves
labeled Am(d. c.) in Fig. 4].

IV. OTHER MODELS

Ke do not claim that the nonstatic model developed
in Sec. II B is more than a reference or a first approxi-
mation to any physical situation; its main attractions
are that it is easy to work with and it treats the reso-
nances coherently. It has been suggested"~ that the
linear or isobar model is not the appropriate starting
point for dealing with overlapping resonances, so we
now consider the proposed alternatives.

The scattering amplitude for process (c) of the Lee
model discussed above can either be written as the sum
of two terms each containing a single resonance propa-
gator Lh(r)j ', or it can be written as a single term
containing a product of the two resonance propagators.
Amado' has proposed that the dynamics of a state which
contains overlapping resonances are more clearly
presented in the product form of the amplitude, which
implies that this is the form upon which any approxi-
mations should be made. 's Our models (except for the

"C. Lovelace, Phys. Letters 28B, 264 (1968).' L J. R. Aitchison and C. Kacser I Phys. Rev. 173, 1700
I'1968)j show that Amado's hypothesis is model-dependent.
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exact Lee model) and the resonance projections can be
viewed as approximations based on the linear form of
an exact scattering amplitude. We find for the Lee model
(which is one of Amado's examples) that when the
coupling gets strong enough that the Born approxi-
mation is no longer valid, then I'/m* is much too large
for the two-particle interaction to be called a resonance.
We hesitate to make any general pronouncements based
on this result because of the limited applicability of the
Lee model.

For the nonstatic case, the Veneziano model3' may
provide an alternative approach to that of our isobar
model and Born approximations. It is not clear at
present how fundamental the di6erences actually are
between isobar models and the corresponding Veneziano
models since Boguta, ~ using an isobar model, claims to
have reproduced the results of Lovelace" and Altarelli
and Rubinstein ' which were obtained with a version of
the Veneziano model. Also, the amplitude used by
Lovelace can be written as a slowly varying form factor
times an isobar model near the resonance overlap.
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APPENDIX A: PROOF OF NO ENHANCEMENT
FOR PRODUCTION PROCESS (c)

IN LEE MODEL

Unitarity in the (Vg) sector in the Lee model leads toi

IN(~) I'
1~(~,~) = ~&bi (~)+~&.) (~),

k(cu)

where F(co,co) is the scattering amplitude for process
(b), and u(a&) is a cutoff function. Equation (Ai) can be
rewritten in a form analogous to Eq. (19) of Ref. 5:

i N(cv) i'k(a))
IlllF(M Gl) = IF(~,~) I'

4m.

1 " iV (&d, v, v)
+ d&, (A2)

I
C(~) I' ~ I ~( ) I'I ~( ) I'

where C(cu) = 2 —X(cg)Q(co), with E(&d) and Q(co) de6ned
in Ref. 7. LThe function C(cv) corresponds to D(F) in
Eq. (19) of Ref. 5.7 If the integral in Eq. (A2) resonates
at co=&do, then so will F (&d,co) and hence so will a «,i (co).
However, as Amado' points out, if there were a reso-
nance in 0 «,& (&0), one would hope that it would show up
in 1/C(a&) since this is the three-body part of the ampli-

'9 G. Veneziano, Nuovo Cimento 57A, 190 (1968).
«J. Boguta, Physikalisches Institut Universitat Bonn Report,

1969 (unpublished).
4'G. Altarelli and H. R. Rubinstein, Phys. Rev. 183, 1469

(1969).

tude for (c). If both the integral and 1/C(&0) resonate,
the contribution to F(&a,co) will be doubly resonant
contrary to assumption. Amado then argues that the
fact that there is no enhancement in 0 «,~(&d) is caused by
a corresponding de-enhancement factor in our

~
C(&d)

~

and he relates this de-enhancement to the mechanism

by which the Peierls enhancement~ is cancelled in the
Lee model. It is at this point that we diEer with Amado:
We believe the cancellation of the possible resonance
from the integral in Eq. (A2) should be disassociated
from the cancellation of the Peierls singularity. The
function 1/C(co) was shown by Pagnamenta4' to contain
both the Peierls singularity and a nearby zero which
cancelled that singularity, and using the computer we
found ~C(ra)

~

' to be essentially constant for the
parametrization of the Lee model used in Ref. 7. Thus,
the function A (co, v, v), while slowly varying in v, has the
proper co behavior so that the integrand in Eq. (A2) has
no double pole.

To help clarify this final point, we refer to the calcu-
lation at the end of Sec. II A 2 in which we showed
explicitly how the de-enhancement occurred for the
simplified static model. Note that the Peierls singularity
does not occur in this model and that Ã(&d, &, v) is
independent of v.

APPENDIX B: APPENDIX TO SEC. II B

For spinless particles with nonzero masses, a three-
particle system can be fully described in terms of the
three three-momenta (p&,p&, p3) or any equivalent set of
nine independent variables. For the above set we define
the state ~pi, p2, p3) with a normalization given by

(p&,p.,p~lpi', p.',p3') = ll L2P-'6"'(p- —p.')]. (~1)

An equivalent set of variables to the above which
we will find useful is the set proposed by Wick, '
{P,eg,&3,s&2, 8&~,gi~). P is the total four-momentum
which in the over-all center-of-momentum frame [the
(12)3 c.m.f.j reduces to I'= 0 and P'= ( P"P )'"=3E. —
In this frame the "standard orientation" has the three
momenta lying in the xz plane with 0= —p3 and p&.i&0.
The angles (8«,$«) give the actual orientation of
P~2=—y~+p~= —p3 with respect to this coordinate
system. The invariant two-particle mass (si2)'" is
defined by s&2 ——(—P&2"P&~„). In the (12) c.m.f., the
angles (eig, &&2) give the orientation of pi relative to the
standard orientation defined as above except that here

42R. L. Peierls, Phys. Rev. Letters 6, 641 (1961). Also see
Ref. 6.

43 A. Pagnamenta, Nucl. Phys. 87, 801 (1967).His main example
actually has the wrong sign for the imaginary part of the inverse
propagator to be interpreted as a resonance. Some minus-sign
errors hide this fact.

44 This is the normalization when there are no identical particles.
Vy hen the Xo. 1 and No. 3 are identical, there will be a second term
which is the same as the first: except that 1(3) is replaced by 3(1)
in all the unprimed variables.



A RTHUR KE2iO6

f pote thate to the (») 'ed with referenc
e the same ~ an

it is d ~
d tations have - This choic~

the two s
ansfprmatip .

f t}e two-
a1.oren« tr "

z rojection (it ppssib e
meaparticie ang

h 1 It), for the(12) c.In '3 . .
Ify proved .following identity is easi

(3f—m3) ~
p 12If2

d$12
m12=1 2P 4 (m1+mg)

~ d4)» d(cos82) (&2))( d (cos812

where"
2m12 )

= ') ($»,ma, matPl12 =$1„) 12

q =~(M2 s» maa)/2M,
with

'+b '+c' 2'-(ah+- (ac+bc) j'".((a,b,c)= (22'y

the fpllowing notation:We introduce t e o

2)r

dd)»= dQ12d (cos812)

and

2)r

403d 2 d(Cos8a) d(b1 2= dUg, .

the angle statetate as a pro
'

ction pn

dP d((:os812)! BgP,J,A,$12,y,))

' Ra)«1'o(8»)IP8242»28»4»XD~') 3 &), 0

4~ $ R =Ds(@„8„y„
f the rotation Ina

q
aliti relation or ' i s,

1 " 12 P J ~ $12 $12 12(P J)A)$12))I )XI2» 1)

J' A j ' 'Afg' ~

I

J'4A'~ j&2j&2'

4M'm12
8"'(P-P b($2 $12 JZ' $ )'

P12 g3

b for deriving thef steps in the a g ole ra o
32)1!(12)3)in coeScientrecoup Ing c

D '$(2R )I=+ D ', Ra

Da.s„(Ra)des„(X),=(—1

et the final form of Kq.og
the following symmetry re a(16), we use the o

atrices:3 m

coeffIcient for ((coe r 32)2! (12)3),the recoupling coeln deriving
we use

(—1)"d1) o aa—8 ) =do"1,(8aa).

0—1

u t e rotationful because t ein is use uThe last grouping
(operato r)

Zve=e-'J*&'e ' ~ eRa= R(4)a) 82)(t)») =—&

in therd orientation
h

a state in
$12 ~12)0 in 0g ) 12 )

holds fix t e nothat Eq. (9 o
to be

) ) ) ))(P 8 d)a )s12)812)(b(2
I'''"( — '(

( — )(

Ra) d„$2(x'),D '2(R2)=ZD$, 2ii X 2

(32)1h i o hitin variables in the
terms of the

2 2 —m2—' (ma' —m12) (M' —m,

'—m'

+$1 (Ma+m +ma ma—

where
I't = 8 (cos8—cos8') b ()f)—)f)b(Q-Q' =8 cos—

(Ma ) ( 2 2)=(4Mm p

+$22(Ma+m(2+ma m, —

A and A. are he

. . ., and g, =lp, and fJ=in the (12) c.m.f., and fJ =1
—pg I evaluated in the

evaluated in the

setular momentum* *
is the three-partic e a g

t e 9 ro3ectlpns
momentum

to the standar or'
of thof the definition o

d fi th uarmlicities. We e

A A

+ (M' —m12)s„
—(M'+2ma' —m1' —m,+ (M' —ma')sa2 — 22— '—ma

A A

2' 2! (21) c.m. (.COS831=—
1 aII(i 2 111 COS822) )

= (interchange 1 an in
A

emenrcry Theory of Angular on"M. E. Rose, El
Wiley L Sons, Inc., New o


