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forward direction with the p and A~ alone will still
hold. Also we would like to mention that Sertorio and
Toiler" have also considered a model consisting of the
p and a conspiring p' to 6t the s-p charge-exchange
data. The present model differs from theirs mainly in
the universal slope of the trajectories, the k=0 p'

intercept, and the behavior of the residues. Also
recently Delbourgo and Salam" have considered a
Regge-pole supermultiplet theory whereby due to the
higher assumed symmetry the helicity-Rip and -nonQip
residues are related. They consider the p contribution
alone, however, and therefore their model gives zero
polarization and predicts zero differential cross section
(instead of dips) where n, is a negative integer or zero.

In conclusion we point out that the present model,

'0 L. Sertorio and M. Toiler, Phys. Rev. Letters 19, 1146 (1967).
"R. Delbourgo and A. Salam, Phys. Letters 2SB, 497 (1969).

in the same spirit as in Ref. 3, is an attempt to tie up
several ideas (conspiracy, exchange degeneracy, and
now Veneziano-type residues, etc.) in a consistent way.
The widely considered Regge-pole treatment of photo-
production" and np charge exchange" is in terms of
the pion conspiracy idea. On the other hand, exchange
degeneracy implies that the 8 trajectory should also
conspire (if the pion trajectory does). The co-conspira-
tor of the 8 trajectory is the p which we have utilized
here. Finally, we point out that the present ideas imply
that a conspiring A2 (which is the co-conspirator of
the pion) of intercept near zero, together with the A2

trajectory, should be capable of explaining the s. P ~ rln

data. This reaction is the subject of a future investigation.

"See, for example, A. Ahmadzadeh, R. J. Jacob, and B. P.
Xigam, Phys. Rev. 178, 2284 (1969)."See, for example, F. Arbab and J. Dash, Phys. Rev. 163, 1603
(1967).
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A two-variable expansion of the scattering amplitude for the process a+b —+ c+d is proposed, where
a, b, c, and d are spinless particles of arbitrary mass. It is diagonal in angular momentum, displays the
threshpld and pseudothreshold behavior of partial waves, and leads to sum rules which contain a fl, nite
number of partial waves due to the crossing symmetry of the collision amplitude. The results of our previous
work are recovered when the masses are equal. The reaction m+N ~ ~+N is treated with the inclusion
pf nuclepn spin. The expansion is valid over the Dalitz plot for a decay amplitude. A simple method to
derive sum rules which relate a finite number of partial waves without the use of the twp-variable expansipn
is also outlined.

I. INTRODUCTION

HIS paper formulates a generalization of some
previous work on two-variable expansions of scat-

tering amplitudes' to processes which involve spinless

* Supported in part by the U. S. Atomic Energy Commission.
f Supported by NDKA Fellowship.
' (a) A. P. Balachandran and J. Nuyts, Phys. Rev. 172, 1821

(1968}; (b) A. P. Balachandran, W. J. Meggs, and P. Ramond,
ibid. 175, 1974 {1968);(c) A. P. Balachandran, W. J. Meggs, J.
Nuyts, and P. Ramond, ibid. 176, 1700 (1968); {d)A. P. Balachan-
dran and J. Nuyts, Nucl. Phys. B9, 81 (1969). See also (e) %.
Montgomery, L. O'Raifeartaigh, and P. Winternitz, Rutherford
Laboratory report, 1969 (unpublished); {f) A. R. White, L'ni-
versity of Cambridge report, 1969 (unpublished); (g) R. Z.
Roskies, Yale report, 1969 (unpublished}, and J. Math. Phys. (tp
be published). A closely related work is that of Ref. 2. For an
alternative approach, see N. J. Vilenkin and J. A. Smorodinsky,
Zh. Eksperim. i Teor. Fiz. 46, 1793 (1964} LEnglish transl. :
Soviet Phys. —JKTP 19, 1209 (1964)j; P. Winternitz, J. A.

particles of arbitrary mass. The original investigation
dealt with a system where the masses of the four par-
ticles were equal. The amplitude was expressed as a sum
of polynomials of the variables s, t, and I which were
orthogonal and complete for a suitable scalar product
over the Mandelstam triangle. The basis was diagonal
in angular momentum, revealed the existence of an in-
finite sequence of finite dimensional "crossing matrices"
for partial waves, and displayed their threshold
behavior.

The investigation in Ref. 1 relies on the observation
that there is a partial differential operator 8 in the vari-
ables s, t, and u which commutes with the angular mo-

Smorodinsky, and M. Sheftel, Yadern. Viz. 7, 1325 (1968) I Eng-
lish transl. : Soviet j. Xucl. Phys. 7, 78S (1968)j, and Dubna
report, 1968 (unpublished), and references contained therein.
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where s+t+u=m s+mP+m. 2+md2 L. et P,q(s) and
P.e(s} denote the magnitudes of the incoming and out-
going center-of-mass momenta in the s channel, and let
P„(t),Pqd(t), P,e(u), and Pq, (u) denote the correspond-
ing functions in the remaining channels. Then

mentum in all the channels and which is invariant under

permutations of s, t, and u. The eigenvectors of 6 are the
coordinates of the two-variable expansion. This operator
approach, however, does not generalize easily"" when
mass degeneracy is removed. An alternative method is
therefore adopted in this paper. It was suggested by an
idea due to Wilson4 that regardless of the masses, the
series should be defined by polynomials in the Mandel-
stam variables to preserve the finiteness of the angular
momentum crossing relation. The next two sections
contain its general theory. In Sec. II, we develop a set
of rules for an a priori characterization of the basis. The
design of the set leads to sum rules which involve a
limited number of partial waves when the crossing
symmetry of the collision amplitude is assumed. These
sum rules (as well as a simple method of deriving results
of this type without the construction of the two-
va, riable expansion or of the basis} are also described
here. In Sec. III, it is shown that such a basis almost
always exists, and its construction is outlined. It is
essentially unique, is diagonal in angular momentum,
and exhibits the threshold and pseudothreshold be-
havior of partial waves. The expansion is valid on the
Dalitz plot for a decay amplitude. "

Section IV illustrates the formalism for reactions of
the type a+a ~ a+a and a —& b+ b+ b.' The results of
Ref. 1(a) are recovered for the former. Systems with spin
are also briefly studied by examining the specific in-
stance of a process such as ++X—+ vr+A. The solution
of the problem where the particles have arbitrary spins
and masses will be treated in a future paper by %. Case,
M. Modjtehedzadeh, and one of us (A. P. B.) some
possible applications of the formalism are indicated.

In the final Section, Appendix A summarizes the
general theory of orthogonal polynomials to the extent
pertinent to the text. In Appendix 8, the basis func-
tions for reactions of the type a+b —+ a+5 and their
integral identities are expressed in terms of known
special functions.

LP* (x)3'= L~* (x))'/4x (2 2)
if

L~' (x)j'= Lx —(m~+m, )'jLx —(m, —m, }'j. (2.3)

The cosines of the center-of-mass scattering angles in
the three channels are given by

s(t u)+(m—g' mg') (m—g' md')—

A.b(s)A,g(s)

t (u —s)+ (m, ' —m, ') (me' —my')

a.,(i)a „(i)
u(s —t) +(m, ' —m~') (mb2 —m, ')

D.e(u) 5g, (u)

(2.4a)

(2.4b)

(2.4c)

It is convenient to label the members of the basis with
two discrete indices n, f (n, l=0, 1, 2, .), in analogy
with our previous work on the equal mass system. '
LSee, however, the discussion in Appendix 8, Ref. 1(a).]
Thus, the basis for the s-channel expansion is {g„'(s,t)),
while those for the t- and u-channel expansions are
{9'„'(s,t)) and {'tt '(s, t)).' We show below that it is
sufficient to demand the following of the set {S„'(s,t}),
for example, to replace the crossing symmetry equation
by an equivalent set of partial-wave sum rules. Each of
the latter will involve a finite number of angular
momenta:

(i) g„' must be diagonal in the s channel -angular ma
mentum. That is, it must have the form

&.'(~, i) = ( (e)~.'(~)P (s.). (2.5)

The notation with two factors (g and 5„' for the s-
dependent part of 8„' is convenient later. The factor $~
will be called the multiplier. It is clear that this condi-
tion is imposed so that the useful properties of the angu-
lar momentum basis are not lost in the new expansion.

(ii) The partial wave expansions of g-„' il the i and u
channels must terminate':

II. CHARACTERIZATION OF BASIS FUNCTIONS
AND SUM RULES FOR PARTIAL WAVES

S„'(s,t) = Q (2I +l)nr, (/)Pl, (s,) (2.6a)I-e

= Q (21.+1)Pc(u)Pg, (s„). (2.6b)

' We have changed the notation somewhat from Refs. 1(a)-
1(d).' For equal masses, 3„' is a Rnite linear combination of V ' and~„'.' This result is false for general masses since o.l, (t) and Pl, (u)
are singular at the origin unlike the I'& projections (2(+1) 'q](t)XT &(&) (2l+I)—'g, (2g)U t(N) of V~g and & g in the & an
nels (cf. Sec. III).

I.et a, b, c, and d represent spinless particles with
masses m, mg, m„and m~, respectively, and consider
the reactions a+b~c+d, a+c~ b+d, and a+d~
b+c. The bar identifies the antiparticle. If p; is the four-
momentum of particle i, the Mandelstam variables are

= (p.+p.)', ~= (p~ p.)', = (p~ p—.)', (2 1)—
' J. M. Charap and 3. M. Minton, J. Math. Phys. (to be

published).'It may be shown that there is no second-order differential
operator which commutes with angular momentum even in two
channels if the masses are arbitrary.' K. Wilson (private communication).' There is a fair amount of literature which deals with harmonic
analysis on the Dalitz plot. . Reference 1(a) contains a partial list.
See also the recent work of K. E. Eriksson, Goteborg reports,
1968 (unpublished).' Particles of the same mass are denoted by a common symbol.
They are not necessarily identical.
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be llo
' '

2 8) a 1 ls giventhe normalizationwhere, due to t e no'
te er-valued functions of n,d L„are finite integer-

system on rot nc
following identittes:

.4 „'a '=(8 ' F)

ds p, » .' 1 s). (2.10)ds p, (s) b(s)S„'(s)ft(s .

ds dl p(s, t)f*(s,t) g(s, t

t t ds,f"(s,t)g(s, t)ds p, s

(2.7a)

(2.7h)

s-t crossing symmetry,e that because of s- cr mmetry,Row suppose t a

F(s,t) = G(t,s). (2.11)
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2.7d)ds.f*(s,t)g(s, t). ( .dl p„(tt)

tj
dt pt(t

&i

(2L+1)a,(t)F&(s,)jG t,s(let

(2.12)dt pt(t) 2 (2~+1)oi(t)gi(t) j,

(2.12).
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in s and I,. %e therefore set

(3.1a)

~-'(~ t) = L~ b(~)~.d(~)]'~.'(z)P~(z ) (3 1b)

where 5„'(s) is a polynomial of degree n in s.
In general, the basis function S„' is a polynomial of

degree / in / and n+21 in s. As a result, the crossing rela-
tions of Sec. II relate a partial wave v ith angular mo-
mentum l in the s channel to those with I & I.f,„=n+ 21

in the t and u channels. (If there are mass degeneracies,
it is possible that Lt, &n+2l. b)

The expansion of a scattering amplitude in a series of
S„' will display the threshold and pseudothreshold be-
havior of the partial waves because of the multiplier PE.

Ke recall that any partial wave which is derived from
a polynomial in s and t is characterized by these
"centrifugal zeros. "

Next consider Eqs. (2.7). Locally they imply the
equalities ds p, (s)dz, =dt p, (t)dz, =du p„(u)dz„, or in
terms of s, I, and I,

sp, (s) tp, (I)
ds d] =ds dh

A„b(S)A, d(S) D,.(l)

Aber(t)

np „(I)= (lsd' - -, (3.2)
A.d(n) 6b, (u)

~here, in the end, all the integrals are supposed to be in
the increasing direction of the variables. Thus, p(s, t) =1—
if we choose a possible over-all constant to be 1, and'"

P„(S)= 6 b(S) A.g(S))S, (3.3a)

p, (&) = a.,(t)a„(t)/i, (3.3b)

p„(u) = h.g(u)Ab, (u)(u (3.3c)

Ke have yet to specify the region R of integration. It
will, of course, be such that the p's are real and of con-
stant signs. In terms of the variables s and s„R must
be the direct product of two intervals Is;,sf] and
L—1, +1]while it must have a similar decomposition
in the remaining pairs t, s& and N, s„. Ke distingush two
possibilities for R:

' There is an ambiguity here. 5„'and P& can be multiplied by any
polynomial in s which depends only on / and which has no zeros in
fs' sfj (cf. Ref. 12). However: (i) Such a polynomial increases the
degree of 8„' in s for fixed t, and hence L&,„., (ii) by displaying pos-
sibly nonexistent zeros in partial waves, it tends to decrease the
rate of convergence of the series (2.9).The choice (3.1) thus seems
most appropriate. It should also be remarked that if m =mq
and/or m, = mq, then s, is less singular than Lh, f, (s)A,q(s)g ', and
the most economical form of the multiplier is not the one suggested
by (3.1) fcf. Sec. IVj. The choice of && which leads to an S„' with
the least power in s for fixed t may be called the principle of the
minimal multiplier. One sees that once this principle is used, the
functions {S„')given by (3.1) do not reduce to those for the de-
generate problems (m, = mf, and/or m, =mq} under the appropriate
limits on the masses. We list the exceptional minimal multipliers:
(i) gf ——(s—4m ')"2(s—4m, ')f&' if m, —m, & me=en& I cf. Eq. (4.2)j;
(ii) (2g= La f, ($)g"(s—4m ')' and &2f,+I ——fA, f, (s)j"+'(s—4m ')'+'"
Xs "2if m Wm&, m, =m& Pcf. Eq. (4.6)$. There are similar expres-
sions for &i when m =my, m, /md."Ke choose that determination of the square roots which leads
to a non-negative p, over R.

then i, or d is unstable, which is contrary to our
hypothesis. "

The construction of the polynomials 5„' proceeds as
follows: From

2
ds p,, (s) d:,8„'(s,t) S~z(s, l)

= (21+I) 'X~'b„b h&z

and from (3.1) and (3.3), we have

I ~.b(~)~.~(~)]'"'
ds— 5„'(s)S~'(s) = 't „'b„b . (3.6)

The set {5„') is determined by the Gram-Schmidt
orthogonalization of polynomials. The solution is de-
scribed in Appendix A. "-

"The domain of integration R disappears if (a) the mass of one
of the particles is equal to the sum of the other three, or (b) at least
one of the masses, say, md, is zero and none of the remaining masses
is greater than the sum of the others Lthat is, if (m —mf, )' ~& tn, '
&~(m +mf, }').Our analysis does not apply in these situations.

"We sketch a proof of completeness of {S„').The set of all
polynomials P(s,t} in s and t is dense in the Hilbert space with
the scalar product (,.). P(s,t) has a terminating expansion in
PI(s,}.The corresponding partial wave pf(s} displays the correct
threshold behavior and so pf(s)/gf(s) is L' for the measure
dst b,,f, (s)h„f(s) j"+'/s and the interval Ls;,sfj. However, the set
of all polynomials in s and hence {S„'}are complete for such L'
functions.

(a) Decay process S. uppose that one of the particles,
say, a, can decay into b, c, and d. The momentum of b is
then —pq, while P,~ for instance denotes the magnitude
of the three-momentum of c or d in the c-d center-of-
rnass frame. The appearance of P~(z, ) in the decay
amplitude signals an angular momentum state l for the
c-iI system.

The Dalitz plot serves as the region R. In the vari-
ables s, s„,

R= [(m,+md)' (mo —mb)']SL —1, +1]. (3.4)

The form of R in t, s& or u, s„ is obtained by permutation.
This result is rather ancient.

(b) Scattering process. Here, it is assumed that each
of the particles is stable against decay into the remain-
ing three. Ke claim that R is the so-called Euclidean
region where the momenta P;,(x) (x= s, t, u) are imagi-
nary or zero. The proof is deferred to the end of this
section. Thus, in terms of s and s„
R= Lmax{(m —mb)', (m, —md)'},

min{(m +mb)'-, (m, +md)')]3L —1, +1]. (3.5)

There are similar expressions for R in the t- and I-
channel variables. The factor Ls;,s~] in (3.5) is the inter-
section of the intervals where P & and P,d, are imaginary
or zero and requires s;&sf. But if, for example,

(m, m)d'—)(m mb)', —(m +mb)'(( m. +m~)',

and
(m, —mg)' & (m.+mb)',
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IV. EXAMPLES

(i) The process a+a —b a+a. When the masses are
equal, the functions s, are defined by

t —u

s —4m, '
Q —S

Sg

t —4m '
s —t

(4.1)

Ke indicate a proof that R has product decomposi-
tions of the form (3.5) in the three channels. The scat-
tering process alone is considered since the result is
known for the Dalitz plot. Further, the proof, in reality,
is valid for the latter if the group SO(4) is replaced by
SO(3,1). It is adequate to show, for instance, that when

s,z, span a dense domain in Ls;,st)3L —1, +1) [that
is, a domain whose complement in R is a set of
zero measure for the scalar product (, )], then t,z,
are mapped onto a dense domain in [t,,tr][ 1, +—1]
as our concern is in integrals over R. Let, s,z,&Ps;,sf)
IRL —1, +1). The class t', =(po,pb, p.,pd} of the s-
channel center-of-mass momenta which generate the
given s,s, are of the form

P = ((s+m ' —mb2)/2si/2 P,b(s)),

I
P.b(s) I

=
I
P.b(s) I (3 &)

p, = ((s+m ' m,—')/2s'", P,d(s)),
)P„(s)(= (P„I(s)~, etc. ,

where
P,b(s) P„~(s)= P,b(s)P„,(s)z, . (3.8)

Since P,~, P,d are imaginary or zero and the time com-
ponents of pi are real, we can factor an i out of the
P ~, P,~ and treat the four-momenta and their scalar
products as Euclidean. This is understood hereafter in
this section.

The variables t, sf can be expressed as functions of the
four-dimensional scalar products of p; through (2.1) and
(2.4b). Let us change variables from p; to

qits ~tsvPiv ~

where h.&SO(4) and for each member of e, choose a A

so as to reach the t-channel center-of-mass system. The
momenta q; are Euclidean and fulfill the mass shell and
energy-momentum conservation constraints, while t,s,
are the same functions of the q, as they were of the p;.
%e may therefore regard s, as the cosine of the scatter-
ing angle and t as the square of the total energy of the
Euclidean reaction q

—q, ~ —q&+q, & in this system,
and so t, zg(t;, t f) I

—1, +1).Thus, each s,z,PLs;,sf].
L —1, +1] denotes a t,z,+Lt;,tr]3L —1, +1]. Since
the converse is also true, the result follows.

There is a fault in the reasoning when any one of the
momenta P;, (x) vanishes and the various transforma-
tions become singular. But such singularities occur only
when s, t, or u assumes one of its extremal values in R
(that is, on the boundary of R), and such surfaces of
lower dimensionality than R itself may be ignored in

proving integral identities over R.

The multiplier Lh„(s)]-"' of (3.1) contains an excessive
number of pov ers of s ' since we may write

8 '(s, t) = (s 4—m, ')'S '(s)P~(z, ), (4 2)

Therefore, "
S '(s) ~ P„&"+' b~L(s —2m, ')/2m, 2], (4.3b)

which is the fundamental result of Ref. 1(a) for the s
channel. 8„' is a polynomial of degree n+l in s for fixed
t or u, so that Lf,„=n+l in the crossing relations.

The t and u channels are treated by symmetry.
(ii) The process a —+ b+b+b The s. ignificance of the

variables was explained in Sec. III. In terms of the mo-
menta Lcf. (2.2))

Pbb(x) = 2(x 4m/)—'".
The s, 's are given by

(4.4)

z.= s' ~'(t —u)/2P b b(s) A, b(s), etc. (4.5)

The multiplier is diferent when / is even and odd:

8„'(s,t) = (LPbb(s)h. b(s))'/s"")5„'(s)Pi(z, ), (4.6a)

he.e
e~= 0, l even

l odd.

The domain of expansion is the Dalitz plot and'

(4.6b)

p, (s) = Pbb(s)tb b(s)/s'". (4.7)

The polynomials S ' are fixed by requiring that they
should be of precise degree n and fulfill

(Pbb(s)h, b(s)] '+'
ds — -5„'(s)S~'(s)

2 S1 /2+e 1

=X„'b„A . (4.8)

The integers L, ,„of (2.6) are determined by the degree
of 8„' in s for fixed t or I:

L, „=n+I+-,'(I—e(). (4.9)

(iib) The process z.+&V ~ z.+X.This is an example of
a process with spin. The crossing relations are simple in
terms of the A and 8 amplitudes, '4 since

A+(s, u) = &A+(u, s), B"(s,u) = WB+(u, s), (4.10)

"The Bateman Manuscript Project, Higher rranscendental
I'unckons, edited by A. Krdelyi (McGraw-Hill Book Co. , New
York, 1953), Vol. II, p. l68."The notation is standard. See, for example, J. Hamilton and
K. S. Woolcock, Rev. Mod. Phys. 35, 737 (1963).

where S ' is a polynomial of degree n in s. The domain
R is the Mandelstam triangle, the measure p, is
(4m, ' —s) (there are similar expressions for p~ and p,.),
and the defining equation (3.6) for 5„' reduces to

4mcb2

ds(4m ~ —s)"+'5„'(s)Sn'(s) =X 'b~~. (4.3a)
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etc. Ke shall therefore develop a suitable basis for the
expansion of A ~, say." For brevity, only the $-u

crossing relation (4.10) will be treated.
The projection

h)+(s) = dz, (1 z, ')—P)'(z, )A+(s, u) (4.11)

consists of a finite number of partial waves:

l(l+ I) W+m
h)'(s) =8' — (f~)-»+' —A)+»-')

2l+I 8+m
lV —m

(f ' f+')) (-4)&)
E—m

Ke proceed with the construction of S„'. It must be
a polynomial in s and u because of (4.13) and (4.14).
Since

z,= [s(t u—)+ (mz —u')')/5 z)(s)', (4.18a)

[&,~(s)]'= [s—(m+)a)')[s —(m —p)'), (4.18b)

where p and m are pion and nucleon masses, the multi-
plier is given by

5 (s)= {r~.~(s))')" " (419)

and S„' is a polynomial of degree n. The domain R is
the Euclidean region:

R= {sIs&[(m —p)', (m+u)'])
g {z.Ik,g[-1, +I)) (4.20a)

= {uIuc [(m —p)' (m+ p)'])
{z-I -~[-1,+1» (420»

[This is shown by expanding 2+ as a series in f)~+ and
using (4.16).) It is thus adequate to construct a basis
{8„') which can relate a finite number of h~+ when

(4.10) is assumed. We set
It remains to find p, and p«« If S=po+pb, T= p, —p„
U=p, —pa in the notation of Sec. II, their Gram
determinant&-'(s,f)=k ( ))Ss-'( )Ps'( i)z,

n=0, 1, 2, ; 1=1, 2, 3, (4.13) S' ST SU
C=det TS T' T U

U S UT U'
(4.21)

Experience with spinless systems suggests the
hypothesis

(4.22a)

(4.22b)while for the scalar product (, ) on which 8„' are
orthogonal,

= 4u[P (u) ]'(1—z„'),

[P(x)]'= [A.z)(x))'/4x.

p(s, u) = 84

where
(4.22c)

(4.23a)
Thusds du p(s, u) f*(s,u)g(s, u)(f,g) =

and

2L+1 is the Kibble function. "The surface C = 0 bounds the

8„'(s,u) = Q pz(u)pz'(z„), L„&m (414) physical regions, and it is known that
&=i 2L(L+1)

C =4s[P(s))'(1 z,')—

ds p, (s) dk, (1—z, ')f*(s,u)g(s, u)

+1

du p„(u) dk„(1—z ')f~(s,u)g(s, u) (4.15)
—1

since {P&'(z)) is an orthogonal system on the measure
dz(1 —z') and the interval [—1, +1):

21(l+1)
dz(1 z')Pi'(z)Pz'(z) =—— bir, . (4.16)

21+1

These properties of S„' are sufhcient to derive finite-
dimensional crossing relations for h~~. The calculation
which led to (2.12) now shows that

8f

ds p, (s)&)(s)S„'(s)hi+(s)

2L+1
««. («)l 2 — 0 («)k"(«)) (4)))

Ez-i 2L(L+1)
"For the 8 amplitudes, the nucleon pole terms must 6rst be

-ubtracted before the analysis is applied.

p.(x) =p. (x) = {—[~-u(x)]')'/x' (4 23b)

The integrals are supposed to be in the positive sense.
The equations

(««+)«)& { [g (s))2jz)+1
ds S '(s)SN'(s)

$2

=X 'b ~ (4.24)

determine the polynomials S„' of degree n uniquely up
to a normalization.

It is possible to develop simple formulas for S„' in
terms of known special functions. The corresponding
polynomials for the spinless reaction a+& —+ a+b are
expressed as linear combinations of Jacobi polynomials
in Appendix B. The same method leads to an identity
between the m.-E and the a-b functions.

V. CONCLUDING REMARKS

Ke shall 6nally indicate some possible applications
of the preceding formalism. The uses of suitable two-

' T. W. B. Kibble, Phys. Rev. 117, 1159 (1960).
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variable expansions for the storage of data on the Dalitz
plot have been extensively discussed by many authors. '
The basis we have developed has many good physical
properties, since it is diagonal in the two-body angular
momentum and displays the threshold and crossing
properties of partial waves. It should therefore be
eA'ective in this context. For a scattering amplitude,
the expansion is valid in an unphysical region R. If at
least the first few partial waves can therefore be para-
metrized in a form which is approximately valid inside
E as well as at low scattering energies, the subset of
crossing relations in (2.12) which involve only these
waves will lead to constraints on the parameters and to
verifiable predictions. The difFiculty seems to be in

devising satisfactory parametrizations. An alternative
and more rigorous approach would be to try to use these
crossing relations in conjunction with the positivity
properties of the scattering amplitude perhaps along the
lines due to Martin. "We understand that such work
is in progress by Roskies" and by Wanders and
co-workers.
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or

(q„,q ) ~8„, n, m=0, 1, 2, (A3)

The orthogonal polynomials q are unique up to a nor-
malization and can be determined by the Gram-Schmidt
orthogonalization of polynomials. The following explicit
construction is known: I.et

dx ~(x)x" (A4)

be the moments of ~. Then,

qp(x) = Xo, (ASa)

1 x ~2

q. (x) = l .det

~ ~ ~ x"
~ ~ ~ Pu

where

(q„,q.) = X„'D„(n)6„,(n+ 1), (A6)

Qn —1 Pn Pnyi ' ' ' P2~

n= 1, 2, 3, (ASb)

where l~„(40) are constants. The proof is as follows.
The determinant defines a polynomial of precise degree
n since it may be shown that the coefficient of (—x)"
is positive for all n& 1 (unless co is a finite sum of 8

functions). It also fulfills (A2) because of the coincidence
of its rows. By uniqueness, it may be identified with q„
modulo a multiplicative constant.

The norm of q„ is given by

APPENDIX A: PROPERTIES OF
ORTHOGONAL POLYNOMIALS

90 Pz '' gp i Pp+i

~ ( ) d
Pi P'i ''' Pv Pv+ ''' Pn!i (-A))

(f,g) = dx ca(x)f*(x)g(x). (A1)

We summarize some general results from the theory of
orthogonal polymonials of one real variable in this
appendix. "

Given an interval (a,b] and a weight function &u(x)

non-negative on [u,b]," let

Pn —1 Pn ' ' ' Pn+p —2 Pn+p ' ' P2n —1

and the X 's are taken to be real. To shov this, expand
one of the q„'s in a, power series in x using (ASb), and
invoke (A2).

The numerical solution of q„ is often simplified by the
recurrence relation"

A polynomial q„(x) of precise degree n is an orthogonal
polynomial of degree n with respect to co if

dx &d(x)x"q„(x) =0,
v=0, 1, 2, , n —1; n=1, 2, 3, (A2)

"A. Martin, CERN report Xo. TH. 1008-CERN, 1969
(unpublished}.

» The standard reference is G. Szego, Orthogonal Polynomials
{American Mathematical Society, New York, 1939}.See also Ref.
13, p. 153.

D. i(ii) D.(n+1)

(X ~+ q„(x)
D. (n) 6,!i(n+ I)

P.
„, !i 6„!i(n+I)

q„ i(x), n = 1, 2, 3, . (Ag)
D„(n)

"Reference 13, p. 158.
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I( )}2dT
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a+b which are of precise degree n
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84)

2
sn 42

—mb)

2 2l+1( —L~. (s)7
dS—

$

=1 2, 3, . (81)12 n —i; n=P —02

(82a)

(82b)

alization,Then, wit a ch hoice of norma, l

in terms of Jacobi poly-le representation in em
f llo i I. tl %e prove the o owi

r = (m '+m)2)/2mnm2,

r = (s m.—' m—22)/2mnm2

T+Tp

(21+121+,I)(r )Q (21+1.21+1) r ) (86)=2— Q„ I
&I+1)4I (-2

ofT" in S„', then because oNow, if' is ethe coefIIicient of T" in

(81), we have

T+Tp

'( ) (87)
So'(s) —= 1, (83a) T+Tp

(i)

S.'(s)
(21+1,2l+I ) (r )P (21+1,1I+I)(r= LI/2"+'(21+1)2IXQ--I

( ll+121'+ I }(,r)j+" """""(ro)I'.-I

$2 2l+1
—LS '(s)7'dS

$mrs —mb)

4I, 2 '2 1 2l+I (2l+1,21+))(r )=2(2m m4)41+2(r02 —1)'

4l+2 (2l+1,2l+l)(r )
l 1

= 2(2m, m4)4I+

3(2l+121+1)(ro) , 12 =n

where
(84b)

( ),= r( +.)/r(. ).
rove (81). The latterhow (83), we have to prove

is or ol nomials of degree less than n
( ')'"' ~ - h.ith respect too the measure T 1—T

inte-L
—1 +1j.It also fo ows o I—ter val

gral representation"

ly nomic, ls,

(11+4/+3)„i
(2l+1,2l+1) T

22(+I()2+ I )21

corn ute he nth moment of 83b). ForIt remains to compute e n
e identi y 7—i v~n, we insert the 'd t

repea, tedly to find

'2 2l+1
(2l+I 21+ 1)(r)dT T I st

T+Tp—1

21+1 (2l+1,2l+1)(r ) (8())—2r n(r 2 1)21+IQ

et od,ade use of. By the same met o,where (85) was also made use o . y

(1 r)—
+n—1T

T+Tp

I n IP (2(+1—, 21+1)(r)(/r (1—r') "+'r"-IP„ I

Since"
2 2l+I (2l+1,21+1)(r ) (810)—2r()"(ro' —1)"+'Q„ I

wn roperties of JacobiBut, fl olll B a3b) and the known proper ie
"we havepo

(21+1,2(+I)(I.)
2(x' —1 '

2l+I (2l+1,21+1) )
+I (1 y2)2I+ J2

y
x y

ert -13and the syiTlmetry prope

n+I (2 I+1,2 I+I)(a)
(21+1,2 I+I ) ( g) —( 1 )n+In (85b)

(21+1,21+))(r)dr (I —r 2) 21+ r n

L(II+2/)!$2
2 n+41+2

)
(2)2+4/+1)!

B4b are also proved.
h do li di hi d*

'
f Ch' ff l'ls geenerally usefu or

formula, 18


