
P H YS ICAL REV I EW VOLUM E 18?, NUMBER 5 25 NOVEM B F R 1969

Theory of the D» Pion-Nucleon Amplitude*
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We calculate the 7r-E scattering amplitude in the D» channel using our relativistic, unitary three-body
theory extended to include a p-wave ~-m- interaction. The sharp m.-E resonance and corresponding dip in
the inelasticity are obtained with reasonable m-7r parameters. p production seems to have little effect in
the Fi~ state.

I. INTRODUCTION

'HK principal feature of the low-energy x-X system
in the D13 channel is a sharp resonance at 1525

MeV accompanied by a corresponding sharp dip (nearly
to zero) in the inelasticity parameter g.' This resonance
energy is very near the p-X threshold, and since the p

may be produced in s wave in this state, many have
suggested a close connection between the resonance and
the opening of the p-X channel. ' ' In this paper we

apply our relativistic three-body formalism to an inves-
tigation of this connection. Ke believe this is particu-
larly appropriate since (a) the reaction is supposed to
be dominated by a particular three-body mechanism

(p production) and (b) the contributions from processes
not easily included in our formalism (e.g., p and X
exchange) are supposed to nearly cancel in this channel. '
Our formalism is capable of treating the surviving mech-
anisms exactly without sacrificing relativistic invari-
ance, two- and three-body unitarity, or ease of solution.
Previous attempts to get the resonance have involved
some very restrictive assumptions, or have been largely
dynamically motivated parametrizations. Our three-
body theory, having a more primary dynamical base,
comes closer to being a dynamical calculation of the
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resonance. In particular, our input param. eters are
largely coupling constants, etc. , which are obtained
essentially from experiment. In that sense our param-
eters are highly constrained. Thus when our fits come
out qualitatively we can be pleased, but at the same
time we are not free to make gross changes in the input
parameters to improve the fit.

In our previous work' we studied x-X scattering with
only nucleon exchange as the driving mechanism. We
now wish to include x-m interactions in the T=1,
J= l (p) channel. As we show, 7r-m interactions can be
introduced without adding "channels" to our previous
calculation, and in principle any covariant off-shell x-m

amplitude may be used so long as it satisfies elastic
unitarity and has the cluster decomposition property.
(The results show that the D» ~-X phase shift is rather
sensitive to the input ~-m parameters and that our
formalism, therefore, oRers hope of choosing between
proposed theories of x-x scattering. ) In fact, we use a
separable amplitude, as is appropriate to the resonance-
dominated T =1, J= 1—channel we consider. This also
makes the technical problems of making partial-wave
decompositions easier. The problems of higher spin do
not trouble us since we use the techniques developed in
AAY, which are nonrelativistic in spirit and complexity,
but preserve relativistic invariance.

The x-~V to p- V Born term involves m exchange. The
three-body unitary theory of Blankenbecler and Sugar
we apply to this term takes only the on-shell part of the
x exchange. From an analysis of Feynman diagrams
one can show that the oR-shell contributions of m ex-
change are as important as the on-shell —essentially
because of the small x mass. Hence, including only the
on-shell part underestimates the coupling of the m-X
system to the p-X. We have found a scheme for including
the oR-shell m exchange to make up for this. The method
is analogous to adding it in as a potential; therefore it
generates no new right-hand cuts and hence preserves

' R. Blankenbecler and R. Sugar, Phys. Rev. 142, 1051 (1966).
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amplitude since a "m-m"-X to "m-m"-.V Born term would
correspond to at least a four-body intermediate state.
In order to associate an equation with Fig. 1(a) we must
specify the x-ir box diagram of Fig. 1(b). The blob rep-
resents w-~ scattering, and as mentioned above, in prin-
ciple, any covariant oA-shell form satisfying the cluster
property may be used for it. In fact, it is convenient and
appropriate to use a separable x-x amplitude that em-
phasizes the p-resonance dominance. In this case the
J=1 x-x amplitude in the x-x c.m. system takes the
fornl

(b3

P-k
with a propagator

I"... d'q q'v'(q)
Dp(~) =~—Mo'—

(2ir)' (u, (0 —4a),')

For v(p) we take the form

P+q
k

j///////f

l'

l
l

(c3

I'"io. 1. (a) Graphical representation of our x-E linear integral
equation of the Blandenbecler-Sugar type. The driving terms are
nucleon exchange and the m-x interactions box. Nucleons are rep-
resented by solid lines and pions by dashed lines. (b) ~-x interac-
tion box with the "blob" representing an arbitrary qt--m t matrix.
(c) ~-~ interaction box with a separable m-m- interaction, Momen-
tum labels are those appropriate to Eqs. (4)—(6).

unitarity. The method gives hope of providing a scheme
for adding left-hand cut contributions in other processes
where these are important in the three-body theory
without, spoiling any of its features —unitarity, rovari-
ance, or solubility. The price of doing this is that one
introduces more parameters, as one might expect.

In Sec. II we outline the equations, stressing the way
of introducing the x-~ interactions and also of including
the o6-shell ~ exchange. In Sec. III we present our re-
sults for the Dja phase shift and inelasticity parameter
q for various choices of x-vr parameters. Section III also
contains some discussion, particularly of the results and
the effects of other mechanisms on them as well as a
discussion of our future plans.

II. EQUATIONS

The three-body formalism of Blankenbecler and
Sugar' and its application to x-V scattering has been
explained in detail previously. ' Here we only describe
the addition of m-m interactions. The m-.V o6-shell three-
body equations including the m-m interactions take the
form represented graphically in Fig. 1(a). We see that
the x-x interaction produces an additional Horn or
driving term, but does not add a coupled "p"-E channel

The parameters Mo', I', .', and P,', in Eqs. (2) and (3),
are chosen to give the correct p mass and width as well
as the x-+ p-wave scattering length. The separable form
(1) allows us to factorize the ~r-ir box as shown in Fig.
1(c).This corresponds to writing

(k,SiBox(s) tk', S')= Q
i, s" (2v.)4

d'q(k, S
~
8 (s)

~ q,S",i)

G (s,q) =2ir (2M) 5 (q' —M')/D, (s —2s'»E, +M2),
E,= (q'+M2)'", s=P',

where M is the nucleon mass. In order that three-body
unitarity be satisfied, the x-exchange Born terms 8must
contain the on-shell three-body term, constructed ac-
cording to the Blankenbecler-Sugar prescription, ' which
has the form'

(k,S
~
Bas(s)

~ q,S",i)
= V;tIs(k)vsN s (q)Vxx.p...f((2k q)') v((2q k)'-')— —

3t —q+k++q
X (6)

(~i —q+~i++q) j
I„ is a nucleon spinor, and u~'=q'+p2 with p the pion
mass. f is the .V Vir vertex defined in AAY. The vector
V is defined in Eq. (39) of AAY. It has the property
that V V' is a I orentz scalar that reduces to the dot

XG(s,q)(q, S",i i 8(s) ik', S'), (4)

where 5, 5', and 5" are nucleon spin projections, i is
the p spin projection, and C' ) is an isotopic spin factor
which is —, when T= 2, and 6 when T=~. In terms of the
p propagator (2), the three-body propagator G can be
v ritten
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product of the relative momenta in the ~-x center-
of-mass system. Its use makes for great technical
simplification.

Since the pion has a small mass, oA-mass-shell m ex-
change is important in the x-X to p-cV Born term. The
Blankenbecler-Sugar' procedure (which puts all par-
ticles on their mass shells), while giving the correct uni-

tarity cuts, does not necessarily give the correct poten-
tial strength. In particular, the effective Feynman resi-
due at the pion pole (t =p') is too small. We can correct
this problem by adding to Bgq a term which contributes
nothing to the unitarity cuts and may thus be inter-
preted as a potential background. Such a term is pro-
vided by taking a fraction of the Feynman contribution

to x exchange

(O,S
~
BF(s)

~ q,S",i) = V; r((-,'q —k)2)1/((k —q)' —p'j.
(7)

This is just of the form of (6) with the Blankenbecler-
Sugar propagator replaced by the Feynman propagator.
The mass-shell 5 functions which always occur in our
formalism will ensure that the Feynman denominator
can never vanish and therefore that Bp will introduce
no new right-hand s cuts. Adding this term therefore
improves our left-hand cut without affecting the right.
In the static bmoc and orl, the energy shel/ Bzs actually
equals' —,BF, i.e., in the limit M~~ we note that
E —+ M s'~ —+ %+co~, and therefore that

1 1 ~v—q+a+~ q

7

(k q) p Mk —q Gpk —qLS (cdk q+Gok—+Eq) j 2Mq q

Away from this limit the fraction of Bp that should be
added to best mock up the left-hand cut depends on s,
and other parameters, with —,

' as the upper limit; how-
ever, we are never far from the static limit for the energy
range we consider, and thus we take the fraction to be 2.
This choice presumably overestimates the x-exchange
potential by a small amount. It should be noted that the
separation into backward and forward going graphs is
not really equivalent to this separation since Bp~ and
BF are separately covariant. This method of adding
"potential" terms either as generated from Feynman
graphs, or of more empirical origin, to the driving term
makes it possible to contemplate applying this formal-
ism to other problems where three-body unitaritq is

important, but where the dynamical mechanism is more
complicated, or less well known. Such a semi-empirical
approach may go some way toward curing the formal-
ism of its greatest shortcoming —the poor treatment of
crossing and left-hand cuts —as well as providing a
means for including other dynamical mechanisms.

With the B of Eq. (4) taken as Bss+-', BF, from (6)
and (7) we can construct the box matrix element in (4).
In fact, since the integral equation represented by Fig.
1(a) is solved one partial wave at a time, it is more con-
venient to make a partial-wave decomposition of the
B's before forming (4). Given (4), the integral equation
of Fig. 1(a) is easily constructed as in AAY, and we
obtain

(kS~ T~r'(s) ~k', S') =(k S~ B~' '(s) ~k', S')+(k S~ Box' &(s) ~k', S')

1 d'q L(OS~B~'r'(s) ~qS")+(OS~ Box& '(s) ~qS")](qS"~T' '(s) ~k', S')
((g)

D~(o,)~ (2n-)' 2(oq

where (O,S~ Box'r'(s) ~k', S') is given earlier in Eq. (4), and

(k&S
~

B~'r'(s)
~

k', S') =Q C'r~y'f((P k 2O')')us(—P k)—y~uv" (P k —k')——
g/I

X1(k,k,s)us" (P k k')ysus'(P —k')—f((P k' 2—k)'), (10—)—
with

J(k,q, s) =2%i (E,„,+conj,+( q)/

E~-qLs —(Eq-q+~~+~q)'-' j )

Dx(~) =
2&i

Af'y' " dk p(k)
X 1 —(0.—M')—

(n x) (3f' —x)'— (12)

with
x = (El,+cog)',

p(k) =kqf'x'I2/E &uA, (E +M)
In the above equations the superscript T is the isotopic
spin, that can be 2 or —,'. The remaining quantities enter-

' A similar ddBculty arises in the relativistic treatments of the
three-pion systems such as that of Basdevant and Kreps t Phys.
Rev. 141, 1398 (1966)j and was not remedied in their work. Also,
their two-body ~7f- amplitude corresponds to that of a repulsive
potential (i.e., the 7l-71 phase shift first falls and then rises back
through q71-). Both these considerations account, at least in part,
for the fact that they do not obtain a 37' (co) resonance as one
might have hoped.
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Fic. 2. Plot of our calculated D13 phase shift 813 (a) and inelas-
ticity parameter F13 (b) versus total center-of-mass energy 8' for
three sets of p-wave m.-x parameters. Also shown is the phenomeno-
logical analysis of Donnachie et al. The calculated set 1 corresponds
to a p-wave scattering length of a1 ——0.0313~n, ', a p width of
F,= 129 MeV, and a p mass of Jfp

= 760 MeV. Set 2 corresponds to
a1 ——0.03m ', Up=118 MeV, and Mp=760 MeV, and set 3 to
a1=0.04w ', I'p=140 MeV, and Mp 760 MeV.

ing our equations, such as C' ', p', and the x-3' vertex
parameters appearing in f, are chosen as in AAY with a
Gaussian cutoR parameter of P'=160. This gives the
3-3 resonance correctly. There are no further free param-
eters in the theory except the p-wave m-x parameters,
and these we express in terms of a p position and width
and a p-wave 7r rr scattering len-gth. Having constructed
the linear integral equation, we make a partial-wave
decomposition to turn it into a one-dimensional equa-
tion and solve it on a high-speed computer by approxi-
mating the integrals by sums. We use the method of
contour deformation to avoid the difFiculties associated
with the kernel's singularities.

III. RESULTS AND DISCUSSION

The results obtained for the phase shift and inelas-
ticity parameter p for the D» channel are sho~n in Fig.
2 for various choices of the p-wave m-~ parameters com-
pared with the recent phenomenological analysis of
Donnachie et al.'Ke see that the dominant experimental
features —the sharp resonance and sharp dip in g—are
well reproduced, although the calculated resonance
comes out at a higher energy. The fits labeled 1 and 2 in
Fig. 2 are much better than that labeled 3, and it is
reassuring that the associated p parameters are consis-

tent with the predictions of recent experimental and
theoretical analysis. ' It is perhaps surprising that our
results are so sensitive to the input parameters, but this
should not be viewed as a sensitivity to some arbitrary
cutoR, but rather as a reQection of the D» resonance
mechanism and its dependence on the parameters of the
particles driving it.

It is not difFicult to find missing attractive effects that
will pull the D» resonance to lower energy and hence
improve agreement with experiment, although it is
difFicult to do this with our mechanisms and still produce
the accompanying sharp dip in q. It is true that any
sharp dip in g must have a resonance associated with

it, "' but of course the converse is not true. As we see
from Fig. 2, the rapid variation in g at lower energies is
easier to produce than the value of q at the minimum.
In the context of a calculation such as ours the con-
straints on the input parameters are fairh strong, and it
does not seem appropriate to attempt to vary these pa-
rameters over a wide range in order to fit the data. In
that sense the calculation is not as well off as a more
empirical one, which can fit the data better by exploit-
ing its phenomenological latitude. However, if one be-
lieves that our formalism and input are reasonable, one
must believe that there are missing attractive and in-
elastic mechanisms around which push the resonance
and g dip to lower energy even though p production is
the dominant cause in the first place. Among the most
obvious mechanisms are m-g interactions in the I=0,
J=0 state, and n.-X*(1236)production. The former can
be easily included in the same way as the p. Its eRect on
the D» channel turns out to be negligible. m-A'* inter-
mediate states are technically more dificult to include.
Estimates indicate that they are important and go in
the right direction, but that they will not alter our
qualitative conclusions. We are presently working to
include them. There are many other mechanisms which
we have neglected. Presumably introducing them could
improve detailed agreement with experiment, but that
would not change the conclusion about the basic p-pro-
duction mechanism for the resonance and would prob-
ably involve us in considerable parameter adjusting.
The only arbitrary mechanisIn we do include is the oR-
shell part of x exchange, and the general agreement with
experiment indicates that our method of including it is
reasonable.

The fact that our results for the D» amplitude agree
so closely with experiment indicates that virtual p pro-
duction is the dominant mechanism over a wide range
of energy and that our formalism is a sensible way to
treat it over that range. Agreement seems to depend on
using sensible p parameters, i.e., the width, position,
and p-wave scattering length. We have also found it

'" For example, hard-pion calculations give a1=0.033m ' for
the p-wave scattering length t R. Arnowitt (private communica-
tion) j and it is generally agreed that the width of the p is some-
where between 100 and 130 MeV."J.S. Ball and K. R. Frazer, Phys. Rev. I.etters 7, 204 (1961).
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essential to include oR-shell as well as on-shell x ex-

change. Our formalism, which treats unitarity correctly
at the expense of some left-hand-cut analyticity, is
probably at its best in the DI3 channel, because of the
dominant three-body mechanism and the very small
potential or left-hand-cut contribution from other
processes. '

Finally, we have also calculated the FI; ~X phase
shift. The eRect of the pion-exchange mechanism pro-
ducing p-X intermediate states is extremely small in

this state, contradicting several previous analyses. '-'

Carruthers' has shown that many other mechanism are
large in the F15 state and probably capable of producing
a resonance. For example, the left-hand cuts, which

cancel in the DI~ state, add to give a large eRect in the
F15 state. Hence the resonance in this channel is driven
largely by the left-hand cuts or potentials rather than
by three-body production.

In the future we hope to treat other partial ~aves,
but presumably some phenomenological treatment of
the neglected exchange processes and other left-hand
cuts will be necessary. These can be included as a "po-
tential" background, without sacrificing two- and three-
body unitarity just as was done with the extra part of
the x exchange in this work. One of the goals of treating
all waves is to calculate ~ production and in particular
to study overlapping resonances in mx'V final states. To
do this we must of course include x3 * final states as
well asia-p, and we are currently working toward that.
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After summarizing the application of the Rayleigh-Ritz and Schwinger variational principles to the
unequal-mass qP Bethe-Salpeter equation, we present, in graphical and tabular form, the solution of the
bound-state problem. The dependence of the coupling-parameter eigenvalue on the exchange mass, external
mass ratio, and binding energy is examined in detail for s and p ground states. Mixing of excited levels
leading to complex solutions is brie6y studied, and some Regge trajectories are also calculated. Scattering
phase shifts for unequal-mass scattering have been calculated and representative examples are given. The
fact that certain levels do not appear to contribute to Levinson s theorem is also examined. Finally, the
foregoing methods are generalized to two-channel systems, and channel phase shifts and inelasticities are
computed.

I. INTRODUCTION
'
PERTURBATION theory has been the single most

powerful tool in analyzing electromagnetic scatter-
ing processes from the point of view of field theory.
On the other hand, in strong-interaction processes, the
coupling strength of the interaction Hamiltonian may be
large enough that bound states occur, in which case
the perturbation series diverges and this approach
fails. One solution to this problem is to reduce the
coupling strength until the perturbation series con-
verges, express the series in closed form, and analytically
continue the result as a function of the coupling con-
stant to the desired value. In terms of potential theory
this corresponds to expressing the Born series (inside
its domain of convergence) in the form of an (Schrod-
inger) integral equation. The integral equation can then

*Work done under auspices of the U. S. Atomic Energy
Commission.

f Present address: Arizona State University, Tempe, Ariz.

be continued in coupling strength to values for which
the Born series diverges. This trick can be used to suni
the perturbation series of field theory, and leads to the
Bethe-Salpeter (BS) equation, ' a completely relativistic
wave equation describing two interacting particles.

In a classic paper, ' Wick reduced the ladder approxi-
mation of the BS equation to Fredholm form and
showed that it possessed a discrete coupling-parameter
(X) spectrum at fixed energy below the elastic threshold.
Even in the ladder approximation the equation still has
two nontrivial independent variables, and hence was
considered somewhat intractible. Upon setting the
exchange quantum mass M equal to zero, Wick' and
Cutkosky' were able to reduce the equation to a one-
dimensional form, from which they obtained a clear
picture of the spectrum. Using a form of the Rayleigh-

~ E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951).' G. C. Wick, Phys. Rev. 96, 1124 (1954).' R. E. Cutkosky, Phys. Rev. 96, 1135 (1954}.


