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Some Aspects of FieM Symmetries. II
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The consideration of representations of operators satisfying trilinear equal-time commutation relations
and their possible physical relevance is continued. A representation previously studied, when modified
to some extent, yields an improved correspondence between the operators of the representation and physical
particles. Several schemes of associating operators with particles are considered. The representations raise
the possibility of partially eliminating some divergences. In an approximation in which spin-1 and higher-
spin resonances are disregarded, the requirement that the lowest-order self-energy corrections to the propa-
gators of spin-~ baryons he finite implies a set of relations between the coupling constants and mass ratios
of the particles concerned.

INTRODUCTION

~ROM the formalism of Schwinger s action prin-
ciple' it is possible to derive a set of trilinear

equal-time commutation relations which contains the
trilinear commutation relations discussed by Green, '
by Kibble and Polkinghorne, ' and elsewhere4 ' as
special cases. " The trilinear equal-time commutation
relations are' '

[+-(x),[Xp(y), X '(*)]-]-=~(x—y) (7 ')-0&X,'(x)
—6(x—x) (y,').,MXti(y), (1a)

[C„(x),[X„(y),X,'(x)] ] = jiI„„~(x—y) 1 X,'(x)

+m„,r(x —x)XX„(y). (1b)

In Eq. (1a,), a,ny two field variables may be either
kinematically related or unrelated, and each variable
denotes independently of the others either a field
variable or its canonical conjugate. The same applies
to the field operators occurring in Eq. (1b). The
operators M and.A', which depend on the fields in whose
commutation relations thex occur, are direct products
of numerical matrices and appropriate "operator
Kronecker 6's" introduced previously. s The ordered
Kronecker 8, 6™„„,also has been defined previously. "

The representations of generalized fields [i.e. , oper-
ators satisfying Eqs. (1)] considered here are direct
products of numerical matrices and field operators
("component fields" ):

4;(x)=2;XP(x), 4;(x)=2,'XP(x), (2a)
and

C, (x) =2I;X@(x), II;(x)= II,'Xx (x). (2b)

For the representations considered in this discussion,
' J. Schwinger, Phys. Rev. 82, 914 (1951).' H. S. Green, Phys. Rev. 90, 270 {1953).'T. %. B. Kibble and J. C. Polkinghorne, Proc. Roy. Soc.

(I.ondon) A243, 252 (1957).
4 H. Scharfstein, thesis, Xew York University, 1962 (unpub-

lished), and clarification to the thesis, 1962 (unpublished).' H. Scharfstein, Xuovo Cimento 30, 740 (1963).
In the context of generalized statistics, trilinear commutation

relations between different fields have also been discussed by
S. Kamefuchi and J. Strathdee, Nucl. Phys. 42, 166 {1963).' H. Scharfstein, J. Math. Phys. ?, 1707 (1966).

H. Scharfstein, Phys. Rev. 158, 1254 {1967).' H. Scharfstein, Phys. Rev. 172, 1828 (1968).

the generalized fields also satisfy the bilinear equal-time
commutation relations

[e*,-(x),4;,s(y)]+
= (p,).p5(x —y)A;A Xb(+;,+;), (3a)

[4, „(x),II;,„(y)]=i8„„6(x—y)B;8 Xb(C„II;), (3b)

which amount to a generalization of canonical field

quantization (no summation over repeated indices).
The operator Kronecker 5's appearing in Eqs. (3) have
the same bilinear commutation behavior with respect
to other component fields as the products of the com-
ponent fields, respectively, occurring on the left-hand
sides of the commutation relations (3).

The connection between the numerical matrix co-
efficients of the generalized fields and the bilinear
equal-time commutation relations between the com-
ponent fields has been considered in some detail. 7 '
Since the matrix coefFicients specify the bilinear com-
mutation relations between distinct component fields,
the subscripts of the component fields have for sim-

plicity been suppressed throughout this discussion. The
interdependence of interactions and bilinear com-
mutation relations of the component fields as well as
the selection rules implied by the bilinear commutation
relations have been discussed elsewhere. ' " For the
representations of the generalized fields considered in
this discussion, these selection rules imply that three
generalized fields, which in addition to Eqs. (1) also
satisfy bilinear equal-time commutation relations with
each other, can enter into a trilinear interaction if the
three matrices associated with the fields concerned
either all commute or all anticommute with each other.
In addition, the interactions are required to be Her-
mitian. If the generalized fieMs involved in a trilinear
or higher-order interaction do not all satisfy bilinear
equal-time commutation relations with each other, the
interaction has to be suitably sy~metrized. For the

' S. Oneda and H. Umezawa, Progr. Theoret. Phys. (Kyoto)
9, 685 {1953)."T.Kinoshita, Phys. Rev. 96, 199 (1954).

"H. Umezawa, J. Podolanski, and S. Oneda, Proc. Phys. Soc.
(I.ondon) A68, 503 (1955).

'3 H. Umezawa, Quantu»z Field Theory (North-Holland Pub-
lishing Co., Amsterdam, 1956), p. 197.
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correspondence between particles and generalized fields

to be assumed in this discussion, all distinct fields which

can enter into an allowed trilinear interaction either
commute or anticornmute for equal times.

It is expedient to reconsider a representation of the
generalized fields based on the generatorsv '

Ci.=

Disregarding phase and normalization factors, the
matrices obtained from the generators (4) can most
effectively be divided into sets in the following manner:

(I C1C3C1C3 C1C2 C1C3C2C3)

It = ((C1C3&C3C1), (C2C3&C3C2)),

4 = (C1, C3, C3C1C3, C3C2C3, (C1~C3C3C3),
(C2WC3C2C3) ), (5)

i,nd

J3= (C3, C1C3C1, C1C2C3, C1C3C2, (C3~C1C3C3),
(C1C2C3&C1C3C2)) .

The matrices in set 6 are diagonal. The matrices in set
A have nonvanishing elements only in the upper left
and lower right quadrants, whereas the nonvanishing
elements of the matrices contained in sets 8 and E are
in the upper right and lower left quadrants. A total of
16 linearly independent matrices are obtained if, for
example, the last four matrices in set A and the first
four matrices in set 8 are disregarded.

For the representations of the generalized fields
considered, Lagrangians are 4X4 matrices. For inter-
actions involving half-integral-spin fields, the La-
grangian densities are assumed to have the form

E,3,L4', (x),r@3(x)j 4, (x)+H.c. , (6)

where the R's are numerical coupling matrices. How-
ever, the consideration of four-fermion Fermi-type
couplings will. not necessarily be excluded.

An "interaction matrix" has been defined' as the
product of the matrices associated with the generalized
fields entering an interaction. A "free-held matrix" can
similarly be defined as the product of the matrices
associated with a field and its adjoint. The various
coupling matrices, whose elements are proportional to
coupling constants, must be constructured in such a
manner that for each field, the free-field and interaction
Lagrangian densities, when expressed in terms of the
component fields, occupy the same positions in the
total matrix Lagrangian density of all fields.

For the correspondence between baryons and gen-
eralized fields to be considered, all the free-fieM and
interaction matrices turn out to be diagonal. The free-
field matrices of the generalized bosons are likewise all
diagonal.

For generalized fields for which the free-field matrices
are not diagonal, the simplest procedure is to de6ne the

free-held Lagrangian density as being equal to the
corresponding conventional free-field density, except
that generalized fields are substituted for conventional
fields, multiplied by the inverse of the free-field niatrix,
and to require that corresponding coupling and inter-
action matrices 5 be inversely related:

R5= gI,

where g is the coupling constant characteristic of any
interaction. The total Lagrangian density is then
diagonal. Alternatively, nondiagonal free-field La-
grangian densities may be considered, provided the
coupling matrices are adjusted accordingly.

In any event, the total generalized Lagrangian
density of all fields in the representations to be con-
sidered contains the component Lagrangian densities
of each component field four times. These four com-

ponent densities occupy different positions in the 4X4
Lagrangian matrix, and they will be completely equiva-
lent if the relative magnitudes and phases of the matrix
elements of each coupling matrix are suitably chosell.

All free-field and interaction matrices are assumed to
be nonsingular. Free-field matrices and the matrix
associated with a neutral self-ad joint integral-spin
field are required to be Hermitian. The interaction
matrices associated with an interaction and the Her-
mitian-conjugate interaction are required to be rel.ated
by Hermitian conjugation.

BARYON OCTET, PIONS, AND KAONS

The matrices of odd order in the generators (4), i.e.,
those matrices contained in sets A and 8, will be used
for the description of half-integral-spin fields, and those
of even order in the generators for the description of
integral-spin fields.

Any matrix of sets A and 8 can be associated with
the proton. This matrix can, without loss of generality,
be selected to be Ci. Matrices associated with a baryon
6eld operator and its adjoint are supposed to belong
to the same set.' Since the matrices associated with a
generalized 6eld operator and its adjoint are required
to commute, ' there are, up to phase factors and with the
above choice for p, only two possible candidates for
the matrix to be associated with P: Ci or C~C2C~. The
second alternative will be considered in this discussion.
Since the matrices associated with p and p are contained
in set A, all matrices associated with half-integral-spin
6e1ds of even strangeness must belong to set A, and
those associated with half-integral-spin fields of odd
strangeness must belong to set B.~

The kaons are supposed to couple fields with matrix
coefIicients in set A to fields with matrix coeScients in
set B.Therefore, the matrices associated with the kaons
must be contained in set E. With the generalized field
representing the proton as speci6ed above, there are
several alternatives for selecting the generalized fields
representing the neutron and the kaons. These various
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a priori possibilities do not all have the same impli-
cations as far as the interactions of the particles in a
comprehensive system of fields are concerned. Four
schemes, A—D, will be studied in this discussion. The
generalized fields representing the kaons and the
neutron are not the same in all four schemes.

It is expedient to consider superpositions of the fields
corresponding to the 2' and A particles and to define'4

Strangeness-conserving l.aonic transitions can occur
between the particles in each chain, as indicated by the
arrows. However, kaonic transitions between a spin-~
field in one chain and a field in the other chain are not
allowed by the selection rules.

Once the octets have been generated in this way, it is

a simple matter to decide which matrices must in each
scheme be associated with the pions. Each field in one
chain can enter into a pionic interaction with itself and
with one field in the other chain.

The operators representing the Z' and A particles are
superpositions of generalized fields. For scheme A,

(8d,)V—= (4+2')/v2

Z—= (A —Zo)/v2
and

(8b)

The full octet can be generated by multiplying the
matrices associated with the proton and neutron by the
matrices associated with the kaons and repeating this
procedure for the fields so generated. In this fashion,
the fields corresponding to the octet are obtained, with
the matrix coefficients and phase factors as tabulated
in Tables I—IV for schemes A—D, respectively.

In each scheme two chains of octet fields are gen-
erated in this manner:

A= (V+Z)/v2= —,'(C3 —Cgcgcg) X4
,'i (C3+—C—icaci)Xp', (10d)

4= (1 +Z)/V2= 2t(clc2C3 Cyc3cp) Xlp

+-,'(C,C,C,+c,c,c)x4', (10b)

Z'= (V—Z)/K2= —,
' (C,—C&cgcg) Xf

+ ,'i(C,-+CD,ci)XP', (10c)g+

p
~(j

V Hence,

(p~)
go=(V —Z)/V2= 'g(C, C.,C3 -C/C3C. )XQ2

—-', (C)C2C3+Cgcacg) Xf'. (10d)

and
XA= —,'iC~C2X$1t —-', icic~XP'f'

—-', C(cgcgc3X~'+-,'Cic~c C3XQ'f, (11&)
(9b)

2iciC~XQ-Q ,'i C~C2X—Q—'p'

+-', C~c,cgcgX~' —-', Cgc3C2C~XQ f, (11b)

TABLE I. Prentki-d'Espagnat Hamiltonian. Bilinear equal-time commutation relations between the component fields (scheme A).

if(C2C3 —C3C2) /Nj Xyt: X
I (C2C3+C3C2)/V2] Xy: E+
t (C1C +C C )/V21Xqbt: A'

if(C1C3 —Cac1)!&&1XP:Eo

Czc1xy: m+

Ixy: H
Y Y Z 0 -0

C1 XIIt

C:1C2cg Xf
C2XP

C,,C,C.,xp
L(c,c.,c,+c,c,,c,)/~2 jxp

P (C3+C1C3C1)/&2 jXf
I (C3—C1C3C1) /~21 X|I'

it (C,C,C,,-C,C,,C,)/. 2jxp
—it (C3+C1C3C1),,/&2 jXg

((C,C,C,,+C,C,C,)/~'2j xtJ"

I (C1C2C3—C1C3C2) /~2 jXf
—iI(C3—C1C3C1) '&'2j XP

—Cz Xf
C:,C,c,xp

C1Xf
—C3C2C3 Xp

n
n

V

: Y
: Z
: z

+
+

+
+
+ +

"M. Gell-Mann, Phys. Rev. 106, 1296 (1957).
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AZ'= —,'iCgC2X~+-,' iC&CaXtp'p'

+-', CgCSC2C3X4'4'+-', CiC3C2CBX4'7, (11c)

5'A= 2iCxCaX~+ ,'iC-)C, XQ'P'

2CjC3C9C3X~ ——2CgCgC2C3XQ f. (11d)

The lack of Hermiticityof the right-hand sides of

Eqs. (11a) and (11b) is only apparent, because it must

be remembered that under the generalized Hermitian
conjugation, a generalized Beld goes over into its
generalized adjoint.

Expressions (11a) and (11b) cannot be coupled to
neutral pions because in both equations the component
fields occurring in the last two terms do not have the
bilinear equal-time commutation behavior required for
such a coupling. This argument does not apply to the

TAar.z II. Prentki-d Espagnat Hamiltonian. Bilinear equal-time commutation relations between the component fields (scheme 8).

T(CC -CC) '»jXyt: X-
t (C2C3+C3C.)/»2j X@:E+
C(ciC3+C3C1)/»] X@':&'

iL(C,C, —C3C )/»jXq: I'
C1C3cie3xy: ~-

IX@:~0

Ci Xf
C3C2C3XP
C3C1C3XP

C2XQ
i t (Ciczc3+C1C3C2) /»g Xtt

L (C3+C1C3C1)/» jXP
L(C3 —C1C3ci)/»2j Xf

ij (C1C C3 —C1C3cg}/»g XP
—iI(C,C,C3 —C,C,C,)/»2j XP

t (C,—C,C,C,)/»2)XP
t (C3+C,C3ci)/»j X4

—if (C1C2C3+C1C3C.) /&2 jXP
—C Xf

C3CiC3XP
—C3C2C3 XP

Ci xf

Y Z
+ +

+ ~P M0 MZ

TAar.z III. Prentki-d Espagnat Hamiltonian. Bilinear equal-time commutation relations between the component fields (scheme C).

iI (C1C3—C3Ci)/»] X@t: E-
I (Cic3+C3ci)/V2j X4: &+

t (C,C,+C3C,)/»jx@t: E0
iI {C,C,—C,C,)/»jXq: I'

Cic3cic3xy: ~~

Ixy: ~0

C1XP
C3cac3X&
C3C1C, XP

C2XQ
if {Cic2C3+C1C3C2)/» jXf

I (C+C C3C)/»jxg
—

I {Clc2C3 C/C3C2) /&2 jXg
—iI (C3—Cic3ci)/~2 1X

—iT (Cic.C3 —Cic3C2) /W2 jXP
f(C3—C1C3ci)/i2 jXP

—
t (C,C,C3+C,C3C,)/») XP

iT(C3+C1C3ci)/v'2 jXP
—Ci XP

—C3C2C3 XP
C3cic3XQ

C2X&

p y3 n

+ +
+ +

V Y g+ ~~0
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TABLE IV. Prentki-d'Espagnat Hamiltonian. Bilinear equal-time commutation relations between the component 6elds (scheme D).

if(C2C3 C3C.}/V21 Xyt: E
t (C2C3+C3C2)/V2j XP: E+
t (C1C3+C3C1)/V2 1X@t Ep

'T(C,C.—C,C,)/VZ jX@:E
alX@: ~+
—IX&: ~P

C1Xf
C3C3C3 Xf

C1 XQ
—C3C2C3 Xf

z$ (C1C2C3+C1C3C3) /&2 jXf
L (C3+C1C3C1)/~2 jX it

L (C3 C1C3C1)/V2 )Xf
s$ (C1C2C3 —C1C3C2}!&2jXP

—sg(C, C,C3+C,C3C,), ~2) X
L (C3+C1C3C1)/~2 jXP—f (C3—C1C3C1)/~2j Xf

iL (C1C2C3—C1C3C3) /&'& jXf
C2X&

—C3C1C3XP
C3XQ

C3C1C3XQ

n
n

~ g+

~ g
~ Z

~ M

n

+
+
+
+
+

+

+

+

Z+ 2- V Y Z Z Z- g+ ~p ~p
M

expression

XZ'+Z"A =iCiC2XQQ+i CiC~XQ'ip' (12)

This means that, in the scheme considered, Z"Z"m" and
AA~' couplings cannot occur, but that the 2"Am' cou-
pling is allowed. Analogous conclusions can be reached
for scheme D.

According to the correspondences between particles
and generalized fields given in Tables I—IV, all the
processes corresponding to the various terms in the
Prentki-d'Espagnat Hamiltonian are allowed in the
four schemes. At least in schemes A and D, the con-
verse is true: In the context of trilinear, Hermitian,
pseudoscalar, nonderivative Yukawa-type couplings,
all processes not allowed by the Prentki-d'Espagnat
Hamiltonian are forbidden according to Tables I and
IV, respectively. Actually, the selection rules discussed
here do not depend on the precise covariant character
of the interaction, as long as it is trilinear.

In the four schemes, the interaction matrices for
kaonic interactions are proportional to the unit matrix.
The pionic interaction matrices for baryons of even and
odd strangeness are, respectively, proportional to the
diagonal Hermitian matrices C~C3C&C3 and iCiC2.

If for scheme A the coupling constants for the
processes corresponding to any term in the Prentki-
d'Espagnat Hamiltonian are all in phase, multiplication
of the matrix coefficients of the relevant generalized
fields, as tabulated in Table I, ensures in a natural
manner that the phase relations between the various
processes turn out in agreement with invariance of the
interactions under rotations in isotopic-spin space, e.g. ,
the proton and the neutron, as well as the Z+ and 2

particles, couple to the neutral pion with opposite
phase, etc. This agreement of the phase relations with
charge independence of the strong interactions does not
settle the question of the relative magnitudes of the
various relevant coupling constants.

For schemes B and D, analogous conclusions can be
obtained except that in the two terms of the Prentki-
d'Espagnat Hamiltonian, conventionally written as

g[ppn' nniro+—v2(pnir++np7r ))
and

(13a)

lL~O~O P ~+~—o+~2PO~ ++~y~o —
)j (13b)

the signs of the square roots are reversed.
For scheme C, the signs of the square roots are

reversed in the interaction (13a) and in the term con-
ventionally written as

"L&2( '2+K —-+Z K")—=+2'K —-"Z"Koj. (13c)

The selection rules corresponding to the Prentki-
d'Espagnat Hamiltonian, as obtained from Tables I,
II, and IV, are independent of charge conservation. In
other words, direct processes like

(14R)
and

(14b)

etc. , cannot occur in the ahsence of electromagnetic
interactions or if charge were not conserved. As a
consequence of charge conservation, corresponding
fields in the two chains (9a) and (9b) di6er in charge
by one unit. In this connection, it may be worthwhile
to recall that the matrices C~ and C~ or C~ and C3C2C3
are completely equivalent. If, therefore, in Tables I—IU
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V=—ZP or A (Sc)

Z=—A. or

However, Eqs. (8c) and (Sd) give rise to a less favorable
agreement with the Prentki-d'Espagnat Hamiltonian
than Eqs. (Sa) and (Sb) do.

DECOMET

If the complications encountered in the quantization
of higher-spin fields are disregarded, such fields can be
included in this discussion. Using the octet as a guide,
the symmetry of the decimet can be generated in a
straightforward manner. The simplest procedure is to

the substitution p+-+ n is made, with corresponding
substitutions for the other fields, completely equivalent
schemes are, of course, obtained.

For scheme C (Table III) the selection rules are not
independent of charge conservation. In the absence of
electromagnetic interactions, several octet baryons
would become identical, and if charge were not con-
served, strangeness-nonconserving transitions could
occui.

Instead of the identifications (8a) and (8b), it is
possible to consider the correspondences

start with the singlet of strangeness —3 and to multiply
the matrices associated with the 0 field by the matrices
associated with the E' and E+ operators, and similarly
to multiply the matrices associated with 0 by the
matrices associated with the K' and E operators. This
procedure can then be repeated for the "*doublet so
obtained to generate the Z* triplet (Table V), etc. This
procedure can, in fact, be continued indefinitely to
generate multiplets of baryons of positive strangeness.
Two such quintuplets of "X particles" of strangeness
+1 have been included in Table V. An inspection of
these hypothetical quintuplets shows that they give
rise to strangeness-nonconserving transitions. There
appears to be no obvious reason, for example, why
direct AS=+4 pionic or electromagnetic transitions
from X~ to Q~ or from X2 to 02 cannot occur if such
quintuplets were to exist.

There are a number of diferent generalized fields
which can a priori be associated with the singlet of
strangeness —3 and which would give rise to a corre-
sponding number of diferent sequences of fields. The
matrix coe%cients of the 0 particle must be contained
in set 8 LEq. (5)g. The most obvious eight candidates
for the matrices to be associated with the 0 field are
)the matrix coefficient associated with a generalized

TABLE V. Sequences of fields generated from a singlet by kaonic transitions (scheme A). a

+Q

p+

0+

++

0+

0iii

+Q

+

g 0

g 0

g+

g ++

XI+
XI
X,p

Xlp

X1+

X1+I1

+++

i(C,—C,C,C,) XP:
(CIC2C3 —CIC3C2) Xf:

iC2XQ:
iC,C,C, XlJ"
C3CIC3XP:

—C2 XP:
(C3+CIC3C1) XP:

i(CIC2C3+C1C3C2) Xf:
s (CIC2C3 —CIC3C2) XP:

{C3—C1C3C1) Xf:
(C3+CIC3CI}XP:

i(C C2C +CIC3C2) xg:
C3C2C3XP:

C1 Xp:
—iC1xig:

iC3C. C, XP:
C3C2C, xp:

CI XP:
—iC1 XP:

iC3C2C3 XP:
-i(C3- C,C3C,) XP:

—(CIC2C3 Cl C3C2) Xf:
(CCC+CCC)XP:

i (C3+CIC3C1) Xf:
—i (C3 —CIC3C1) XP:

—(CIC2C3 —CIC3C2) XP:
(C,C,C.+C,C,C,) xp:

i{C3+CIC3C1}Xf:
—i(C3 —CIC3C1) XP:

—(C,C,C,—C,C,C2) xp:

02
M +Q
w2

M2

piled

~2
0 ill

M

P +0

Q)/c

QQ

+4

p+

g 0

g 0

g+
b,2

++

X2+
X2
X20
X20

X2
X2+

X2
++

X2
X,+++

—(C3+CIC3C1) XP:
i (CIC2C3+CIC3C2) Xf:

—C3C2C3 XP:
C1 Xf:

—iC1 XP:
—iC3C2C3XP:

—i(C3—CIC3C1) XP:
(CIC2C3 —CIC3C2) Xf:

—(C,C,C,+C,C,C2) XP:
i(C3+CIC3C1) Xf:

—i (C3—CIC3C1) XP:
(CIC2C3 —CIC3C2) XP:

—iC2XQ:
iC3CIC3 Xf:
C3CIC3 XP:

C2XP:
—iC2 XP:

ic.c,c,xp:
C3C,C3XP:

C2xf:
(C3+CIC3CI) XP:

—s (CIC2C3+CIC3C2) Xg:
—s (CIC2C3 C1C3C2) XP:

(C3—CIC3C1) XP:
(c+cc c)xp:

—i (C1C2C3+CIC3C2}Xf:
—i(C1C2C3—CIC3C2) XP:

(C3—CIC3C1) Xp:
(C,+C,C,C,) XP:

—i(c,c,c.+c,c,c,) xp:
a Some normalization factors 1/&2 have for simplicity been omitted.
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TAsrx VI. Octet and decimet (scheme A}.'

2033

—C3C2C3XQ: .+

C1XQ: "
e3C1C3XQ: ='

—Cxf:'
—i{C3—C,C,C,}X/: ~+

(c,c,c.-c,c,c,) xp: ~
(C1C2C3+C1C3C2) Xg: Z
—i{C3+e1C3C1)Xf: ~

i(C1C2C3—C1C3C2) XP: F
('C3 —C1C3C1}Xf: ~
(C3+C1C3C1)X1t: &

i(C1C2C3+C1C3C2) Xf: Z+

C3C1C3XP: &

C2XQ: e
C3C2C3XP: P

e1xp: p

i{C3 ClC3C1) XP:
(C1C2C3 C1C3C2) X~:

~

~

ic2XQ -'

iC3C1C3 Xf:
C3C1C3XP:

—C2XQ:
(c,+c,c,c,) xp:

i {C1C2C3+C1C3C2)XP:

i (C1e2C3—C1C3C2) XP:
(C3—e&C3C&) Xf:
(C3+C1C3C1)Xp:

i(C1C2C3+C1C3C2) XP:
C1 Xf:

C3C2C3XP:

(
ie3C2C3XP:

—iC1 Xf:
C1 Xp:

C C2C3Xp:

~
ic,e,c,xp:

—iC1 Xf:
—i(e3—C1C3C1) XP:

—(C1C2C 3
—C1C3C2) Xf:

(C1C2C3+C1C3C2) Xllt'
i(C3+e1C3C1) XP:

01+

M0$

+Q

X1
X1+
X1
X++

—{C3+C1C3C1)XP:
i{C1C2C3+C1C3C2)XP:

—C3C2C3XQ:
C1Xf:

—iC1 Xf:
—zc3C2C3 XW:

—i(C3 —C1C3C&) XP:
(C1C2C3—C1C3C2) Xf:

—{C1C2C3+C1C3C2)XP:
i(c,+c,e,c,) xp:

—i(C3—C1C3C1) XP:
(C1C2C3 —C1C3C2) Xtt'

(
iC3C1C3 XP:

—iC2XQ:
C2XQ:

C3C1C3X&:
~

~

ic3C1C3Xf:
—ie2XQ:

C2xp:
C3C1C3XQ:

(C3+C1C3C1)XP:
—i (C1C3C3+C&C3C2) Xf:
—i(C1C2C3 —C1C3C2) XP:

c,—c,c,e,) xp:

a+)
+0
+0

::)
Q++

X3
X2+
X

)
' Some normalization factors 1/& have for simplicity been omitted.

field X is denoted by M(X)]

M (Q) =~i (CzCzCQ+ CzC3C2)/K2,

&z (CzCzCz —CzCzCz)/K2,

~ (Cz+CzCzCz)/v2, & (Cz —CzCzCz)/V2 (15a)

and, correspondingly,

M (&)= (Cz+CiCzCz)/K2, (Cz —CzCzCz)/K2,

i (CzCzCz+CzCzCz)/v2,

z(C,C,C, —C,C,C,)/v2. (15b)

The matrix coefIicients of the 0 fields as given in

Table U have been selected in such a manner that for
scheme A, a kaonic transition from ~ to Qi and from

a kaonic transition to 02 are possible. The corre-
sponding sequences for schemes 8—D can readily be
constructed but are not explicitly reproduced.

An inspection of Table V shows that direct strange-
ness-nonconserving transitions from 6 to 0 are possible.
Corresponding transitions can occur in the other
schemes. These transitions can be eliminated by the
simple device of interchanging the matrices associated
with each quadruplet held and its adjoint. Direct pionic
and electromagnetic transitions from the strangeness-
zero doublet to the quadruplet are still possible, but
the quadruplet helds cannot enter directly into kaonic
transitions. This device cannot be used to eliminate the
X=0 transition. For scheme A, the decimet as listed
in Table VI is then obtained by selecting for consider-

ation those fields from the two sequences of Table V
which can be reached from the octet via electromag-
netic, pionic, or kaonic transitions. The decimets for
schemes 8—D can be obtained in a similar manner but
again are not explicitly reproduced. Those fields in
Table VI which are enclosed in large parentheses cannot
be reached from the octet via direct transitions. Table
VI also includes some generalized fields suitable for the
description of positive-strangeness baryons. Such fields
(pE' and pF+ resonances), which cannot be classified
according to the simple quark model, are believed to
have been observed and have been discussed in the
literature. "The positive-strangeness baryons included
in Table VI of course do not necessarily have to have
spin g.

In this discussion, it is assumed that the generalized
held corresponding to the 0 particle is a superposition
of two independent, presumably degenerate fields.

In a previous discussion, ' the field assigned to the 0
particle consisted of a single field rather than a super-
position of two fields. However, as a consequence the
fields corresponding to I' and Z were identical in their
interactions, and the prospects of removing the Y-Z
degeneracy were poor.

The assignment of the same matrices to diferent

"O. W'. Greenberg and C. A. Nelson, Phys. Rev. Letters 20,
604 (1968);A. S. Carroll et al. , ibid. 21, 1282 (1968);B.R. Martin,
ibid. 21, 1286 (1968); A. H. Rosenfeld et at. , Rev. Mod. Phys. 41,
109 (1969); O. W. Greenberg and C. A. Nelson, Phys. Rev. 179,
1354 (1969).
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6elds, such as 6+ and 6, can be circumvented by
utilizing some of those matrices from sets ~i and 8
which have not been used. ' For the decimet, the
selection rules are explicitly dependent on charge
conservation, because in all four schemes strangeness-
nonconserving transitions, such as from 0 to p or n,
could occur if charge were not conserved. The free-field
and interaction matrices are again all diagonal, kaonic
interaction matrices being proportional to the unit
matrix.

For the correspondences between generalized fields
and baryons considered, the relation

M(O) = (M(%))'

is not valid. Instead, one obtains for baryons of even
strangeness

M (4) =WC4C, CgC4M (+)= &C4C4CgC4(M (4')), (17a)

whereas for baryons of odd strangeness,

M(@)=~4C,C,M(%) =~4C,C4(M(+)) . (17b)

Furthermore, for each generalized field considered,

M(x) =&(M(x))t. (17c)

LEPTONS AND INTERMEDIATE BOSONS

The guiding consideration in selecting generalized
fields to represent the leptons and intermediate bosons
is that the proper selection rules be satisfied: In the
context of trilinear interactions, no baryon should be
allowed to decay into a lepton, and the intermediate
bosons W~ should have the decay modes

TABi,K VII. Some bilinear equal-time commutation relations
between the component 6elds for the assignments given in Eqs.
(18) and (19).

74. C4XP,
l4. C4C2C4XQ,

l4' C4CiC4XQ,

l4. C4XQ,

lV+: CiC3C2C3X&„,

E2'.

l4.

C4XQ,

C4C2C4XQ )

C4CgC4X Q,

C2Xg,

CIC3CgC3X&„t.

consequences, mill be mentioned. In this connection
it is to be expected that the differencebetween the four
hadronic schemes A—D will become manifest, since
these schemes di6er, in particular, in the generalized
fields representing the kaons and the charged pions. By
combining the various hadronic schemes with the
leptonic correspondences to be discussed, compre-
hensive systems of fields are obtained which differ in
some allowed weak processes and in some couplings
involving only integral spin fields.

The hadronic and leptonic schemes considered in
this discussion should not be construed as exhausting
all possible correspondences between particles and
generalized fields.

For schemes A and 8, the following correspondence
between generalized fields and leptons gives a quali-
tatively correct description of the selection rules satis-
fied by leptons, assuming that all their fundamental
couplings are trilinear in the fields concerned:

where lj and l2 are electronic and l3 and l4 are muonic
leptons, or vice versa. Furthermore, in the context of
trilinear interactions, no muonic lepton should be able
to interact directly with an electronic lepton. More-
over, the generalized fields representing the inter-
mediate bosons should not be able to cause undesirable,
e.g. , AS=~2, transitions in the hadronic systems
discussed above.

There are several a priori possibilities of selecting
generalized fields to represent the particles under
discussion. Several alternatives, which have different

Some bilinear equal-time commutation relations for
the correspondence (18) are given in Table VII.

A modification of the correspondence (18) can be used
in conjunction with schemes B and C:

li: CiXQ,
l~: C4C4C4XQ,

l4: C4CiC4X4',

l4: C2XQ,
IV+: iCIC3C2C3X@„,

Zi e

E3'.

E4..

C4XQ,
—C4C~C4XQ,
—C4CrC4X Q,

C2XQ,

i CIC3C2C3X&„t.

(19)

Table VII also applies to the correspondence (19).
In conjunction with all four hadronic schemes, the

following two correspondences can be considered:

I&. CzXf,
l2. iL (CgC4C4+CgC4C2)/v2) X4,
4: C2XQ,

/4.. —$(C4 —CgC,C4)/v2)X4,
LV+: iCICgX&„,

E2.

Z3

Z4 e

L (C4+ CgC4C&)/v2) Xp,
—C4C4C4XQ,

iDC4C2C—4 CgC4C2)/-V2) XQ,
C4CiC4XQ,
—CiCBCgC3X p.'

(20)
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and
fi: CiXW,

l2. i [(CiC)C3+6 iCiC, )/v'2] Xp,
l3: C3CiC3Xtf',

/4. —[(C,+C,C3C,)/v2]XQ,
1V+: iCgC2X@„,

l4.

[(Cg+CiCiCi)/K2] XP,
—C3C2C3Xf,
—i[(CiC2C3+ CiCBC2)/v2] XQ,

C2XQ,
—CgC3C2C3X @„~.

(21)

Some bilinear equal-time commutation relations for the last two assignments are summarized in Table VIII.
In conjunction with scheme C, the following correspondence can be considered:

li: CiXQ, l, : [(C,+C,CBC,)/v2]Xy,
4: C2Xf, l2. i[(CiCgC3 —CiC3Ci)/v2]XQ,
lg.'CiCiCiXQ, la. —[(Ci—CiCiCi)/v2]XQ,
/4' . C3C~C3XQ, I4 ~ i[(CiC2C3+ CiC3C2) /K2] Xp,

If —:[(C,C,+C3Cg)/v2]XQ„, II'+: r[(C2C3 —CiC2)/v2)Xp„t.

(22)

Table VIII also applies to this correspondence.
Other assignments can be obtained from the ones

given above by making suitable substitutions, such as
C~ ~ C2, for example. These substitutions lead in some
cases to leptonic assignments with di6erent conse-
quences once the hadronic fields have been selected in
a definite way, such as in schemes A—D.

As already mentioned, the four hadronic schemes,
when considered in conjunction with the leptonic
assignments, do not all have the same implications
concerning the interactions of the various particles.
The intermediate bosons of assignment (19) can, for
example, be directly coupled to the pions, as repre-
sented in all four hadronic schemes, whereas the inter-
mediate bosons of the other schemes cannot be coupled
in this manner. In some combinations of assignments,
the intermediate bosons cannot be coupled to any
baryon, whereas in other cases, processes like

and

~ I'+N' (23a)

r+ ~ Z+tCr+ (23b)
are possible.

In all the assignments (18)—(22), Hermiticity re-
quirements and bilinear equal-time commutation
relations permit the coupling of the four leptons, so
that, at least in a first approximation, a Fermi-type
coupling can be considered in the study of muon decay.
For a suitable assignment of the four I s to the leptons,
the proton and neutron can be coupled to two leptons
in some combinations of schemes but not in others, i.e.,
in some but not all cases a Fermi-type interaction can
be considered, at least as an approximation, in the
study of the P decay of the neutron.

Some other differences in the implications of the
various schemes will be mentioned below.

In this discussion, the purely leptonic interactions
(e.g., p decay) are assumed to be of the current-current

OTHER BOSONS AND DECAYS OF HADRONS

In order to correlate some elementary particle
phenomena even qualitatively, it is obviously necessary
to introduce more integral-spin fields into this dis-
cussion. One way of accomplishing this is to consider
the neutral, self-adjoint, scalar or pseudoscalar gen-

TABLE VIII. Some bilinear equal-time commutation relations
between the component fields for the assignments given in Eqs.
(20}—(22}.

+
+
l1 LI

+
+

l2 l2

+
l„- Lg l4

+
L4

form in the limit of an infinitely massive intermediate
boson. However, if four fermion interactions are ex-
cluded, then in any one of the schemes under con-
sideration in which the intermediate boson cannot be
coupled directly to any baryon, the weak decays of
hadrons must proceed via intermediate couplings in-
volving three or more integral-spin fields (cf. next
section). This is hardly consistent with the conventional
current-type weak interaction. However, whereas in
the limit of an infinitely massive intermediate vector
boson the current-current-type weak interaction ap-
pears to be well established for purely leptonic pro-
cesses, there appears to be room for reasonable doubt
in this respect in connection with the decays of hadrons.

The absence of direct couplings between baryons and
intermediate bosons is also consistent with the negative
results of experiments on intermediate boson pro-
duction. If such bosons cannot interact directly with
baryons, the only remotely realistic experiments con-
firming their existence would have to proceed via
electromagnetic or neutrino-charged lepton interactions.
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eralized fields

B,= t (C,C,+C.C,)/&2jx@,

B2—iDC3C3 C—3C3)/425 X$ (24b)

B3=3DC3C3 C3C2)/&2)X413, (24c)

B4 L(C3C3+C3C3)/&2j X P . (24d)

The corresponding fields for spin 1 are denoted by 8;*.
For 7~=0 these generalized fields could, on the

basis of the selection rules which they satisfy, con-
ceivably be correlated with the g, g', and F(1420)
resonances, whereas for J~= 1 some of the 8;* could
represent the co and p resonances.

In none of the hadronic schemes discussed can the
bosons (24) interact directly (trilinearly) with any
baryons. If, therefore, one of the generalized fields (24)
is to represent the q resonance, the meson-baryon cou-

pling considered in this discussion is different from the
corresponding coupling in the conventional octet model.
The fields (24) can be coupled directly to kaons, and
in schemes 8—D they can interact directly not only with
neutral but also with charged pions. Moreover, all the
leptonic assignments (18)—(22) permit a direct cou-
pling of the fields (24) to leptons. Such a coupling
would, of course, give rise to neutral lepton currents.
The p (kaonic) resonance, for example, reportedly has
an empirically observed small but finite branching ratio
of decaying into electron-positron pairs. " "This decay
could conceivably be due to a direct coupling.

The four fields (24) differ from each other in their
allowed couplings, and therefore they presumably are
nondegenerate. In schemes A and 8, for example, the
fields 83* and 84~ can be coupled directly to charged
kaons, whereas the fields 8~* and 8~* cannot. The 6elds
B3" and B4" (as well as Bi* and B3*) diRer from each
other in their possible leptonic decays. For the assign-
ment (21), the following hypothetical decays are
allowed:

(25)

The leptonic assignments (18)—(22) diRer from each
other in their interactions with the fields (24). For the
assignment (22), the allowed decays are not given by
Kq. (25). Instead,

Bg*~ lj.+lg or l3+l3, (26a)

82* —+ l2+ l2 or l4+/4 ~ (26b)

83* and 84* cannot decay directly into leptons in this
case.

The fields (24) thus do not necessarily interact with
the leptons in a symmetric manner. It is therefore
possible that in one of the leptonic assignments (18)—
(22), or in a similar assignment, the electron-muon
degeneracy may be removed by an asymmetric inter-

"R. G. Astvacaturov et cl., Phys. Letters 27$, 45 (1968)."D.M. Binnie et u/. , Phys. Letters 278, 106 (1968).' U. Becker et a/. , Phys. Rev. Letters 21, 1504 (1968).
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action of the leptons with generalized fields like 8;*
(cf. next section).

The intermediate bosons of assignments (20) and

(21) cannot be coupled directly to baryons. In com-
bination with schemes A and B, the leptonic strange-
ness-changing decays of hadrons could proceed via
the virtual interactions

K+ ~ 8++Bi or Bg.

Such decays conform with the AS= AQ rule.
Superpositions of neutral kaons of the form

(27)

POSSIBLE CAÃCELLATIONS OF SOME
DI7ERGENCES

There appears to be no obvious reason why the
conventional 5-matrix formalism cannot be applied to
generalized fields.

As an example of the possible cancellations of some
divergences, it is expedient to study the lowest-order
corrections to fermion propagators (Fig. 1).

It is assumed that both pions and kaons are pseudo-

K'+e"K"=L(CiCa+CaCi)+ ie' (CiCa —CaCi)]XC (28)

can be coupled to neutral pions in scheme A and to
neutral and charged pions in schemes 8—D. As has been.
discussed previously, ' the component fields of Ko and
K' lose their separate identities when these fields are
coupled to other bosons. Therefore, only one component
field has to be considered in such couplings, as indicated
in Eq. (28). If the phase a is equal to zero or to a
multiple of x, the matrix coefIicient on the right-hand
side of Eq. (28) is singular, only two elements being
different from zero. This implies that for these values
of the phase, the fundamental equivalence of the four
Lagrangian densities of the component fields (cf. Intro-
duction) is destroyed. The equivalence of the four
I.agrangians can be maintained if n is equal to an
odd-integral multiple of ~m, in which case the four
nonvanishing matrix elements differ only in phase.
Cther values of o. and superpositions more general
than (28) may have to be considered. For the inter-
action under consideration, the interaction matrix is
non-Hermitian, at least in the representation discussed.

Table Ix summarizes some bilinear equal-time corn-
mutation relations between the component fields for
scheme D and the leptonic assignment (21). Tables of
this type faciliate the checking of allowed and for-
bidden processes. It must be remembered that in
addition to the bilinear commutation requirements
of component fields entering allowed interactions, the
latter must be Hermitian. There may also be other
factors inhibiting some interactions. The commutation
relations of the fermion-fermion and boson-boson com-
ponent fields are not tabulated, but these can readily
be obtained. Some trilinear or higher-order interactions
involving only integral-spin fields also have to be
considered.

l'ic. I. J.owest-order corrections
to fermion propagators. The labels
refer to particles.

scalars. The lowest-order correction to spin-2 baryon
propagators due to pseudoscalar interactions is con-
tained in the second-order 5-matrix element

—~G '1
S"'= — — d'xi d xiT(iV(%'„(xi)+5%a(xi))

Ac 2.'

M(C a)M(C a) Xb(+a,%a)' (30a)
and

M(Ct)M(C') Xb(C't, C), (30b)

respectively, where the 8's are operator Kronecker 8's.
The factors (30) commute with all the generalized fields.

If the external lines are proton lines, the four matrix
factors, as obtained from Eqs. (30) for scheme A,
associated, respectively, with the four allowed loops are

Si=M(P) M—(P)M (~')M (~")Xb (P,P)b (~",w")

= CiCaC, Ca Xh (P,P)b (ir', m'),

S,—=M(n)M(n)M(ir )M(ir+)Xb(n, n)b(ir —,s+)
=CiCaCiC, (—I)Xb (n, n) b (ir—,ir+),

Sa—=M(Z+)M(Z )M(Ka)M(K')
Xb(Z+)Z )b(K', K') = iCiCiaCiCaCiCa

Xb(Z+, Z ) (Kb', K'),
S4=M(Y)M(Y)M(K )M(K'+)Xb(Y, Y)b(K,K+)

= iCiCii C.CaC.Ca Xh (Y,Y)b (K,K+) .
Since

(31)

b(p, p)h( ', ")=b(n, n)b(, +)
=b(Z+, Z )b(K',K') =b(Y,Y)h(K,K+), (32)

matrix multiplication yields the result that

SI ——52= —53= —54, (33)

i.e. , up to phase factors, the matrices associated with
the four loops are equal, and the matrices associated
with the kaonic loops are 180' out of phase with the

XX(C a(xo)pa%'. (x.)))T(C (xi)C (x&)). (29)

The 6eld operators occurring in Eq. (29) are generalized
fields.

As an approximation, only the interactions of spin-2
baryons with each other and with pions and kaons will

be considered. Electromagnetic efI'ects and loops due
to higher-spin fields will in this approximation be
disregarded.

The standard calculation yields the usual result that
the coefFicient of the logarithm is proportional to O'M,
where M is the mass of the intermediate baryon Ii2

(Fig. 1). In addition, the contractions of the generalized
fields 4'a and 4a and of Ci and C Lcf. Eq. (3)j give rise
to the factors
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These equations are valid for all four hadronic schemes
discussed.

The generalized fields V and Z and their masses have
been used in Eqs. (34) rather than Z and A and their
masses.

The coupling constants in the above equations are
not all independent:

61„2 Q2o2 6132 @3~2 (35)

Assuming charge independence of pionic interactions
and setting Nq+=Mi, M„=M„,and G1~'=2614', one

matrices associated with the pionic (and electromag-
netic) loops, although both pions and kaons are assumed
to be pseudoscalars. A similar result is obtained if the
external lines are associated with any one of the other
octet baryons. Moreover, these results are valid in all

four hadronic schemes A—D. The 180' phase difference
is due solely to the matrix structure of the generalized
fields.

For spin-2 baryons of even strangeness, all the loops
are associated with the matrices ~C1C3C2C~, whereas
for external baryon lines of odd strangeness the loops
are associated with the matrices &~C1C2.

The 180' phase difference between the matrices
associated with the kaonic and pionic loops raises the
possibility of canceling out the logarithmic divergence
associated with the lowest-order self-energy correction
to the propagators. For each one of the eight baryons,
an equation involving the baryon masses and coupling
constants is obtained by equating the algebraic sum of
the O'M terms to zero. The eight resulting equations
contain a considerable number of "unknowns" (i.e.,

mass and coupling-constant ratios). An assumption
concerning the relative magnitudes of coupling-constant
ratios, such as charge independence of nuclear forces,
would, of course, reduce the number of unknowns. It is
also conceivable that from other requirements and
conditions, additional equations can be obtained for the
same and possibly other unknowns.

The following eight equations for the baryon masses
and strong-interaction coupling constants are derived
without making assumptions such as charge inde-
pendence /the notation is obvious: Gqr ——G(pps. "),
Grg ——G(pns. +), etc.j:
Fg p: GgPM„+——Gg2'M. =Gu'Ms'+G&4'Mr) (34a)

F1—— ~ .. G21'Mn+G22'My= G23'MZ+G24'M. —, (34b)

Fg ——Z+: G3$ M +GQ2 Mg G33 My+G34 M-. o, (34c)

Fg V: G4pMr+——G422Mx- ——G,pM„+G44'M-.o, (34d)

Fi= 8: G.-PMz+G;2'Mx =G.-3'M~+G5~'M=--, (34e)

Fg ——Z—:G6PMs-+G62'Mr =G632M„+Gs4'M-.—, (34f)

Fg= ". G7PM-. o+GpPM=--=G7a'Mz++GpPMr, (34g)

Fr=Z: Gsg'M=-+G82'M-. o=G83'Mg+G84'M~-. (34h)

obtains from Eq. (34a) by naively substituting the
physical values for masses and coupling constants in
the equation

G,32/Ggp=M„/M +=0.8. (36)

This ratio of the kaon and pion coupling constants,
though smaller than unity, is too large to conform with
present estimates. Nevertheless, in view of the approxi-
mation made in disregarding loops due to higher-spin
fields, the value obtained for the coupling constants
ratio (36) is not entirely unreahstic.

The 180' phase difference between matrix elements
of interactions of an external line with diferent fields
introduced by the matrix structure of the generalized
fields can conceivably also be used to eliminate the
quadratic divergence of the lowest-order weak self-

energy of leptons arising from the emission and re-
absorption of charged intermediate vector bosons. As
will be explained, the removal of the divergence may
also remove the electron-muon degeneracy. Since the
couplings of vector bosons to leptons are less well
understood than pseudoscalar meson-baryon couplings,
this part of the discussion is necessarily speculative
and incomplete.

In addition to hypothetical interactions with inter-
mediate bosons, leptons are known to interact with
other vector bosons such as the p'" " and p' ' reso-
nances (and possibly also with the co resonance). Just
as for the case of meson-baryon interactions discussed
above, the matrices associated with all the loops (due to
allowed interactions with bosons) modifying any
external lepton line are equal up to phase factors. By
way of illustration, it is instructive to consider the
correspondence (21). The loops due to interactions of
the lepton /1 with the p' and B1* resonances are asso-
ciated with the matrix +(CrC~+C3C~), whereas the
matrix associated with the loop due to emission and
reabsorption of intermediate bosons is —(CrC3+C&C~).
If the interactions of /1 with the B1 and p' resonances
also give rise to quadratic divergences, and if the 180'
phase difference due to the matrix structure of the
fields is not compensated by phase differences due to
the form of the interactions between /1 and 8' on one
hand, and between /1 and p' and B1 on the other hand,
then the algebraic sum of the coefFicients of all the
quadratic divergences can be equated to zero to yield
an equation presumably containing the masses of p",
B1*, l4', and /1 and the relevant coupling constants. The
p" resonance is assumed to be associated with the unit
matrix (cf. Table IX). A similar analysis applies to the
lepton /~, for example, except that according to Eq. (25)
this lepton can interact with B4* instead of with B1*.
In this case, the coefFicient of the quadratic divergence
will be a function of the masses of B4* and /4 instead of

"See, for example, S. C. C. Ting, in Proceedings of the Third
International Synsposiunt on Electron and Photon Interacti'ons at
IFigh Energies, Stanford Linear Accelerator Center, i%67 {Clearing
House of Federal Scientific and Technical Information, Washing-
ton, D. C., 1968).
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the masses of Bi* and li, other parameters, except
possibly coupling constants, remaining the same if
corresponding interactions of li and l4 are similar, and
if it is assumed that the masses of /2 and /3 vanish. If
the masses of BI*and B4*,which are determined at least
in part by strong interactions, are not equal, the masses
of /I and l4 can also be expected to be different. If /I

and /4 are assumed to correspond to the electron and
muon or vice versa, the degeneracy between them
could conceivably be removed in this manner.

Further investigations along the lines suggested in
this discussion are in progress.

Recently, another attempt has been made to relate
representations of operators satisfying trilinear or
higher-order commutation relations to the internal
symmetries of elementary particles. " It is also proper
to mention that several years ago renewed interest in
higher-order commutation relations was stimulated by
Volko .""

~ A. B. Govorkov, Zh. Eksperim. i Teor. Fiz. 54, 1785 (1968)
/English transl. : Soviet Phys. —JETP 27, 960 (1968)j."D. V. Volkov, Zh. Eksperim. i Teor. Fiz. 36, 1560 (1959)
t English transl. : Soviet Phys. —JETP 9, 1107 (1959)j.

2~ D. V. Volkov, Zh. Eksperim. i Teor. Fiz. 38, 518 (1960)
t English transl. : Soviet Phys. —JETP 11, 375 (1960)j.
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A general discussion is given of the matrix element for the decays E'~ ~~e+e; then, using the
results of the vector-meson-dominance model to predict the E2'Ei' electromagnetic transition radius, par-
tial conservation of axial-vector current and current algebra to predict the E20 —+ ~+~ y transition rate,
and the experimental value of the CP-violating parameter ~, we find the following branching
ratios: 1 (EI„~~+~ e+e )/F(EI, ' —+ all) =1.7)&10 ', I'(EI.' —+ x rr'e+e )/F(EI, —+ all) =0.2)(10 7, and
F(E ' + e+e )/1 (E,p' all) =2.0)&10 '.

I. INTRODUCTION
' 'X this paper, we propose to study the decays of the
~ - neutral K mesons into two pions and an electron-
positron pair. In some of these decays the contribution
from the bremsstrahlung diagram is absent or very
much suppressed, so that the decay amplitudes are
governed by the structure-dependent terms in the
K ~ 2~y vertex and the E2 Kio electromagnetic transi-
tion amplitude. From the theoretical point of view, both
these processes are important. The value of the K2 E i p
transition radius is predicted by the theory proposed by
Kroll, Lee, and Zumino, ' who assume that the entire
hadronic electromagnetic current operator is to be
identified with a linear combination of the renormalized
Geld operators for the neutral vector mesons' p', co', and

t Research sponsored in part by the Air Force Ofhce of Scientific
Research, Ofhce of Aerospace Research, U. S. Air Force, under
AFSOR Contract/Grant No. 69-1675.* Present address: Physics Department, Syracuse University,
Syracuse, N. Y. 13210.

' X. M. Kroll, T. D. Lee, and B.Zumino, Phys. Rev. 157, 1376
(1967).' J. J. Sakurai, Ann. Phys. (X. Y.) 11, 1 (1960); M. Gell-Mann
and F. Zachariasen, Phys. Rev. 124, 953 (1961),

p'. Accurate data for these decays may even distinguish
between predictions of the mass mixing and the current
mixing models of the co-p system. Evaluation of the
E —+ 2xy structure-dependent terms from these decays
will check the models proposed in the literature. '
Finally, these decays oA'er a good opportunity to study
the various consequences of CP-violating effects, be-
cause both weak and electromagnetic interactions play a
role in the decay amplitude. 4

The plan of this paper is as follows. In Sec. II, we
begin by studying the general structure of the matrix
elements for E' —+x~y and E' —+mxe+e decays. The
CI' properties of the various terms are discussed. Then
we calculate the decay spectra in the dipion and
dilepton invariant masses and the decay rates are ex-
pressed in terms of form factors which are taken to be
constants. In Sec. III, we indicate how the different

' H. Chew, Xuovo Cimento 26, 1109 (1962); S. V. Pepper and
Y. Ueda, ibid. 33, 1614 (1964); S. Oneda, Y. S. Kim, and D.
Korff, Phys. Rev. 136, 1064 (1964); C. S. Lai and B. L. Young,
Xuovo Cimento 52A, 83 (1967).

4 A. D. Dolgov and L. A. Ponomarev, Yadern. Fiz. 4, 367 (1966)
t English transl. : Soviet J. Xucl. Phys. 4, 262 (1967)j; G. Costa
and P. K. Kabir, Xuovo Cimento 51A, 564 (1967).


