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The existence of the covariant 7" product of any number of currents is investigated without introducing
any extraneous assumptions. We find that it does exist and can be constructed explicitly by an algebraic

method.

I. INTRODUCTION

OME time ago it was pointed out by Johnson! and
by Bjorken? that the time-ordered product of two
currents is in general not covariant. The construction
of a covariant one has been studied by Brown® and
others*—¢ within the framework of canonical filed theory.
In this approach, one assumes that the currents under
consideration are obtained from a Lagrangian through
a gauge principle. By studying the response of the sys-
tem to hypothetical external perturbations, one can
show that there should exist a covariant version of the
T product.

In this paper, we investigate the existence of the co-
variant 7 product for any number of currents without
introducing the extraneous assumption that the currents
have any connection with a gauge principle.” We assume
only that the equal-time commutators of two time
components are the usual ones and that the commuta-
tors of their time and space components contain terms
which are no more singular than the first derivatives of
a 6 function. We assume that the Schwinger terms are
operators plus possible infinite ¢ numbers. However the
infinite ¢-number Schwinger terms can always be
ignored in considering the 7 products. The reason is
that they can always be removed by subtracting the
vacuum expectation values of the 7" products from the
T products; that is, by considering only the connected
diagrams. So only operator Schwinger terms need to be
considered. We assume that these operator Schwinger
terms are well defined so that Jacobi identities for cur-
rents, for example, are satisfied.
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Only conserved currents are considered in this paper.
For the case of nonconserved currents, if the 7 product
is not so singular, we suppose that similar methods can
be applied but would be rather complicated. It should
be stressed that the covariant amplitude for noncon-
served currents,? if it exists, would not be the same as
that for the conserved currents discussed here.

The result we get is that there alwayvs exists a co-
variant T product for any number of currents, which
can be constructed explicitly by an algebraic method.
Furthermore, the divergences of this covariant 7T
product are, as expected, those which one would obtain
from an ordinary 7" product if Schwinger terms were
consistently ignored.

For many applications, like soft-pion theorems, one
only needs to know that such a covariant 7' product
exists. In other cases, one needs to know the explicit
form of the covariant 7" product. For example, the use
of Bjorken’s procedure to find the high-energy behavior
of a covariant amplitude requires a knowledge of its
explicit form. General operator expressions for the co-
variant T products are given here.

The paper is organized as follows: In Sec. II, we
examine the case for two isovector currents to familiarize
ourselves with the problem. In Sec. III, three and more
currents are considered in the simple case when the
Schwinger terms are Lorentz scalar operators. In Sec.
IV, the general case is studied.

II. TWO CURRENTS

In this section we study the simple case of two cur-
rents. We first show that time-ordered product of two
currents defined in the usual way is not a Lorentz co-
variant operator. Then the existence of the covariant
one is demonstrated.® By studying the simple case first,
one may gain some insight into the general case of n
currents.

The currents under consideration, e.g., 7,%(x), 7,%(y),
Jn°(2), etc., are assumed to be conserved, and they
satisfy the following equal-time commutation relations:

[70%(x),70°(¥) J6(x0—y0) = €avcjo*(¥)8(x—y), (2.1)

8S. L. Adler and D. G. Boulware, Phys. Rev. 184, 1740 (1969).
® Similar methods were used in the work of D. G. Boulware,
Phys. Rev. 172, 1625 (1968).
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L70%(%), 7x*(%)18(x0—30) = €abe j1(¥)(x—7)
—=Sut(y)d:i8(x—y), (2.2)

where a, b, ¢ are isospin indices, and S;°® is
the Schwinger term. We wuse the metric that
2= (%1,%2,%3,1%0). Henceforth, the Greek letters u, v,
n, etc. are used as Lorentz indices, and the space indices
are denoted by k%, I, m, n, r, etc. Also, the repeated
indices denote summation.

The time-ordered product 7,,*° of the currents 7,%(x)
and 7,%(y) is defined in the usual way by

Tt =T(5.4(x),*())
= (%) 7,(y)6(%0—yo)
+5.°(3) 7u(%)0(yo—x0) . (2.3)
We notice that for an operator, say, M ,.(x,y), to be
Lorentz covariant, it has to satisfy the following com-

mutation relation with K,, the boosting operator of the
Lorentz transformation in the r-axis direction:

[KryMuv] = 5u4Mrv—6er4v+ 8v4Mur_avrMu4
+(Lr4(j)+Lr4(y))an ) (2'4)
where
1—r4<!) =x4(a/ax1) —xr(a/ax4) . (2'5)

So, by checking whether the commutator [K,,T,%"]
has the same form as above or not, one can tell im-
mediately whether or not 7,,°% is covariant.

As a matter of fact, it is easily seen that 7,,%% is not
covariant by noticing that

[Kr: T4rab] # T"a b— T“ab_*_ (LH ) +Lr4 (y)) T4ra b .
Instead, we have

[Kr;T4rab]= T([Kfrj‘la(x)]jfb(y)) . .
+T(]4a(x)[Kr7]rb(37)])
= T"ab_T44ab+(Lr4(z)+Lr4(y))T4rab
+ @ —y:)[J0*(%), 7-2(¥) J8(xr0— o)
or
(K, T4, =T, — T4y (Lps O+ Ly @) Ty, 20
+Snet(y)é(x—y), (2.6)

where use was made of Eq. (2.2) and the fact that the
current is covariant, i.e.,

LK+ ju(2)]=8uafr®=burja+ L@ j,o.  (2.7)

We note that the presence of the Schwinger term S,,%®
in Eq. (2.6) causes the noncovariance of time-ordered
product 7,

To investigate further the origin of noncovariance,
we compute the divergence of 7,,%%:

0uT =T (8uju(%),3s*())F+LJo"(%), 5»*(¥) (20 —0) -

By using current conservation and Egs. (2.1) and (2.2),
we get

(2.8a)
(2.8b)

0uT ua®® = €qbeja°(y)0(x—y),
0uT ur**=€aboJ-°(9)8(x —y) —=S1°%()0:8(x —7y) .
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Again, due to the presence of the Schwinger term S;,%®
in Eq. (2.8), we see that the divergence of T,,2? is not
covariant either.

Realizing that the noncovariance of 7,,%® and its
divergence 9,7,,°® comes from the same source, the
Schwinger terms, we now try to find a way to fix things
up. Since it is very easy to find an operator, say 7 ,,°%,
which has a covariant divergence, we ask ourselves
whether this operator which has the right divergence is
also covariant. The answer is yes as we soon see.

It is easily seen with Eqgs. (2.7) and (2.8) that the
operator 7,,%® defined by

T4yab= T4, T‘Aab: T s (2.9)
and
Tyeb= Tu*+Suct(y)o(x—y) (2.10)
has a covariant divergence, i.e.,
0.7 "= €0505,°(¥)8(x—y) . (2.11)

To see that the operator T,,%* is Lorentz covariant,
it is sufficient to show its commutation relation with
boosting operator K, has the same form as Eq. (2.4).

Now with the definition (2.9) and Eq. (2.1), it is
automatic that

[KryTMab]:T4rab+Tr4ab+(Lr4(r)+qu(y))T“ab. (2.12)

By making use of Egs. (2.6), (2.9), and (2.10), one can
easily see that

(K, ot ]=T, 20— T340+ (L, s @+ Ly, @) Ty, (2.13)

So to prove the covariance of T',,9%, it remains to show
that the commutation of K, with its space-space com-
ponents takes the same form as Eq. (2.4). By using
Eq. (2.7), we see that

[Kr,le“b]= =00, T 43— 0 T 14+ (L s @O+ L,y @) T2
+(1/9) (e =) [72%(x), jx2() J8(xo—0) . (2.14)

So if we want to show that the commutator of the boost-
ing operator K, with the space-space component 7%
takes the same form as Eq. (24), i.e.,

(K. Tut]= — 8, T — i, T 1o+ (Les®+ Loy @) Ty,

then with Egs. (2.10) and (2.14), this would require
an identity among the Schwinger terms in [ 7;2(x), 7x(y)]
X8(xo—y0) and [K,,Su**(y)Jo(x—7y), i.e.,

(1/3) (e =y 722(x), 75>(%) 18 (20— yo)
=—[K,;,Su*(y)16(x—7v)
F(LrDSit(y))o(x—y).

To prove that the above identity holds, we commute
K, with Eq. (2.2) and then set y=0:

LK r,[70%(%), 7x%(0)18(x0) 1= €ane[ K 1, 7:°(0) J6(x)
—[K,,S12]0,8(x) .

(2.15)
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Using Eq. (2.7) then yields

L2(%) —x:(8/0x4) j4*(x), 7:2(0) (x0)
= —i[K,,SuC“”(())jal«S(x) .

Upon using current conservation 8,7,%(x) =0, the above
identity becomes

al{xr[jla(x)ijkb<0)]6(x0)}
= —i[K,,Slka”(O)]alB(x) .

We observe that if we can remove the derivative in
the above equation, then we have actually shown the
validity of (2.15) with y=0. To see how the spatial
divergence can be removed, we assume that the equal-
time commutator of the spatial components of two cur-
rents takes the following most general form:

[5:2(x),4(0) 18(x0) = fu*(0)8()+ f1em*(0) 3 ()
+flkmnab(0)am6n5(x)+flkmnpab(0)ama”ap6(x)
+- - - +higher terms. (2.17)

We show that with Eq. (2.16), all the singular terms
involving more than one derivative of the & function
actually vanish. First, we notice that since the differ-
ential operators, say 9, and 9, etc., commute with
each other and the indices m, n, p, etc. are dummy
summation indices, we can set fixma®® fimnp®®, €tc.
to be symmetric in these dummy indices, i.e.,

fllcmnab:flknmab 3

(2.16)

2.18)
flkmnpab =fllmmpab =flkmpnab 5 etc. (
By inserting (2.17) into (2.16), we find
F1rr22(0) =1[K,,S12(0) ], (2.19)
ab— m "ab ,
flkmn f kl (220)
flkmnpab: ""fmklnpab y etc.

By using (2.18) and (2.20), we can see that fimn®®=0,
because
Jikmn®®= — fmrin®®

= — fmkn®®

= +fnkmlab

=+ fnkim®®

= — flknm®®

= _fllcmnab .
Similarly, one can show that fitms**=0 and that all
higher terms vanish. In short, we conclude that

L722(x), 7°(0)18(x0) = f16°°(0)(%) + fuim**(0) I (x) .
From this and (2.19), we find immediately that
(/D) jr*(x), 7x(0)J8(x0) = —[Kr,S1x*(0) o () . (2.21)
By replacing x by x—y in (2.21), we see that

(1/9) (xr =) L72(x), 7" () 18(x0—1y0)

= —e [ K,,Sub(0)Je " vé(x—y), (2.22)
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where ¢??7 is the translational operator. But since we
have

[Kr:eip'y:] = iy#[Krapn]eip' v
=i(yspr—yrpa)e®,
Eq. (2.22) then becomes

1/9) =y [J1%(x), 7x*(¥) 18(xo—y0)
=—{[K»Su**(y)]— LY Su*(y)}8(x—y),

which is just what we want.

We summarize what we have learned in this section:
(1) The noncovariance and the wrong divergence of the
time-ordered product for two current is due to the
presence of Schwinger term in the equal-time commuta-
tor of time and space components of the currents; (2)
we have an algebraic method to show the existence of a
covariant 7 product, which can be generalized; and
(3) the way to guess the form of the covariant 7 product
is to require it to have the right divergence.

(2.23)

III. THREE AND MORE CURRENTS

When there are more than two currents, the situation
becomes very much involved. In order to have a better
idea of what is going on, we study the problem in this
section under two restricted assumptions:

(a) All the currents are the same.

(b) The Schwinger term is a Lorentz scalar. When we
come to the discussion of the general case in Sec. IV,
these assumptions are removed.

With these assumptions, the problems are very much
simplified. Not only can the general form for the co-
variant time-ordered product of # currents be written
down explicitly, but also the proofs for its covariance
are shortened considerably. Furthermore, we can use
the results that we get in this section as a guide for
treating the general case in Sec. IV.

Under these assumptions, the equal-time commuta-
tor for time-time components and time-space com-
ponents of the current now reads, respectively,

Lo(x), k() J8(xo—y0) = =S(¥)d:d(x—y), (3.2)
where S(y) is the Schwinger term.
By introducing a,, defined by
auv=guv+6u48v4 ’ (33)
where
100 O
010 O
E»=10 01 o |
00 0 -1
we can rewrite Egs. (3.1) and (3.2) as a single equation,

ie.,

[]O(x):]v(y)]a(xﬂ—yﬂ) = _aqu(y)aué(x—y) . (34)
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By using Egs. (3.3) and (3.4) together with the assump-
tion of the Schwinger term being a Lorentz scalar, we
obtain from Eq. (2.23) the identity

(/D) (wr =y Lju(®), 55(¥) J8(x0—30)
=8414“”5(3’)6(95_3’)+6viaurs(y)5(x'—y)- (3.5)

In order to pave the way for the discussion of the
problem of n currents, we first study the case of three
and four currents. We have learned from Sec. II that a
covariant time-ordered product for two currents can
be constructed from the usual time-ordered product
by requiring it to have the right divergence. We show
that this is also true for three and four currents.

Under the assumption that all currents are of the
same kind, the right divergence condition becomes the
divergenceless condition. For the case of three currents,
the operator 7,,, defined by

Twr: = Twm+Puvrz (3'6)

with
Tupn= T(ju(x)jt'(y)jﬂ(z)), (3.7)
Purn =T (S(Y) j2(2))0(x =)+, T (S(2) ju(x))(y—2)
+a,T(S() 7, ()é(z—x), (3.8)
has the divergence
aTuvvt,/a'xu'_“awta(y_z)[jﬂ(x),s(y)ja(xo_yﬂ) . (39)

So it will be divergenceless if we can show that the
equal-time commutator for the time component of the
current with the Schwinger term actually vanishes. To
see that this is really the case, we use the Jacobi
identity:
[Fo(x),Ljo(3), 7:(0)]16(x0)8(y0)
= [o),L70(x), 7x(0) 118(x0)8(y0)

+Lo(x), 70(y) 1, 7(0)18(x0) 8(yo) -
With Egs. (3.1) and (3.2), this yields
[jo(%),S(0)18(x0)(8/3yi)d(y)

=[70(¥),5(0) Jé(y0) (8/0x4)d(x) ,

so the only solution is that

[Jo(x),S(0)18(x0) =0. (3.11)

By replacing x by x—y and then applying the trans-
lational operator e?°? to the above equation, we obtain

Lio(®),S(¥) 16(x0—y0) =0, (3.12)

which shows that T',,, defined by (3.6) is divergenceless.
Another fact about the commutators of jix and S
which is useful in proving the covariance of 7',,, is that

(1/9) (s —yr)[jx(x),S () J8(x0—30) =0.
To prove this, we use Eq. (3.11) to get

[KT,[]()(?C),S<0):|]6(DC0) =0.

By using current conservation and remembering that

(3.10)
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S(0) is a Lorentz scalar, we get

{2 Jk(x),S(0) ]} 8(x0) =0.

Using an argument similar to that which leads from
(2.16) to (2.21) allows us to remove the spatial diver-
gence in the above equation to obtain

[ 71(x),5(0) J6(x0) =0. (3.13)

Replacing # by x—y and applying the translational
operator e*?'¥ to (3.13) yields

(1/0) (e, =yr)[ja(x),S(y) J8(xo—y0) =0.  (3.14)

We are now in a position to show that T',,,, which is
divergenceless, is also Lorentz covariant. First, we note
from the definition of a,, in (3.3) that

d“4=d4y=0.
So from (3.8), we have

Pivn =0y, T (S(2) ju(x))d(y—2). (3.13)

From the definition of p,,, in (3.8) and by using (3.12),
(3.14), and (3.15), it is easy to see that

EK")pFVﬂ] = 0,40,y T(S(2) 7+ (@))5(}’ —z)— OurPavy
+ 5V4avuT(S(x)jr(y))5(z "9") - 5v1‘pp471
+06040 T (S(9) 77(2))8(x —y) = byrpuns
F(Lrs O+ LW+ L)y,

Upon using (3.5), we find that

(KT )= 0usT ryn—8ur Tayn+0,4T wrn— 08,2 T w1y
04T wor— 085 T s+ (Ls P+ Ly @+ L, )T,
+(5u4a‘rv+5v4dw)T(S(y)jv(z))‘s(x—y)
F (8,487 8410,:) T(S(2) 7u(x))8(y—2)
F(6910ur+06,1a:) T(S(x) 7,())o(z—x) . (3.17)

Now combining (3.16) and (3.17) together with (3.8)
yields

[KT:TMM] = 5#17;14’1 - 6HTT4VW+6V4T#TH - BV’TI“")—{— 5ﬂ4TMvr
_"67,1‘Tyv4+(LTJ(I)_'_LM(y)+Lr4(Z))Tm¢1}, (3.18)

which shows that T',,, is Lorentz covariant.

So we have seen that the covariant time-ordered
product for three currents can be obtained from the
usual 7 product by requiring it to have zero divergence.
We would like to see whether or not this rule is also
applicable to the case of four currents and finally to the
general case of »# currents.

According to this rule, we can construct the covariant
time-ordered product 7,,,: for four currents from the 7°
product by requiring it to have zero divergence. So to
find T, we set

(3.16)

T o= TanE+PAvn£ ’

where T',,,; is the time-ordered product for four currents
ie.,
Tne= T(?»(x)]»(y)]q(z)iz(w)) .
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To find pyn:, we require T,,¢ to satisfy the divergence-
less conditions, i.e.,
au(“T‘wﬂE = 3,(”)7‘“,..,,5 = an(Z)Tuvle = aE(W)T‘"‘ﬂE =0, (3.19)

where
8, =(8/0x,), etc.

Thus we find that

a9, =(/9y,),

Puvnt = Puvnt m +P#vri’<’ @
with
Purnt D =2 d(x =) T(S(y) ja(2) je(w))
+u0(z—2)T(S(2) u(y) je(w))
+aud(x—w)T(S (@) ju(y) ja(2))
+,,6(y—2)T(S(2) ju(x) je(w))
+a,:8(y—w) T(S(w) ju(x) 72(2))
: Fand(z—w)T(S(w) ju(x) j(y))  (3.20)
an
Purmt D =,,0,:0(x—)0(z—w) T(S(y)S(w))
+ 40,68 (z—2)8(y—w) T (S(2)S(w))
+au:0,,0(x—0)8(y—2)T(S(®)S(y)) (3.21)

makes 7', divergenceless.

To show that the rule also works for the case of four
currents, we have to prove that 7,,,; obtained in this
way is Lorentz covariant. Due to the terms of the type
T(S(x)S(y)) in T e, we need to show that

(=3 [S@),S3) ro—y0) =0 (3.22)

in order to prove the covariance of T To see that
Eq. (3.22) actually holds, we again use the Jacobi
identity

[Fo().[7x(2),S(0)118(x0) 8(0)
= [jx(x),[ jo(¥),5(0)]18(x0)8(y0)
+1L70(), 71(x) 1,S(0)16(x0)(y0) -

Multiplying the above identity by «, and using (3.11),
(3.13), and (3.2) yields

x,[S(®),S(0)]8(x0) 9 Wé(v—2x)=0.

So we get

x,[S(x),5(0)]6(x0) =0.

By replacing « by x—y and applying the translational
operator to it, we obtain

(=) [S(x),S(y) Jo(xo—y0) =0. (3.22)

We refer to Appendix A for the rest of the proof of
the covariance of 7T

Having learned how to construct the covariant time-
ordered product for two, three, and four currents, we
now try to generalize it to the case of # currents. We
claim that given z conserved currents j,,(%1), ju,(x2)- -
Jun(xa) which satisfy the equal-time commutation re-
lations (3.1) and (3.2), then there exists a covariant
time-ordered product 7',...,, obtained from the usual
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time-ordered product by requiring it to have zero
divergences, i.e.,

B VT oo =00, P T ey =+ - =03, " Ly, =0

It takes the form

Losprosn=Threoept 2 Purnz-un’ s (3.23)
=1

where m=3%n if n is even or m=31(n—1) if » is odd.
T uss---uy 18 the usual time-ordered product, i.e.,

T#l"'#n= T(jul(xl)ju-z(x‘l) te 'j#n(x"))

and puy uy-ou, @ 1s the sum of all possible distinct terms
which contain the T product of / Schwinger terms with
(n—2I) currents, that is, the sum of all possible distinct
terms similar to

Qpypypzpg” @y (X1 —22)8(203—x4) - - - 8(war1—X2)
XT(S(x2)S () - 'S(xZI)juzt+1(x21+1)'  Jun (X))

The proofs for its covariance under Lorentz transfor-
mation are given in Appendix A.

IV. GENERAL CASE

We now come to the discussion of the general case by
removing those two restricted conditions assumed in
Sec. III. With the Schwinger terms not being Lorentz
scalar, the new complications arise due to the fact that
the time component of the current no longer commutes
with the Schwinger term at equal time. In fact, a new
singular term involving the first derivatives of the &
function shows up in the commutator [ jo%(x),S1>¢(0)]
X 8(xo). As we see later, if this term were zero, then the
covariant 7 product of three isovector currents would
have the same structure as the one obtained in Sec. III.
So in order to investigate the existence of the covariant
T product of three isovector currents, we need to know
the structure of the commutator [ 7o%(x),S:2(0)]8(x0)-

To find the structure of this equal-time commutator,
we use the Jacobi identity

[70°(x),L70°(¥), 7x°(0) 118(x0) 8(y0)
= [[jo"(%),70°(¥) 1, 7#°(0) 18(0)8(y0)
+ 1o (),L70*(x), 7:°(0) 118(x0) 8(yo) -
By multiplying the above identity by y; and using (2.1)
and (2.2), we find that
[70%(x),S1x%¢(0) ]8(x0)8(y) = €aaS1x%°(0) 8(x) 8(y)
F€acaSu?4(0)8(x)d(y)
=YL 70*(3),Smie(0)16(y0) dmd(x) . (4.1)
This assures the existence of a new (4.1) term S»;:%%(0)
defined by
Smix?¢(0)8(x) =xm[ 70%(x),S1£2°(0) J6(x0) .  (4.2)

By inserting (4.1) into (4.2), we see that Sn;°b¢ is
completely symmetric in the pairs of indices (%), (;%),
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and (x°). So we have
[ 70°(x),S24%°(0) J8(xo)
= {€adelkdc(0)+5acdSllcbd(0)}5(x)
—S,,,lk““(O)am&(x). (43)

By replacing x by x—v in (4.3) and applying the trans-

lational operator e7°? to it, we get

LJo*(2)Su(y) Jo(xo—20)

= {eabaS 1 %(y) +€acaSuc4(y) } 6(x—y)

—Smik®(¥)Omb(x—y). (4.4)

For convenience we introduce the operators R,,**(y),
A wn®?(y) defined, respectively, by

Ru¥(y)=Sut(y),

4.5
RuH(y) = Ryieh(3)=0 *
and
Am abc ESm abe ,
1(y) b (y) 4.6)
A4 4vnabc(y) = war,‘”’”(y) =4 40°=0.
In terms of them, Eq. (4.4) now reads
[jo2(®),Ron?(3)18(x0—y0)
= {fabdeqdc(y) +Eacanvbd(y)} 5(90—3’)
—Awy®*()0,8(x—y). (4.7)

We are now in a position to find the covariant time-
ordered product for three currents. According to the
rule of what we have got in Secs. II and III, we require
it to have the right divergence which in this case is
equal to the sum of covariant time-ordered product of
two currents shown in Sec. II. By using the result ob-
tained in Sec. III for the case of three currents as a
guide, we try to see whether or not the operator 7',
defined by

T“yqabc — T”w'abc_*_p“w,abc (48)
has the right divergence, where
Typyte= T(jua(x)jvb(y)jnc(z)) (4.9)
and
Pun®* =T (Ru*(y) j,°(2))8(x —y)
F T (R (2) 7u(x))8(y —2)
+T(Ryu(x) 5,5())o(x—y). (4.10)
With (2.1), (2.2), and (4.7), we find that
6,.0‘)7—’,,,,,,“”‘=eade,,,‘“&(x—y)-}—each,,,""B(x—z)
— A un®%(2)0(y—2)0,0(x—z), (4.11)

where 7,,% is the covariant time-ordered product for
two currents found in Sec. II, that is,

Tvndc= T(54¥) i (2)) +R.y*(2)6(y—2) .

Because of the presence of 4 ,,,°%*(3), we see that T,,,2b¢
has the wrong divergence. Instead, it is easily seen from

(4.11) that T,,,%% defined by
T“w’abc = T’“”’abc_*_A uvn“bC(Z)t?(x—z)a(x—z) (4.12)
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has the right divergence, that is,

3, T 42 = €gea vy ?0(x —2) F€apaTp8(x—7y) .
It is easy to check that we also have

DT 1y = €paaT uy®8(y—2) +€peal uy?8(y —2)
and

8y D T 2% = €caal 1 %8(z— )+ €cpaT W 6(z—y) .

Thus we have found that T',,,% has the right diver-
gence. To see that it is also covariant, we refer to the
Appendix B for the proofs.

Now we come to the case of four currents. Again the
complications arise due to the fact that another new
singular term shows up in the commutator [ 7¢%(x),
Smir°4(0) ]6(xo). For the same reason as stated before
for the case of three currents, we need to know the
structure of this commutator. To find it, we again use
the Jacobi identity

[70%(2),[ 7o*(¥),Suxc*(0) ]16(x0) ()
= [[70°(x), 702 (%) ],S1x°4(0) 6(x0) 8 (30)
+170°(®),L70%(%),S1:°4(0) J18(20) 8 (o) .

Multiplying the above identity by vy, and using (2.1)
and (4.3) yields

[J0°(%),Smui4(0) J8(x0) 8(y) = Crmra®*°25(x) 6 (y)

= ¥m[ 70?(¥),Snux(0)18(30)3n0(x) ,  (4.13)
where
lekadeE €a beSmlkeCd(O) +5acesmlkbed(0)
+€adeSmlkbce(0) . (4.14)

Again Eq. (4.13) assures the existence of another new
term S,mu2%¢ defined by

Snmlkade(O)a(x) = xn[jo“(x),sz;,de(O)jé(xo) . (4 15)

By inserting (4.13) into (4.15), we see that S,.;x*%? is
completely symmetric in the pairs of indices (»%), (»?),
(%), and (x%). So (4.13) now reads

L0°(®),Smas*%(0) J8(0) = Crmax*4(0)5 ()
—Snmzk"b“’(())a,.é(x) . (4.16)

With this we see that the covariant time-ordered
product 7,,,:%¢ for four-currents is given by

T“"‘Eabcd i T“mzabcd_*_p(l)“y"éabcd_'_p (2)“v’,£abcd

TR, (4.17)

with
T“"’Eabcd = T(jua(x)jvb(y)jﬂc(z)jéd(w)) )

PP pyge®red=8(x—7y) T(Ruw5,°(3) j&%(w))
F8(x—2)T(Ryy*(2) 5,5(9) je*(w))
+o(x—w) T (Ryug*(w) 5, *(9) j°(2))
+6(y—2) T(Ryy"(2) ju2(x) je4(w))
+0(y —w) T(Roe*(w) 7,%(x) ,°(2))
+8(z—w) T (Rye™(w) 7,°(2) 7,°(3)) , (4.19)

(4.18)



187

PP pgted=5(x—y)8(z—w) T(Ru**(y) Ry (w))
+8(y—2)8(x—w) T (Ryug**(w)Ryr*(2))
+6(x—2)8(y—) T (Ruy (2) Rug* ()

(4.20)
Rypmpoed=08(x—y)8(x—32)T(4 wn®?(2) j4(w))
+8(z—x)8(x —w) T (A g **(w) 7,°(¥))
+8(x—y)8(x —w) T (4w (w) j2°(2))
+8(y—2)8(z—w) T (Aung"*(w) ju*(x))
+D gz (w)d(x —w)8(y —w)d(z —w),
(4.21)

where we have introduced D,,,:2%¢ defined by

Dmip®?d=Snmic®*¢,

D4M£abcd =D“4"Eabcd =D“y4eabcd =D“v"4abch 0 .

With (4.16), it is not hard to see that T,,,¢***¢ has the
right divergences, that is,

6“(I)Tm£abcd = eabef‘”zecda(x_y)_{_eucei‘y”ibeda(x_z)
+€adelvne*?8(x—w),

and similar expressions for 8,® T ,,,:%%%, etc. The proofs
for its covariance is quite complicated. It is given in
Appendix B.

If we compare the covariant time-ordered product for
the case of three or four currents in this section with the
corresponding one obtained in Sec. III, we find they
almost have the same structure except for the addi-
tional term which involves the new terms Sm;*% and
Snml kabcd.

When we come to the general case of # currents,
a series of new terms Smix®%, Snmu®%?,- - -shows up.
So things get quite complicated. The explicit form for
covariant 7 product is too involved to be written down,
and the proofs of its covariance are too messy to be
given. But we emphasize that the answer does exist.
We note that if all these new terms were zero, then it
would have the same structure as the one we have
obtained in Sec. III for the case of # currents.

APPENDIX A

We show in this Appendix that T,,...,, defined by
(3.23) is covariant under Lorentz transformation. As
we have seen earlier in Secs. II and III, an operator
M yuy-e, 18 covariant if and only if it has the following
commutation relation with the boosting operator K,:

n
[K,,M“,‘Z...u"] = Z 6“.'4Mu1---ui_1rui+l'“#n

=1

n
- Z 6niTMI‘l"'#i—l4Hi+l"'llu

=1

+(Z LM(‘"))M““...,". (Al)
=1

COVARIANT TIME-ORDERED

PRODUCT OF CURRENTS 2023
We observe that for any index, say pi, in pu...p, @ it is
either attached to the a’s as a subscript or attached to
the current as a subscript. For any index u;, we define
Puyeeenseonn #9101 to be the sum of terms in py,...,, @ with
u; attached to the current. The number of terms in
Pueeeny 0 g N0 O with

Nypin® =Cyn=1Com=3C,m5- - -Cor= @D /I (A2)

where the C’s are the binomial coefficients, i.e.,

n\ nn—1)
CQ":( >= .
2 2!

Denote pupeeoppep, #9° to be the sum of terms in
Pur-ny @ with p; attached to the @’s. The number of
terms in pu,—pu, #09 is Ny; oue® with

[\"‘_iout(l) =CICsm2Cm 4 - 'Cz"_2(l_l)/(l—l)! (A3)

As a check we see

NupinP+Nopou®
=Cln~—lC2n—2C2n—4. .. Cn—?(l—l)/(l_ 1) !
+Cyr=1Cym—3C 5« - Cr= =1 /]
=[Cy2C 4 - - Cr20-D /1]
X[2l4n—-2(1—1)—1—1]}3(n—1)
=CynCyr=2- - - Cyn20=1 /]|

=N,

It is just equal to the total number of terms in py;...p, ¥
or, in other words,

"'“nl[“i'in] +p“1“'“nl lri,oud . (A4)

D=
Pureepiveeun = Puny

From (3.5) we get

(1/) (i—= ;) o[ Jui (%), 715 (25) J8(wi0—j0)
= 6I‘i4af#j6(xi —,)S () +5u,~4a'mr5(xi —x,)8(x:) .(AS)

By taking into account (3.12), (3.14), (3.22), and (AS)
together with the definitions of py...ujeep, !4 and
Pure-pieun 90U we get

n
[K,, Tuwzu-un] = Z aui4TM1M2"‘#i—l'l~‘i+l'"ﬂn

=1

n

- Z 6uirTu1---ui_14u€+1~--un

=1

n
U[r,out
+> 5ui4pn1---#._xrm+x-~-un [r.out]

=1

+(Z LN(M))Tuwz---un

=1

(A6)
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and

n
d —_— 1 I'
[Aﬁp#l"'un(”]- Z 5Hi4pﬂl"')li~lr“i+l"'ﬂn [r.in]

=1

n
_ 1(4,in]
Z Oui,rPpree pa_14migre=-un t
=1

n
I4+1[r,out]
+Z Oui 40U mictrhipt-bn [
=1

+(Z L,4(“))p“...“"(” (A7)
=1
for I<in if n is even or $(n—1) if n is odd.

The terms puge.op;_yruspre-oun’ 170" are obtained as a
result of making use of (A5). As a check, we see the
number of terms having the coefficient 6,4, coming
from applying (AS) in [K,,pupe-u, V] Is

Avu,-.in(l)cln_(2l+l)
=C2n—lc2n—3C2n—5. . .CQﬂ‘(Zl—l)(n_Zl_l)/“
=3n—1)n-2)EFH-3)n—-b]- -
X[&(n—2141)(n—20)](n—21—1)/i!
=C*1Co 2 - -Cz"“?/l!

+1)
’

y
- A/\ Bi,0out

where use was made of (A3), which is just the number
of terms in pujeeop; iruiyreeons T which appeared in
(AT7). Recall that a4,=a,4=0. So it is easily seen that

1l4,0ut] — ;
Purereni_rbpipr-oun 0 =0 for all 7.

(A8)
We can therefore rewrite (A7) as follows by using (A4)

and (A8): For I[<in if n is even, or 3(n—1) if  is odd,

n
D)= Ur.i
[Kr;Pm'--un( )]"‘ Z 5ui4pu|---ui_1rui+1---uu R
=1

n

— 2]
Z 6m'rpm-'-ui_14#i+1---un(
i=1

n
+Z 6ui4pm'-~p£—1r#i+1--'unl+l[r'ouﬂ
i=1
n
F(X L )pureen”. (A9)

=1

Now for even #, py,...,, */® contains only time-ordered
products of 3n Schwinger terms, so we use (3.22) to get

LK pureoin ™2 ]= (2 Lrs)pprecess™? . (A10)

=1

For odd #n, py,...,, " /2 contains only 7" products of
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1(n—1) Schwinger terms with only one current, so by
using (3.12), (3.14), and (3.22) we get

n
[Kr)pm---un("_l)/z]: Z 6#.'4Pu1~~-ui—1rui+x~--un(n_l)/2 [r.in]

=1

n

- Z Blli"p#l"'ﬁli—l4ﬂi+l"'un
i=1

(n—1)/2

+(Z Lﬂ(ri))p“_”“"(n—U/Z. (AII)
i=1
From (3.24),
[Kr;Tm-“un]=[Kr:Tmu2---un]+Z [Kr,P“---u,.(”],
=1

where
m=1n for even n
=1(n—1) for odd n.

Using (A6), (A9), and (A11) then yields

n
Mn] = Z 5ui4Tu1'--M._1rui+n-—-Mn

=1

(K, T ...

n
- Z 6uir(Tm---yi_14m+1-~pn

=1

m
+Z Pui'--ui~14u¢+1---un(l))
i=1

n m
+Z Oui Z (Pul-~-m_1rui+1~--un”r’m]
i=1 =1

U[r,out
FPureewicrruistoeun [r.outl)

")

+(Zl Los®ON T ugevoint 22 Ppiree
i= i=1

or

n
EKr;Tm---un] = Z 6#54Tﬂl"‘ni_lrl‘i+l'"ﬂn
i=1

n

- Z 5#£7Tﬂl"‘ﬂt‘_l4ﬂi+l"'ﬁ‘n

=1

H(E L) T o, (A12)

=1

which is exactly the same form as (A1) with 7,...,, in
place of M ,,...,,. Therefore, T,,...,, so defined by (3.23)
is indeed covariant under Lorentz transformation.
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APPENDIX B

_We will show in this appendix that T .2 and
T uone®2°?, defined, respectively, by (4.8) and (4.17), are
covariant under Lorentz transformation. Applying the
booster K, to Eq. (4.3) yields

LK+, [jo(x),S1¢(0)]16(x0) =[ K, Bux2(0) 18 (x)
—[K 1, Smix?¢(0) ]0md(x)

COVARIANT TIME-ORDERED PRODUCT

OF CURRENTS 2025

or

(1/0)(8/ 8% m)x:[ jm(2),S1*(0) Jd (o)
+ [/ (x),[ K 1,Su*(0) 118 (o) = [ K, Bux*®*(0) J6(x)
—[K:,Smix?(0)Jomd(x), (B1)
where B2 (0)= €,6a51x%(0) + €2aS1:°*(0) and we have
used current conservation. Now from (2.21) and the
Jacobi identity,

[70%(x),LK 7, Sub(0) J16(x0)8(y) = — (1/4) [70°(%),3:L 7:*(5), 75 (0) 118(xx0) 8 (30)
= —(v,/1) [ 70°(x),7:°(%) ], 7£°(0) 18 (xx0) 8(30) — (/1) [7:°(3), [ 70®(%), 7+°(0) ]18(20) (o)
= —(y+/1)€aral 7:1%(¥), 7x°(0) 18(y0)8(x —¥) — (¥+/1) €acal 1:°(¥), 7x*(0) J8(10) 8(x)
+ e/ DSmi®* (), 7x°(0) J0md (2 —3)8(y0) + (¥+/ D[ 71°(¥),Smi?¢(0) J0md(x —¥) (o)
=[K,,Bu*(0) ]+ (/D[ Smi®*(¥), 1+°(0) J0md(x — ) 8(y0)

so that Eq. (B1) becomes

+ (/D52 W),Smik(0) 10md(x)3(y0) »

Im{ [ m®(x),S1%¢(0)18(x0) } () + ¥, [ Smi®*(¥), 7:°(0) J0mb(x — ) 8(y0) + ¥, 7:*(5),Smr*(0) ]0.8(x)8(yo0)

By using the argument similar to that which leads from (2.16) to (2.21), we get

% Jm®(2),S1x2°(0) J8(x0) 8() +¥:[Smi**(¥), 75°(0) J8(x —¥) 8(y0) +¥:[ :12(¥),Smx2*(0) J8(30) 8(x)

In terms of R,,*(z), R,,%°(2), and A4,,,%%(z), the above equation becomes

LOrr—20)/1]0ju(%),Ron*(2) 18(x0—20)8(y = 2) +L (yr —2,) /1 JLRw*(¥) 12°(2) J8(y0—20) 8(x )

=[0u1d rn®*e(2) +0,4 ury*(3) + 8914 10r*(2) J8(x — )8 (y —2)

Note that

= '-i[K,,Smlk“bc(0)]6,,,5(‘.’5)6(}1) . (BZ)

= —i[ K/, Smux*(0)6(x)8(y). (B3)
+Lr—20)/7]05°(3) Run"(2) J0(yo—20)8(x —2)

—{[Kr A (2) ] = L1iP Ay (2)}8(z—y)8(y—2) . (B4)

[A—Ty T‘wqabc] = 5“4T”ﬂabc - 6;.41‘T4yr)a bc+6y47'l‘"’abc - 5eru41,abc+arl4Tuvra be— 6171‘T;w4a be
+L (e =) /11T ([Gu%(%), 5,2(¥) 10(x0—0) (@) + (L s O+ Ly @+ Loy ) T e
HLr—20)/I1T 55 (3), 72 (2) 18(y0—20) ju® (€))L (2 —2,) /1T (L (2), ju® (%) J8(20—20) 5, (¥))  (BS)

and

LK T (R (y), () ] = T{ (LK Ruw**(¥) ] = Lra® Ry j47(2) } +0,usT (R *(¥) j+*(2)) — 80r T (Ri**(¥) j1*(2))

+LCer—y2)/TR W (1), 74°(2) J6(yo—20) + (Lrs @+ Ly @) T(R*(9) o (2)) -

Using the relation

(B6)

[(xr—yr)/i][ju"(x))jvb(y)ja(xﬂ—yﬂ) = au’«Rrvaba(x—y) +5MRMab(y)5(x—y)

together with (4.8), (4.10), and (B4), vields

- {[Kr,Rw“b(}’)]—Lr4(")Ruv“b()’)]5(*“—y)} ’

[K T T = LK 1, T I LK T+ LK 1y A o™ (2) 85— )3y —)
= 6;14Trwpa bc+ 6V4Tun,abc+ 6"4T“"abc - 6ur[T4vqabc+ T(Rwlbc(z)j‘la (x))a(y _Z):l
- 5vr[Tu4nabc+ T(me(z)j‘ib(y))a(x —Z)] - 6vr[T#v4a bet T(Ruv“"(y)j4°(2))5(x —y)]

From the definition of A4,,,%* and R,,**, we recall

A“ﬂabc=‘4#h’abc=‘4“y4abc=0

So (B7) now reads

[Kr; ] “w’abc] = Bu‘lTrwqa be— 6‘41‘T4vqu be + 51«4 “Tﬂabc - 6vrTy4qa bc+ 61|4pr'a be — 6”]‘#Habc

F (L O+ Ly @4 Loy )T yppee. (BT)
and R.“,ab:R",;“b:O.
L@ (Los @ L) Tmete]. (BS)
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Therefore, we see that T ,,2% defined by (4.8) is covariant under Lorentz transformation. Now we go on to show
that 7,,,:2%¢ defined by (4.17) is Lorentz covariant.
Apply booster K, to (4.16):

[Kr;[j()a(x);smlkbt:/l(o)]](s(xﬂ) = [Kr,lekade(())]s(x) —[KT,S","M«“b".'l(())]a"a(x)
or
(1/0)(8/9xn) [ jn® (%), Smui"*(0) 16(0) + Lo (%), LK 1, Smarc®?(0) 118 (x0)
=[Kr,Crx®*4(0)16(x) —[K 1, Snmex*°9(0) ]8.8(x) .  (B9)
Replacing « by y, ¥ by 2, @ by &, b by ¢, and ¢ by d in (B3), then making use of it, we find

—1[50%(x),LK 7, Smui*4(0)116(x0)8(3)8(2) =+ Lo (%), [ jim" (), S1x°*(0) ]18(:0) 6(2) 8(y0)
+2:170%(x),[Smi® (), 7x2(0) 118 (x0) 8(y —2)8(z0) +2: [ 70" (%), [ 71 (2),Sms >*(0) ]18(x0) 8(¥) 8(30) . ~ (B10)
Now by the Jacobi identity, we see that

Vel 7o*(®),Lm®(3),Su%(0) ]18(%0) 6(2) 8 (30)
=yrLeave Jm*(P)8(x—3) = Sam*(¥)928(x —¥),51:°!(0) J8(x0)8(y0)8(2) + - L jm*(¥),L 70 (x),S 14 4(0) J18(x0) 8(2) (30
= €abe¥r Tm?(¥),Su*(0) 16(x —3)8(50)8(2) +€acey:L 7m®(¥),S1xc4(0) J8(y0)8(x)d(2)
+éadeyr[jmb(y);Slk“(O)]‘S(yO)B(x)‘s(z) -—yTESnm“”(y),Szk”d(o)]5(yo)5(z)3n5(x_y)
=¥+ Fn (), n1x°%(0) J8(30)8(2) 8.6 (x) .
Using the above relation together with (B3) and (4.14), Eq. (B10) becomes

i[70*(%),[ K 1,Smix>*(0) ]16(x0) 8(y)8(2)
= [ Kr,Crni®*4(0) 10(x)8(5)8(2) +3+[Sum®*(3),514(0) 16(y0)5(2) 8,8 (x — y)
+2,[ S (2),Sn124(0) 18(20)8(y —2)3nd(x) +2:[S127(2),Smi *4(0) 18(20) 8() 38 (x — )
F 3 (), n1x%%(0) 16(30)8(2) 8.6 (xt) +2,[.Snmi®®(2), 7x4(0) 18(20)8(y —2) dnd(x —32)
+Zr[jlc(Z);Snmlcabd(o)ja(zo)B(y)ana(x) . (Bll)
By inserting (B11) into (B9) and using the argument similar to that which leads from (2.16) to (2.21), we obtain

YeLSnm??(3),Sue(0)16(30)8(2)8(x —3) +2:L S (2),S nx?4(0) 18(20) (%) 8(y — 2) +2,[ S (2),Smi*(0) 16(20)8() (s —2)
L Im(),Sn1xe4(0) 16(30)8(x)8(2) +2,L S um?*(2), jx%(0) J8(20)8(x — y)3(y—3)
+2:L1(2),Snmi**(0) 16(20)8(x)8(3) [ 72(x), S mes*>4(0) 18(x0) () 8(2)

= —[Kp,Sumue?4(0)J8(x)3(y)8(z) . (B12)

Replacing x, y, and z by ¥—w, y—w, 2—w, respectively, in (B12), and applying the translational operator ei»*,

then rewriting it in terms of D,,,:%%, 4,,,%%, R, etc., we get

(yr=0n)[Ruw* (), Ryt () 16(y0—w0)8(s —w)8(x —3) + (2, — )[Ry (3), Rps**() 18 (50— w0) 8 (v — ) 8 (y —2)

(2 =) [Ruy®(2), R () 10(z0—w0) d(y — ) 8(w—2) + (yr =) [ 1, 2(3),4 g **4() T8 (yo—0) 8(% — ) 6 (3 — <)
+ (@, —w,)[4 wn®?(x), 754 (@) ]8(30—wo) 8 (x —2)8(y—2)+(z, —w,)[7,(2),4 w4 (@) Je(z0—0w0)8(z —w) é(y—w)
+ (x, “wr)[jua (x) A ,ﬂgb”‘i(w)]ﬁ(xo —wo) 6(3’ _"")5(2 —w)= [6ﬂ4Drvaabvd("’) + 6v4DurﬂEa bcd(w) + 6'14Duvr$a bﬂd(‘*’)
F 04D s () 10 (2 —0)8(y— ) (2~ ) — { [ K r,Dpiry®**% () J— L4 D ys®¥e9(w) } 8 (x — )8 (y — ) 3(z — w) .
(B13)

Using the method similar to that employed in Sec. IIT to prove the existence of the covariant time-ordered product

of 4 currents together with (B13), which takes care of the additional term R,,,;%**? under Lorentz transformation,
one gets

[Kr,Tuqua bt'd] e 5#4]‘""2(!6611_ 6urT4w,Eade+ 6V4T#Tnfab6d_ 5eru4,’Eabcd+ 51;471;‘1‘1‘20})6‘1— quT“MEade
+5$4Tuyqrab6d_ 6£rT;.wrp4ade+ (Lr4 (1')_{__[41_4(_1/) +LH ) +Lr4 (w)) T;m,g"bc’l . (B 14)

This assures that T,,,:2*? as defined by (4.17), is Lorentz covariant.



