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Existence of the Covariant Time-Ordered Product of Currents
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The existence of the covariant T product of any number of currents is investigated without introducing
any extraneous assumptions. We find that it does exist and can be constructed explicitly by an algebraic
method.

I. INTRODUCTION

OME time ago it was pointed out by Johnson' and

~

~

~

~

~

~

~
by Bjorken' that the time-ordered product of two

currents is in general not covariant. The construction
of a covariant one has been studied by Brown' and
others4 ' within the framework of canonical filed theory.
In this approach, one assumes that the currents under
consideration are obtained from a Lagrangian through
a gauge principle. By studying the response of the sys-
tem to hypothetical external perturbations, one can
show that there should exist a covariant version of the
T product.

In this paper, we investigate the existence of the co-
variant T product for any number of currents without
introducing the extraneous assumption that the currents
have any connection with a gauge principle. 7%e assume
only that the equal-time commutators of two time
components are the usual ones and that the commuta-
tors of their time and space components contain terms
which are no more singular than the first derivatives of
a 6 function. We assume that the Schwinger terms are
operators plus possible infinite c numbers. However the
infinite c-number Schwinger terms can always be
ignored in considering the T products. The reason is
that they can always be removed by subtracting the
vacuum expectation values of the T products from the
T products; that is, by considering only the connected
diagrams. So only operator Schwinger terms need to be
considered. Ke assume that these operator Schwinger
terms are well defmed so that Jacobi identities for cur-
rents, for example, are satisfied.
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Only conserved currents are considered in this paper.
For the case of nonconserved currents, if the T product
is not so singular, we suppose that similar methods can
be applied but would be rather complicated. It should
be stressed that the covariant amplitude for noncon-
served currents, " if it exists, would not be the same as
that for the conserved currents discussed here.

The result we get is that there always exists a co-
variant T product for any number of currents, which
can be constructed explicitly by an algebraic method.
Furthermore, the divergences of this covariant T
product are, as expected, those which one would obtain
from an ordinary T product if Schwinger terms were
consistently ignored.

For many applications, like soft-pion theorems, one
only needs to know that such a covariant T product
exists. In other cases, one needs to know the explicit
form of the covariant T product. For example, the use
of Bjorl.en's procedure to find the high-energy behavior
of a covariant amplitude requires a knowledge of its
explicit form. General operator expressions for the co-
variant T products are given here.

The paper is organized as follows: In Sec. II, we
examine the case for two isovector currents to familiarize
ourselves with the problem. In Sec. III, three and more
currents are considered in the simple case when the
Schwinger terms are Lorentz scalar operators. In Sec.
IV, the general case is studied.

II. TWO CURRENTS

In this section we study the simple case of two cur-
rents. Ke first show that time-ordered product of two
currents defined in the usual way is not a Lorentz co-
variant operator. Then the existence of the covariant
one is demonstrated. 9 By studying the simple case first,
one may gain some insight into the general case of e
currents.

The currents under consideration, e.g. , j„(x),j„~(y),
j„'(s), etc. , are assumed to be conserved, and they
satisfy the following equal-time commutation relations:

[jo'(x),jo'(y)j5(xo —yo) =e, l„jo'(y)8(x —y), (2.1)
' S. L. Adler and D. G. Boulware, Phys. Rev. 184, 1740 (1969).

Similar methods were used in the work of D. G. Boulware,
Phys. Rev. 172, 1625 (1968).
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Ljo"(x),j"(y))~(xp-yo) = p. b.j'(y)~(x-y)
—Sg '(y) &3gb(x —y), (2.2)

where a, b, c are isospin indices, and S~I, b is
the Schwinger term. We use the metric that
x»=(xg, xg, xb,ixp) H. enceforth, the Greek letters gg, »,

g, etc. are used as Lorentz indices, and the space indices
are denoted by k, I, m, n, r, etc. Also, the repeated
indices denote summation.

The time-ordered product T„„'bof the currents j„(x)
and j„'(y) is defined in the usual way by

T"'=T(j:(*)j.'(y))
=j:(x)j.'(y)()(xo-yo)

+j.'(y) j:(x)e(yo-xo) (2 3) and

T cb —T ab ab —T ab
v4 (2 9)

Again, due to the presence of the Schwinger term 5~,'b

in Eq. (2.8), we see that the divergence of T„„bis not
covariant either.

Realizing that the noncovariance of T„„'b and its
divergence B„T„,' comes from the same source, the
Schwinger terms, we now try to find a way to fix things
up. Since it is very easy to find an operator, say T„„b,
which has a covariant divergence, we ask ourselves
whether this operator which has the right divergence is
also covariant. The answer is yes as we soon see.

It is easily seen with Eqs. (2.7) and (2.8) that the
operator T„, ' defined by

We notice that for an operator, say, M„„(x,y), to be
Lorentz covariant, it has to satisfy the following com-
mutation relation with E„,the boosting operator of the
Lorentz transformation in the r-axis direction:

Tgb"'= Tgb'+Sgb'(y)&(x y)-
has a covariant divergence, i.e.,

&3»T»„b = pa paj„'(y) b(x y) . —

(2.10)

(2.11)
fK„M„,]= f')»4M„„f')»„M—4,+b,4M„f')„M—»g'

+(L„b')+L„,(»)M„„, (2.4)

&,T, '= ..j '(y)b( -y) (2.8a)

(3»T»„b= baba j;(y)b(x y) Sg (y) (3 g&(x y)—. —(2.8b)—

L„4(*'=xg(a/&)x„)—x(a /g)x4). (2.5)

So, by checking whether the commutator pE„,T»„ab)
has the same form as above or not, one can tell im-
mediately whether or not T„„'is covariant.

As a matter of fact, it is easily seen that T„„'b is not
covariant by noticing that

T ab)~ T ab T ab+(L (r)+I {»))T ab

Instead, we have

LK.,T4 "]= T(EK., j4 (x))j.'(y))
+T(i4 (x)LK.j.'(y)])

ab T ab+(L {a)+L (a))T ab

+(x -y )Ljo (x),j.'(y))b(xo-yo)
or

T ab) —T ab T ab+(L (a)+L (»))T ab

+S-"(3)&(x-y), (2 6)

where use was made of Eq. (2.2) and the fact that the
current is covariant, i.e.,

LK j»'(*)]= fgl gi: f')».i 4 +L.4(*)j»— (2 7)

We note that the presence of the Schwinger term 5„„"
in Eq. (2.6) causes the noncovariance of time-ordered
product T„„b.

To investigate further the origin of noncovariance,
we compute the divergence of T„, b:

~.T""= T(~.j»'(x),j.'(y))+L jo'(x),J'(y)) ~(xo —yo) .

By using current conservation and Eqs. (2.1) and (2.2),
we get

To see that the operator T„„'b is Lorentz covariant,
it is sufhcient to show its commutation relation with
boosting operator K„has the same form as Eq. (2.4).

Now with the definition (2.9) and Eq. (2.1), it is
automatic that

LKryTgba )=To 'b+T gab+(L, g&' +L,g&"')Tbb b. (2.12)

By making use of Eqs. (2.6), (2.9), and (2.10), one can
easily see that

(&K T ")=T " T'+(L (a)+—L &»)T '. (2.13)

So to prove the covariance of T„„'b, it remains to show
that the commutation of E„with its space-space com-
ponents takes the same form as Eq. (2.4). By using
Eq. (2.7), we see that

$K„Tgba b) = —&gr Tbb' —Igbr Tg4 '+ (Lrb(*)+L„g&») Tgo"

+(1/i)(xr yr)tj g'(x)j bb—(y))f')(xo yo) (2 14)—
So if we want to show that the commutator of the boost-
ing operator E„with the space-space component T~I, b

takes the same form as Eq. (2.4), i.e. ,

L .K, Tgb) = —&g,T4b' —&b,Tgb" +(L,b '+L,b'"') Tgb',

then with Eqs. (2.10) and (2.14), this would require
an identity among the Schwinger terms in pjga(x), job(y)]
X&3(xp —yp) and (Kr,Sgb"(y))f)(x —y), i.e.,

(1/ )(*.—y.)Lj ( ),j '(y)3(« —yo)
= -LK. Sgb"(y))~(x-y)

+(L '"'S "(y))~(*—y) (215)

To prove that the above identity holds, we commute
K, with Eq. (2.2) and 'then set y=0:

t: r,KLj (xo), jb (0))8(xp))=p b pC„,j;(0))&3(x)
—LK„Sgb"]&3g g)(x) .
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By inserting (2.17) into (2.16), we find

flk„"(0)= i[K„,S,k'(0)),

(2.18)

(2.19)

(2.20)
flkmnp = fmklnp &

etC.

By using (2.18) and (2.20), we can see that flkm„k 0, ——
because

f

�ah
lkmn fmkln

ab

+fnkml

+f.kl
'

flk. "-

Using Eq. (2.7) then yields

[j;(x)—x„(43/l3x4) j4'(x), jkk(0))b(xp)
i—[K„Slk"(0)547lb(x) .

Upon using current conservation 43p j„'(x)=0, the above
identity becomes

~((x,[j;(x),jk'(0) )b(xo) }
i[—K„S i"k(0)) l lbl( )x. (2.16)

Ke observe that if we can remove the derivative in

the above equation, then we have actually shown the
validity of (2.15) with y=0. To see how the spatial
divergence can be removed, we assume that the equal-
time commutator of the spatial components of two cur-
rents takes the following most general form:

[ji (x),jk'(0))b(xp) =f4k"(0)b(x)+flk '(0)8„b(x)
+flk„„k(0)43„i3„b(x)+f4k„„pnk(0) 8 B„i3pb(x)

+ +higher terms. (2.17)

We show that with Eq. (2.16), all the singular terms
involving more than one derivative of the 8 function
actually vanish. First, we notice that since the differ-

ential operators, say 8 and 8, etc. , commute with
each other and the indices m, n, p, etc. are dummy
summation indices, we can set flk „",flk „„",etc.
to be symmetric in these dummy indices, i.e.,

which is just what we want.
Ke summarize what we have learned in this section:

(1) The noncovariance and the wrong divergence of the
time-ordered product for two current is due to the
presence of Schwinger term in the equal-time commuta-
tor of time and space components of the currents; (2)
we have an algebraic method to show the existence of a
covariant T product, which can be generalized; and

(3) the way to guess the form of the covariant T product
is to require it to have the right divergence.

III. THREE AND MORE CURRENTS

%hen there are more than two currents, the situation
becomes very much involved. In order to have a better
idea of what is going on, we study the problem in this
section under two restricted assumptions:

(a) All the currents are the same.
(b) The Schwinger term is a Lorentz scalar. When we

come to the discussion of the general case in Sec. IV,
these assumptions are removed.

Kith these assumptions, the problems are very much
simplified. Not only can the general form for the co-
variant time-ordered product of n currents be written
down explicitly, but also the proofs for its covariance
are shortened considerably. Furthermore, we can use
the results that we get in this section as a guide for
treating the general case in Sec. IV.

Under these assumptions, the equal-time commuta-
tor for time-time components and time-space com-
ponents of the current now reads, respectively,

Ljo(x) jp(y))b(xp —yo) =o (3 1)

[jp(x),jk(y))b(xp —yp) = —S(y)l3kb(x —y), (3.2)

where e'&'& is the translational operator. But since we
have

LK.,e'" ")=ly.LK p.)e*""
=i(y4p, y„p —)e'

Eq. (2.22) then becomes

(1/4:) (x.—y.)[jl (x),j"(y))b(xp —yo)
= —([K„Sik"(y))—L.4'"'Sik"(y)}b(x —y), (2 23)

Similarly, one can show that flk „p' 0and that all-—
higher terms vanish. In short, we conclude that

where S(y) is the Schwinger term.
By introducing a„, defined by

a„„=g„„+8„48„4, (3.3)

Lj (*)j '(0))b(*o)=f '(0)b( )+f -'(0)~-b(*).
From this and (2.19), we find immediately that

(1/i)x„[j l'(x),jk'(0) )b(xp) = —[K„,slk '(0)]b(x) . (2.21)

By replacing x by x —y in (2.21), we see that

1 0 0 0
0 j. 0 0
0 0 1 0
0 0 0 —i.

we can rewrite Eqs. (3.1) and (3.2) as a single equation,

(1/i)(x.-3.)[jl'(*) j"(3))b(xp-yo)
e'"'"[K„Slk k(0))e '—P Pb(x y), (2.22)'—

i.e.,

Ljp(x),j.(y) )b(xp —yo) = —~.&(y)~.b(x —y) (3 &)
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By using Eqs. (3.3) and (3.4) together with the assump-
tion of the Schwinger term being a Lorentz scalar, we
obtain from Eq. (2.23) the identity

(1/)')(x —r )Lj.(x),j.(r))b(» —ro)
= b„4a„„S(y) b(x —y)+ b„444„&( y) b(x —y) . (3.5)

In order to pave the way for the discussion of the
problem of n currents, we first study the case of three
and four currents. YVe have learned from Sec. II that a
covariant time-ordered product for two currents can
be constructed from the usual time-ordered product
by requiring it to have the right divergence. YVe show
that this is also true for three and four currents.

Under the assumption that all currents are of the
same kind, the right divergence condition becomes the
divergenceless condition. For the case of three currents,
the operator T„v„de6ned by

Tyvzf = lfsvrf+ pI))vsse

with

T.„=T(j,(x)j.(y)j.(z)), (3.7)

p.„=~„T(5(y)j.(z))b(x —r)+o.,T(5(z)j.(x))b(r —z)

+4)„„T(5(z)j„(y))b(s—x), (3.8)
has the divergence

4)T„„„/Bx„=a„„b(y z)Pjp(x—),5(y)]b(xp yo) . —(3.9)

So it will be divergenceless if we can show that the
equal-time commutator for the time component of the
current with the Schwinger term actually vanishes. To
see that this is really the case, we use the Jacobi
identity:

[jp(x), l:jp(y), jp(0)])b(») b(rp)
= [j.(y), Lj,( ),j,(o)])b(,)b(y.)

+Kjp(x), jo(y)), j4(0) lb(xp)~(rp) (3 1o)

With Eqs. (3.1) and (3.2), this yields

L~ (x),5(O))b(x,) (a/ay, )b(r)
= Ljp(y), 5(0)]b(yp) (4)/4)xp) b(x),

so the only solution is that

t"jp(x),5(0))b(xp) =0 . (3.11)

By replacing x by x—y and then applying the trans-
lational operator e'&'& to the above equation, we obtain

Ljp(x),S(y))b(xp —yp) =0, (3.12)

which shows that T„„,defined by (3.6) is divergenceless.
Another fact about the commutators of jg, and S

which is useful in proving the covariance of T„„„is that

(1/4)(*.—y.)Lj.(*) 5(r)]b(xp —yp) =o

To prove this, we use Eq (3.11) to .get

[E„,Ljp(x),S(0)))b(xp) =0.

By using current conservation and remembering that

5(0) is a Lorentz scalar, we get

Bp[x,Lj4(x),5(0)])b(xp) =0.
Using an argument similar to that which leads from
(2.16) to (2.21) allows us to remove the spatial diver-
gence in the above equation to obtain

x Ljp(x) 5(0)]b(xp) =0. (3.13)

Replacing x by x —y and applying the translational
operator e'"'p to (3.13) yields

(1/')(*.—r.)Lj'(*),5(y))b(*o—yo) =o (3.14)

Ke are now in a position to show that T„v„, which is
divergenceless, is also Lorentz covariant. First, we note
from the definition of a„„in (3.3) that

~p4 ~4v

So from (3.8), we have

p4„„a„,T(5(—z—)j 4(x))b(y s) . —(3.15)

From the definition of p„„,in (3.8) and by using (3.12),
(3.14), and (3.15), it is easy to see that

p )= b 44J T(5(z)j (x))b(r z) b p4 4

+b„444„„T(5(x)j,(y) )b(z —x) b„p„4, —
+b.4~,.T(5(y)j .(s))b(x y) b:—p"4—

+(L (r)+L 4(p)+L 4(v))p (3 16)

Upon using (3.5), we find that

LEr)Tpvp) = b4v4Trvp b4vrT4vp+bv4Tprp bvrTrv44

+b,4T„.—b..T.,4+ (L.4"+L.4'"'+L.4'*')T„,
+(b„4a„„+b„44J„,)T(5(y)j „(z))b(x y)—
+(b.4o.,+b,«-)T(5(z)j.(*))b(r—z)

+(b„444„,+b„4a,„)T(5(x)j„(y))b(z—x) . (3.17)

Now combining (3.16) and (3.17) together with (3.8)
yields

f+rr Tivvp] brv 4TrvrI brv rT4v 4+br 4Trv r 4 br rTp 4r)+ br)4T4vvr

—b„„T„„4+(L„4&)+L„4'»+L,4&v)) T„„„, (3.18)

which shows that T„v, is Lorentz covariant.
So we have seen that the covariant time-ordered

product for three currents can be obtained from the
usual T product by requiring it to have zero divergence.
We would like to see whether or not this rule is also
applicable to the case of four currents and finally to the
general case of n currents.

According to this rule, we can construct the covariant
time-ordered product T„„„~for four currents from the T
product by requiring it to have zero divergence. So to
find T„,„~, we set

TI vek ~I ve$+Pi vek ~

where T„„,~ is the time-ordered product for four currents
i.e..

T".t=T(j.(x)j.(y)j.(z)j4(n)).
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To find p„„„~,we require T„„„~to satisfy the divergence-
less conditions, i.e.,

~ nt I nt ~ I n$ ( ~ ~$ ( )

where
B„'*'= (B/Bx„), B„"&'= (B/By„), etc.

Thus we find that

(])+ (»
P~pnh

=Pl ~n& +Pfspn&

with

time-ordered product by requiring it to have zero
divergences, i.e.,

(~1)7 —a (~~)T —.. . = 8 (~~)7 =t'i

It takes the form

(3.23)

where m=siii if n is even or m=s(n —1) if n is odd.

T„,»...„„is the usual time-ordered product, i.e.,

p„„„i"=a„„b(x y)T(—S(y)j „(s)jp(w))
+a-b(s —x)T(5(s)j.(y) j~(«))
+a,H(x —«) T(5(«)j.(y)j.(s))
+a„„b(y—s) T(S(s)j„(x)j((w))
+a„tb(y w) T(5—(w) j„(x)j,(s))

+a„ib(s w) T(S—(w) j„(x)j„(y))
and

T."'.=T(j. (xi)j.,(xi) . . j..(x-))

and p„, „,...„„(')is the sum of all possible distinct terms
which contain the T product of I Schwinger terms with

(n —2l) currents, that is, the sum of all possible distinct
terms similar to

(3.20) a„,„,a„,„, a„„,„„b(xi x)b(x3 —x4) b—(x & i —xi()

XT(5(xi)5(x4). . .5(x&&)j„„,(x2&+i) . j„„(x„)).
p„„„t-'' =a„„a„ib(x—y) b(s —w) T(S(y)S(w) )

+a„„a„tb(s—x) b(y —w) T(S(s)S(w))
+a„ia„„b(x w)b(y s—)T(S(x)—S(y)) (3 21)

n~a1 es 7'„„„~divergenceless.
To show that the rule also works for the case of four

currents, we have to prove that T„„,~ obtained in this
way is Lorentz covariant. Due to the terms of the type
T(5(x)S(y)) in T„„„i,we need to show that

(x,—y„)[S(x),S(y)]b(xp —yo) =0 (3.22)

in order to prove the covariance of T„„,~. To see that
Eq. (3.22) actually holds, we again use the Jacobi
identity

[jo(y),[jk(x),S(0)]]b(xo)b(yo)
= [j~(x),[jo(y) 5(0)]lb(xo)b(yo)

+ [[jo(y),ji(x)],S(0)]b(xo)b(yo).

Multiplying the above identity by x„and using (3.11),
(3.13), and (3.2) yields

x„[S(x),S(0)]b(xo)Bi &&'b(y —x) =0.

So we get
x,[5(x),S(0)]b(xo) =0.

By replacing x by x —y and applying the translational
operator to it, we obtain

(x,—y,)[5(x),S(y)]b(xo —yo) =0. (3.22)

Ke refer to Appendix A for the rest of the proof of
the covariance of T„„„~.

Having learned how to construct the covariant time-
ordered product for two, three, and four currents, we
now try to generalize it to the case of n currents. Ke
claim that given n conserved currents j„,(xi), j»(x&)
j„„(x„)which satisfy the equal-time commutation re-
lations (3.1) and (3.2), then there exists a covariant
time-ordered product T»...„„obtained from the usual

The proofs for its covariance under Lorentz transfor-
mation are given in Appendix A.

IV. GENERAL CASE

%'e now come to the discussion of the general case by
removing those two restricted conditions assumed in
Sec. III. Kith the Schwinger terms not being Lorentz
scalar, the new complications arise due to the fact that
the time component of the current no longer commutes
with the Schwinger term at equal time. In fact, a new
singular term involving the first derivatives of the 8

function shows up in the commutator [jo'(x),5«,~'(0)]
Xb(xo) As we see later, if this term were zero, then the
covariant T product of three isovector currents would
have the same structure as the one obtained in Sec. III.
So in order to investigate the existence of the covariant
T product of three isovector currents, we need to know
the structure of the commutator [jo'(x),5&&"(0)]b(xo).

To find the structure of this equal-time commutator,
we use the 7acobi identitv

[jo (. ),Ljo'(y), j"(o)]]b( )b(yo)
= [[j:(x),jo'(y)], ji'(0) lb(») b(yo)

+ [jo'(y),[jo'(*),j~'(0)]lb(xo) b(yo) .

By multiplying the above identity by yi and using (2.1)
and (2.2), we find that

Lj:(-i.),5«"(o)]b(»)b(y) ="~.5«"(0)b(x) b(y)

+e.,&5« "(0)b(x) b(y)

y&[jo'(y), S—i"(0)]b(yo)B b(x) . (4.1)

This assures the existence of a new (4.1) term 5„«~'(0)
defined by

5„[i."(0)b(x)=x [jo (x),5&i'(0)]b(xo). (4.2)

Bv inserting (4.1) into (4.2), we see that 5~« ~' is
completely symmetric in the pairs of indices ( '), (&~),
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and

Rib"(y) —=Sia"(y),
R„'a(y) R~bea(y)

(4.5)

& i"'(y)=—S ia'"(y),
(4.6)

A4„„eae(y) =A „b,eae(y) =A „„bebe=0—
In terms of them, Eq. (4.4) now reads

Ljo'(*),R""(y)]b(xp—yo)
= ("b~R p"(y)+""Rp "(y)}b(x y)—

'b'(y) 8 8(x—y) . (4.7)

Ke are now in a position to find the covariant time-
ordered product for three currents. According to the
rule of what we have got in Secs. II and III, we require
it to have the right divergence which in this case is
equal to the sum of covariant time-ordered product of
two currents shown in Sec. II. By using the result ob-
tained in Sec. III for the case of three currents as a
guide, we try to see whether or not the operator T„„„'b'
dehned by

and (a'). So we have

[jp (x),Sip"(0)]b(xp)
=(p.bpSi 'b(0)+«„„S,b'"(0)}8(x)

—S„ia '(0)8 b(x). (4.3)

By replacing x by x—y in (4.3) and applying the trans-
lational operator e'&'& to it, we get

Ljp (*)S«'(y)]b(xp —yp)

=( pbpS ia'(y)+ .p. Spi"a(y)}b(x y—)
—S ia "(y)8 b(x —y) (44)

For convenience we introduce the operators R„„a(y),
3„„„"(y)defined, respectively, by

has the right divergence, that is,

8„& &T„„„"=«„T„adb(x—z)+«„T„„~'b(x—y) .

It is easy to check that we also have

d„&»T„e„"=pa.gT„„'"b(y . )Z+—bp eTd"b(y Z)—

and

8„"T„„„'"=p„dT„„&ab(z x)+p—,agT„; b(z y) . —
Thus we have found that T„„," has the right diver-
gence. To see that it is also covariant, we refer to the
Appendix B for the proofs.

Now we con1e to the case of four currents. Again the
complications arise due to the fact that another new'

singular term shows up in the commutator [jp'(x),
S iab'd(0)]b(xp). For the same reason as stated before
for the case of three currents, we need to know the
structure of this commutator. To find it, we again use
the Jacobi identity

bp (x),[jp'(y) Si.'(0)]jb(xp)b(yp)
= [[jp (*),j"(y)],S«'"(0)lb(xp)b(yp)

+U"(y),[jp (x) Si"'(0)]lb(xp)b(yp).

Multiplying the above identity by y and using (2.1)
and (4.3) yields

Ljo (*)S- "'(0))b(xp) b(y) =C-i '"'b(x) b(y)
—y-[jp'(y), S-»'"(0)] (yp) ~.b(x), (4.13)

where

Cmia: peebeSmib ( 0)+ ppeeSmib (0)
+p,d.S ia"(0) . (4.14)

Again Eq. (4.13) assures the existence of another new
term 5„~«a '" de6ned by

abc T abc+p abc
pv'g 1k beg PEP'g

has the right divergence, where

T". '= T(j:(x)j.'(y)j:(z))

(4.g)

(4.9)

S ia (0)b(x) =x [jp (x),S ia
' (0)]b(xp). (4.15)

By inserting (4.13) into (4.15), we see that S„,b'b'" is
completely symmetric in the pairs of indices ( ), (, ),
(,'), and (a~). So (4.13) now reads

p,. "=T(R.."(y)j:(z))b(x—y)
+T(R„„'(z)j„(x))b(y z)—

+T(R "(*)j '(y))b(x —y). (4 1o)

With (2.1), (2.2), and (4.7), we find that

8 &*&T "=p. adTe '8(x —y)+p. egTep"h(x —z)
oh. (z)b(y z) p7 b(x z), (4.11)—

where T„„"'is the covariant time-ordered product for
two currents found in Sec. II, that is,

T "'=T(j."(y)j '(z))+R. "(z)b(y —z)

Because of the presence of A „„„'a'(z),we see that T„„„'a'
has the wrong divergence. Instead, it is easily seen from
(4.11) that T„„„"defined by

T»" '=T . "+~" '()b(*- )b( —) (412)

[jo (x) S-ia"(0)]b(xp) =C-ib ""(0)b(x)
S i—~a(0) 8 b(x) . (4.16)

With this we see that the covariant time-ordered
product T„„,~ bcd for four-currents is given by

T abed —T abcdMp(j) abed~ (2) abed+p,.„g +p
+R„.«eaed, (4.17)

with

(4.1g)

p"'".« "'=b( —y)T(R""j;( )j«'( ))
+b(*—)T(R.»"( )j '(y) j«'( ))
+ b(x w) T(R„«'"(I&)j„'(y)j„'—(z))
+b(y —)T(R. "()j:(*)j« "( ))
+b(y —~)T(R « "(~)j:(*)j;(z))

+b( --)T(R,« "(-)j.-()~, (y», (4.19)
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p("„,„"= b(x y)—h(s w—)T(R„b(y)R„p"(w))
+b(y z)—b(x w)—T(R 2 d(w)R„"(s))
+b(x —s)h(y —w) T(R '(s)R 2"(w))

(4.20)
R".2 '"=b(*—y»(x —s) ( ".'"(s)jr'(w))

+b( —*)b(*—)T(A. 2""( )j.'(y))
+b(x—y)b(x —w) T(A„„2 "(w)j;(s))
+b(y —s)b(s —w) T(A„,t'd(w) j„(x))
+D„.„t "'(w) b(x —w) b(y —w) b(s —w),

(4.21)

where we have introduced D„„„pb"d defined by

laabcd—=Snml jc = nmllc

D abed D abed D abed D abed —04v)1$ lb421$ Pv4) bsv2) 4

With (4.16), it is not hard to see that Tu„„t"d has the
right divergences, that is,

* T shed pob T tccdb(r
y) +p T tb db(x s)

+PsdcTcpt 'b(x w) p

We observe that for any index, say p;, in p». ..„„"it is

either attached to the a's as a subscript or attached to
the current as a subscript. For any index p, ;, we define

p». ~ .„i...„„"' '" to be the sum of terms in p». ..„„("with

p, ; attached to the current. The number of terms in

p». ..„„'[l'""]is lV„i;„"with

1V ("=C " 'C2" 2C2" ' C2" (" '&/l! (A2)

where the C's are the binomial coeKcients, i.e.,

n nn —1

2I

Denote p». ..„,...„„'fl"i "" to be the sum of terms in

p„,...„„("with pi attached to the a' s. The number of

"=Cl" 'C-" 'C2" ' .C-" '" "/(l —1)! (A3)

As a check we see

and similar expressions for 8„("'T„,„~'"",etc. The proofs
for its covariance is quite complicated. It is given in

Appendix B.
If we compare the covariant time-ordered product for

the case of three or four currents in this section with the
corresponding one obtained in Sec. III, we find they
almost have the same structure except for the addi-
tional term which involves the new terms S lI,

b' and
„abcd

When we come to the general case of n currents,
a SerieS Of neW termS S lj„- b', S mls,

'" . . ShOWS up.
So things get quite complicated. The explicit form for
covariant T product is too involved to be written down,
and the proofs of its covariance are too messy to be
given. But we emphasize that the answer does exist.
Ke note that if all these new terms were zero, then it
would have the same structure as the one we have
obtained in Sec. III for the case of n currents.

()+g ()
—C n —1C n —2C n—4. . .Cn —2(&,—1)/(l 1) )

+C n lC n 2—C n b—. . .Cn——(21—1)/l&

—LC n —2C, n—4. . .Cs—2(i 1)/l)]-
XL21+22 —2(l —1)—1 —1]2(22 —1)

= CpnC2n —2. . .Cpn —2 (1—1)/l &

—g (l)

It is just equal to the total number of terms in p„,....„„("
or, in other words,

(l) — l flzi, ~&] M l [lsi bout]pul" ui "us ''pul" us +pu'l "u '' (A4)

From (3.5) we get

(1/i) (x;—x,)„[j„,.(x,),j„,.(x,)]b(x;p —x,p)

=b„,ba,„,.b(x;—x;)S(x;)+b„,.4a„,„b(x,—x,)S(x;) .(A5)

APPENDIK A

We show in this Appendix that Tp1yg p defined by
(3.23) is covariant under Lorentz transformation. As
we have seen earlier in Secs. II and III, an operator
M„,»...„„is covariant if and only if it has the following
commutation relation with the boosting operator E„:

By taking into account (3.12), (3.14), (3.22), and (A5)
together with the definitions of p» y ' ..„„'f» ' ] and

Pl1 "l;" l„'
&

We getl [l4 i,out]

~~;.~~1 "~i 14~i 1"..
i=1

~pimp%' "pi-14pi+14 "pn
i=1

n
l fr, out]+P b„4p„...„, „„,„...„„

+(E L' 4
*' )iM'ulu2 "i ~ (A1)

i=1

n

+(Q L,4("*&)T„,„,...„„(A6)
i~1
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and

c CZ) t l [r, in]+r)pfsl"'Pn 3 ~ ~Pi4PPl" fbi lrPi+1"'Pn

2(n —1) Schwinger terms with only one current, so by
using (3.12), (3.14), and (3.22) we get

l [4,in]
~fbi rpP1"'Ps 14@i+I'* Pn

i=1

c ( -1)/2 I —V (n —I)/2 fr, in]
+r&l Pl" Pn Ãt 4PP1 ' "fss-1 res+1' "Pn

i=1

l+1 [r,out]+Z ~lli 4p». 'pi —"i&pi+1"'pa
i=1

for t & 2n if n is even or ~ (n 1)—if n is odd.
The terms p». ..„,„„i,...„„'+'"'"'] are obtained as a

result of making use of (A5). As a check, we see the
number of terms having the coe%cient 8„,, 4, coming
from applying (A5) in [E„,p„,...„„&'&$ is

gT . (l )C n—(2l+1)
fs~, m

=g, ~—~c ~—3g. ~—~. . .g ~—(~&—~~(n —2f —1)/f!
= —,

' (n —1)(n —2) [-', (n —3)(n —4)]
)&[~~ (n —2l+1)(n —2l) j(n —2l —1)/l!

—Q n—1( „a—2. . .Q a—2/$ J

(l+1)
$1 7

From (3.24),

n

+(2 L.4"")p. '.'" "" (A.11)
i=1

Using (A6), (A9), and (A11) then yields

[+&IT»'"pnj [+»T»pI'"llnl+ 2 C+~yp»'' pa'
E=l

where
m=-,'m for even n

=-,'(n —1) for odd n.

where use was made of (A3), which is just the number
of terms in p». ..„i,„„i, „„'+'["'"']which appeared in

(A7). Recall that a4„——a„4——0. So it is easily seen that

b„,,(T„,...„i,4„,„...„„

p„,...„.,4„, „'[''"']=0 for all i. (AS)
(E)l+g p., "„,4.„,...,„)

We can therefore rewrite (A7) as follows by using (A4)
and (AS): For f & 2n if n is even, or ~~(n 1) if n—is odd,

n m

i Cz)l —Y l [r, in]

+r)peal

''fjn g ~ Pi4pfsl "Ili-lrfsi+1"'Isn l [r,out] )+PPl "Pi-1rPi+1 "Pn J

(E)~Pirpfsl' "fbi-14fsi+1' 'Pn
i=1

or

Now for even n, p». ..„n
"'" contains only time-ordered

products of 2'n Schwinger terms, so we use (3.22) to get +(Q 1.„4&*")T„,...„„, (A12)
i~i

For odd e, p». ..„„""/' contains only T products of

which is exactly the same form as (A1) with T»...„„in
place of M». ..„„.Therefore, T„,...„„sode6ned by (3.23)
is indeed covariant under Lorentz transformation.
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APPENDIX B

M'e will show in this appendiz that T„„„"and

T„„„t~'", defined, respectively, by (4.8) and (4.17), are
covariant under Lorentz transformation. Applying the
booster K, to Eq. (43) yields

LK. [jo (*),S "(0)]]h( )=EK.,2I - '(0)]b( )
—EK„,S„&i '(0)]i&„h(x)

or

(1/i) (it/i&x„)x„[j „(x),S&,'(0)]h(xo)
+ [jo'(x),[K„,S,i'(0)]]b(xo) = [K„,B,i "(0)]5(x)

[—K„S„»,"(0)]f&„b(x), (B1)

where 8»,' '(0)—= e, &dS», '(0)+e„dS», "(0) and we have
used current conservation. Now from (2.21) and the
Jacobi identity,

[jo'(x),[K„,S»~'(0)]Jh(xo) h(y) = —(1/i) [jo'(x),y,[ji~(y), j&'(0)]]h(»)h(yo)

(r /i) ([jo (x) j&'(r)) ji'(0) }h(»)h(r») —(y /i) U&'(y) Ljo (x) ji'(0)]}h(xo)h(ro)

(r /i)~ob&[j (&r),j'(0)]h(ro) h(x —y) —(r./i)""Ej&'(r),ji"(0)]h(ro)h(x)

+(y,/i)LS-i"(y), j~'(0)]~ h(x —y)h(yo)+(y. /i)L j&'(y),S-~-(0)]~-h(x—y)h(yo)
= EK. B«'"(0)]+(r./&) LS-i'(y) ji'(0)]~-h(x —y) h(ro)

+(r./i) [j&'(y),S-~'"(0)]~-b(x)b(ro),
so that Eq. (B1) becomes

rj (x,[j (x),S, '(0)].h(xo)} (h)y +y,[ Si (r),J&'(0)]'ij h(x y)h(—yo)+y, [j&'(y),S„,-(0)]a„b(x)b(y,)
i[K—„,S»,'~'(0)]f& h(x)h(y) . (B2)

By using the argument similar to that which leads from (2.16) to (2.21), we get

x.[j- (x) S&i '(0)]h(x-o)h(y)+y„[S & '(y), j (0k)]h(x —y)h(yo)+y. [ji'(y),S i"(0)]h(yo)h(x)
i[K„S-„».~~(0)]h(x)h(y) . (B3)

In terms of R„„'(z),R„„'(z),and A„„„~'(z),the above equation becomes

[(x„—z„)/i][j„'(x),R„„'(z)]h(xn—zo)h(y —z)+[(y,—z,)/i][R„„"(y)j„'(z)]h(yo —zo)h(x —y)

+L(r,—,)/ ][j,'(r),R..-( )]h(r.-")h('- )
= Eh.4A ... "(z)+h.&A..."(z)+b,iA ...'"(z)]h(x —y) hb —z)

—([K„,A „„„"'(z)]—L„,'&A „„„"'(z)}h(z —y) h(y —z) . (B4)
Note that

Elt r)Tpv~ ]= hp4Try~ hprT4v71 +hv4Tprq hvrTp4~ +hqiTpvr hqrTpv4

+[(x,—y,)/i]T(E j„'(x),j„~(y)]h(xo—yo) j„'(z))+(L,& "+L,&i"&+L,4'-'&) T„„„'~'

+[(y —z )/&]T([j. b) j:(z)]b(ro—")j:(x))+[('—x )/&]T([j:(z) j:(x)]h(zo—xo)j b)) (»)
ancl

P'~ T(R~.' (y), y~'(z))] = (T(EK„,R„„~~(y)]—L,4&L'&R„„~~)j„'(z)}+h„,T(R„„'~(y)j,'(z)) h„„T(R„„"(—y) j4'(z))
+L('-r )/']ER, .'(y), j;(z)]h(y.-zo)+(L, & &+L,. )T(R,- (y) j„(z)). (B6)

Using the relation

E(x.-r.)/&]Ej.'(x),j.'(r)]h(x»-ro) = h.&-"h(x-r)+h.&.."(y)h(x-r)
—ILK R 'b)]—L.i'"'R""(r)]h(x—y)}

together with (4.8), (4.10), and (B4), yields

EK,T". ']=[K.,Tp.n'"]+[K.,p". ']+[K,Ap. w '(z)]h(x —r)hb —z)
= b„4T,.„"'+b,4T„,„"'+h„&T„„;"—h„,[T4„„"'+T(R„„'(z)j4 (x))5(y z)]-
—h„,[T„,„. +T(R„„-(z)j. (y))h(x —.)]—b„„[T„„:+T(R„„.(y) j, (z))h(x —y)]

+(L,&"+L,4'"+L,4&'&)T „".(B7)
From the definition of A„„„"and R„„",we recall

So (Bj) now reads

abc g abc g abc 04i q P4tf Pj 4 anCl R4„~~——R„4~~——0.

+[L 4(&&+(L 4(y&+I 4(z&)T abc) (B8)
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Therefore, we see that T„„„'' defined by (4.8) is covariant under Lorentz transformation. Now we go on to show
that T„„„p b'd defined by (4.17) is Lorentz covariant.

Apply booster IC„ to (4.16):

[Ic„[jp-(x),5.„o' (0)]]~(x.) =Ez„c „"(0)]~(x)—EI~„s„„„..b d(0))a„a(,)
ol

(1/b)(~!».)x.[j.'(x),5-(b'"(0))~(xo)+[jo (x),[I(.„5 (k (0))]~(xo)
= [E„,C (,

'b d( 0.)]8(x)—[K„,S„,b'b'd(0)]8„5(x) . (B9)

Replacing x by y, y by s, (b by b, b by c, and c by (l in (B3), then making use of it, we find

—i [jp (x),EK„S (b"'(0)]]b(xo)b(y)(1(s) =y, [jo'(x),[j '(y), 5(b"(0))]h(xo) (1(s)b(yo)

+s„[jp'(x) ~[5~& '(s) rjb (0))]8(xo)h(y —s)b(so)+s. [jo'(x),Ej(' (s),5,(."(0))]h(xo) &(y) &(so) . (B10)

Now by the Jacobi identity, we see that

y, [jo (x),Ej-'(y),5(.'(0)]]~(xo)~(s) ~(yo)

=y,[p b J '(y)&('x y) —5—„(y)&„&(x—y),S(b"' (0))&(xo)&(yo)8(s)+y [I (y),[jo'(x),5(b' (0))]&(xo)&(s)&(yo)
= o.o.y Li -'(y) 5«"(o))~(x y) ~(yo) &—(s)+ -p. y[ j-'( y), 5«"(0)]~(yo)~(x)~(s)

+p, d,y,[j (y),5&b"(0)]ii(yp) 8(x)b(s) —y„[5„(y),S(b' (0)]8(yo)&(s)~.&(x—y)
—y.Lj-'b) 5.(b"'(0)]~(yp) ~(s)~.~(x) .

Using the above relation together with (B3) and (4.14), Eq. (B10) becomes

i [jp'(x), EA „s,b""(0))]b(xp) B(y)8(s)
=i[It„C „.b"(0)]S(x)S(y)S(s)+y,[S...b(y), 5,,«(O)]S(y,)S(s)a„c(x—y)+,[5 "( ),5. "(0))b( o)~(y- )~-&(*)+ .[5- "( ),5- "(0)3(o)~(y)~.~( -y)

+y,[j '(y) 5.(b"'(0)]&(yo)~(s)&.&(x)+s.[5. i "(s),jb"(0))&(so)&(y—s)~ ~(x —s)
+s.[j('(s),S-b "(0))~(sp)b(y) ~.&(x) (B11)

By inserting (B11) into (89) and using the argument similar to that which leads from (2.16) to (2.21), we obtain

y,[5„„'(y),5«'"(0)]b(yp) (i(s)b(x —y) +s,[5„("(s),S„(b0))B(sp) B(x)5(y s)+s—„[5„("(s),5 b (0)]5(sp) ii(y) ii(x —s)
+ye[j b(y) 5»"d(0))h(yo)(1(x)~(s)+s LS i b'(s) jbd(0))(1(so)(1(x y)~(y s)
+s.Eji'(s) 5-' "(0))~(sp)~(x)h(y)+x.[j.'(x),5-(b"'(0))&(xo)~(y) ~(s)

= —EE„,S„„&b 'd(0))8(x) 8(y) 8(s) . (B12)

Replacing x, y, and s by x—po, y —(p, s —(p, respectively, in (B12), and applying the translational operator e'"',
then rewriting lt, ln tcllTls of Dp„~q ) A~„~, E~„,ctc.) we gct

(y (d )D4: (y) & b' ((p)3(yo (po)(1(s (o)~(x y)+(s (p )[7(-' "(s) I(.'„b' ((o))&(so—&po)h(x —pp)8(y —s)
+(s,—(p,)EI(.'„„'(s),7(.'.tbd((p))h(so —(po)8(y —oo)5(x s)+(y, (p—,)[j„(by),—A„„"p(d()d)B(y p &pp)8(x (o)—b(s (p)— —
+(x —(p )EA„.„' '(x), jp ((p)]8(so—(po)8(x s)~(y —s)+(s —(p )Ej '(s) ~ .&' ((o))p(so —(po)(1(s (o)8(y —po)

+(* — )Ej:(x),~"p"'(~)1~(xo—~ )~(y —)~(s —~) =E~, D-.b""'"( )+~. D".p
'"( )+~, D.-p'"'(~)

+bdbD„„„;b'd((d))h(x po) 8(y (p) li(—s (d) —{EI(.„D—„„„b'—b"'d((p)] —I., i&(„D„„br'd((o)}(i(x—(d)(i(y —(p) ii(s —(o) .
(B13)

Using the method similar to that employed in Sec. III to prove the existence of the covariant time-ordered product
of 4 currents together with (813), which takes care of the additional term I(.'„„„p'b'd under Lorentz transformation,
one gets

7 abed) —$ T abed g T abcd+g 7 abed h 7 abed+/ T e &: b(1duT abedF)

+g 7 abrdsg 7 abed+(I 4')+I (y)+I ( )+I 4u))T abed (B14)
This assures that T„„„p'b'd, as defined by (4.17), is Lorentz covariant.


