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The technique for summing perturbation contributions introduced by Efimov and Fradkin is extended
and applied to nonlinear (chiral) Lagrangian theories. It is shown that the only likely infinites in these
theories are those associated with self-mass and self-charge.

I. INTRODUCTION

NE of the significant recent advances in particle
theory has been the formulation of chirally in-
variant Lagrangian theories.! These theories have so
far been used with reasonable success for predicting low-
energy (soft-meson) amplitudes in the following way:
The interaction Lagrangian—an exponential or rational
function of the spin-zero meson fields ¢*—is expanded
as an infinite power series in ¢* and then used to eval-
uate tree-diagram® contributions to the amplitudes.
Clearly, at the next level of sophistication one is inter-
ested in the closed-loop contributions, at which stage
two related problems arise:

(i) Since the Lagrangian itself is expressed as an
infinite power series, Lint=_» ¢2g"¢"(d¢)?, the number
of perturbation diagrams in each order % increases
(typically) as fast or faster than #!. On any reasonable
estimate, the perturbation expansion must be a diver-
gent series. For respectable theories like quantum
electrodynamics, with Lagrangians which are poly-
nomials in the field variables, one has always suspected?
that the perturbation expansion provides an asymptotic
series in €2/ hic; here, with Lagrangians which are them-
selves infinite series, this behavior appears to be a
virtual certainty.

(ii) Each of the terms in the expansion of the Lagran-
gian [terms like ¢"(d¢)?; n> 1] represents a nonre-
normalizable interaction in the conventional sense. The
ultraviolet infinities of the perturbation expansion there-
fore get progressively more virulent. On the face of it,
this is rather surprising, since it is well known that
every nonlinear theory can be reformulated as a theory
of linear group representations* with polynomial La-
grangians together with a certain number of constraints
on the fields ¢*. Before the imposition of the constraint,

* Imperial College, London, England.

1 On leave of absence from Imperial College, London, England.

! These effective Lagrangians were originated by F. Giirsey,
Nuovo Cimento 16, 230 (1960); S. Weinberg, Phys. Rev. Letters
18, 188 (1967); J. Schwinger, Phys. Letters 24B, 473 (1967). Two
useful reviews are F. Giirsey and N. Chang, Phys. Rev. 164, 1752
(1967); and S. Gasiorowicz and D. Geffen, Argonne National
Laboratory Report No. ANL/HEP 6801 (unpublished).

2B. W. Lee and M. Nieh, Phys. Rev. 166, 1507 (1968); Y.
Nambu, Phys. Letters 26B, 626 (1968); L. Prokhorov, Nuovo
Cimento 57A, 245 (1968).

¢C. A. Hurst, Phys. Rev. 85, 920L (1952); F. J. Dyson, ¢bid.
85, 631 (1952).

* Abdus Salam and J. Strathdee, Phys. Rev. (to be published);
C. Isham, Nuovo Cimento 59A, 356 (1969).

187

the theories are renormalizable; if any nonrenormaliz-
ability occurs, it must arise through the imposition of
the constraint.

In this paper, we argue that botk difficulties (i) and
(ii) stem from the same circumstance, namely, the
expansion of the Lagrangian in a power series of the
field variables, and that a summation,® or even a partial
summation, of the divergent perturbation series is
likely at the same time to reduce the problem of ultra-
violet infinities.®

An advance was made towards the (partial) summa-
tion of the perturbation series arising from rational and
exponential Lagrangians in a series of papers by Efimov
and Fradkin’-® during 1963. Like all summation methods
for divergent series, the problem of uniqueness of the
sum remains unresolved in their technique. Efimov,
however, has claimed that besides satisfying the usual
analyticity requirements, the Efimov-Fradkin (EF)
summation method meets the demand of consistency
with Landau-Cutkosky unitarity at least for the self-
energy and vertex functions. In this paper, we wish to
apply the EF method to summing the perturbation
series of nonlinear Lagrangians of the chiral variety.®
We wish to show that the infinities in such theories
appear to be no worse after summation than those en-
countered in conventionally renormalizable theories.
Central to our discussion is the result which states that
the degree of ultraviolet infinity of EF sums depends
on the growth of £in¢(¢) as ¢ — o for nonlinear theories
just as for the usual linear theories. To be more specific,
the result (extended below to include derivative cou-

® We list here some of the papers where summation of perturba-
tion diagrams of infinite parts of such diagrams has been carried
out using widely different techniques. R. Arnowitt and S. Deser,
Phys. Rev. 100, 349 (1955); G. Feinberg and A. Pais, ibid. 131,
2724 (1963); T. D. Lee and C. N. Yang, ibid. 128, 885 (1962);
Abdus Salam, zbid. 130, 1287 (1963); Abdus Salam and R. Del-
bourgo, ibid. 135, B1398 (1964); M. Baker, K. Johnson, and R.
Willey, 7bid. 136, B1111 (1964); T. D. Lee, Nuovo Cimento
594, 579 (1969).

8 Throughout this paper we use the terms “divergent” for
series and ‘‘ultraviolet infinite” for integrals.

7G. V. Efimov, Zh. Eksperim. i Teor. Fiz. 44, 2107 (1963)
[English transl.: Soviet Phys.—JETP 17, 1417 (1963)].

8 E. S. Fradkin, Nucl. Phys. 49, 624 (1963). See also subsequent
work by G. V. Efimov, Nuovo Cimento 32, 1046 (1964); Nucl.
Phys. 74, 657 (1965).

9 After completion of this paper we became aware of the work of
H. M. Fried [Phys. Rev. 174, 1725 (1968); New Phys. (Korean
Phys. Soc.) Suppl. 7, 23 (1968)] which suggests applying the EF
methods to chiral Lagrangians, though derivative couplings were
not considered.
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plings so essential in nonlinear chiral Lagrangians) can
be stated as follows:

(i) Assign to each scalar field ¢(x) (with the propa-
gator (T{¢(x)¢(0)})=A(x) =x~2 as a* — 0) the “singu-
larity”” behavior ¢(x)~1/4/(x?)=1/x as x— 0 or equiv-
alently o~M with M —oc.

(ii) Likewise assign the behaviors

o

due(x) = 15 or due ~ M3
x>0 M ->x

v~ M

M->=

Y(x) = 1/x%2 or ¢ =spin-3 field;

Up ~ M2,

m-—>L

Uux)= 1/22 or U =spin-1 field.
>0

A theory is expected to be renormalizable, with only
a few types of integrals that are ultraviolet infinite, if
Linte ~ M* This criterion applies equally to integrals

Mox

in conventional polynomial Lagrangians like L£ine=go*
or g\ e, as well as to EF sums in theories with Lagran-
gians like g£*(9¢)?/ (14 ¢2). We shall call such theories
normal. These like Lin=ge¢® or g(d¢)?/(14 ¢?) which
behave like M3 or M2 or lower (Lini~M"; n<4) will be
called supernormal. All theories which behave worse
than ¢4 ie., for which £in~M", >4, will be called
abnormal. For supernormal theories there is the attrac-
tive possibility that when #<2 all integrals, including
those for self-mass and self-charge, may be finite.

The plan of the paper is as follows: In Sec. II we
give an outline of the EF method which has two ingre-
dients: (i) Hori’s exponential representation!® of Wick’s
normal-ordering theorem and (ii) the EF integral
representation”® of Hori’s exponential operator, which
essentially performs a “Borel” sum of the divergent
perturbation series. The power-counting rules for
estimating over-all ultraviolet infinities of EF sums
is given in Sec. III. We consider derivative couplings
in Sec. IV and formulate the rules for writing EF sums
in such a manner that the ultraviolet power-counting
estimate can also be stated here. Section V contains the
application of these results to the nonlinear (chiral type)
Lagrangians in an SU(2)®SU(2) symmetric theory.
Since equivalence theorems, which state that on-mass-
shell S-matrix elements are unaltered by contact trans-
formations in field space, play such a critical role,!!
we devote Sec. VI to a nonrigorous discussion of the
circumstances in which such transformations are
permissible. Not discussed in this paper is the problem
of absorbing these infinities into counter-term
Lagrangians.

1S, Hori, Progr. Theoret. Phys. (Kyoto) 7, 589 (1952).

1 The type of problem which one meets is that £in¢(¢) may look
abnormal when expressed in terms of one set of fields but normal
in another formulation. Consider, for example, a theory with
Lint=2¢(14 ¢) (3¢)2+ ¢*(1+ ¢)?, which looks hideously abnormal

but can be transformed into the familiar supernormal ¢? theory
with substitution ¢ — (14 ¢).
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II. THEORIES WITH NONDERIVATIVE

COUPLINGS

We summarize below the steps needed to arrive at the
EF representation’-® of the .S matrix, assuming that
the interaction Lagrangian contains no field derivatives.
(In Sec. IV we extend the techniques to cover situations
where derivatives are encountered.) An illustrative
example is presented to demonstrate the power of the
EF method.

Step 1. Begin with the standard perturbation ex-
pansion of the S matrix,
iN
S=y —SW™
N N!

where
SO =gy / toye - disx TTL{ (@)} L{gn)}] (1)

and we are supposing in this section that
Line=gL{e(x)}, 2

where ¢ denotes a real scalar field.

The further expansion of the .S matrix into normal
Wick products can be compactly expressed through
Hor?’s functional operator™ as follows:

SO =g‘\'/d“21- - d%y

0

1 2
xpl — ([4.'1(14.‘2" X1— X))
Xe\p(z/ x1d4reA(x1—x )6¢(x1)6¢(xg)>
XL} - Lielzm}], )

where A(x;—x2) denotes the bare causal propagator for
the scalar field ¢. This formula can be simplified to read

N a2
S =g-"/r 4210 d%n exp(% SOA >
D deide
X[L{ 991} s 'I-{ ¢N}]¢k=¢“"‘(z;.-) Ag=A(zp—z]) (4)

Here ¢r= ¢%%(z;) is the wave function of any external
particle which may be acting at the point 2. One may
rewrite (4) in a form where these external wave functions
are exhibited separately by writing

S =/¢l4x1' cedix,: e(xn)
(@) S (g, -y a), (5)
where the n-point function in the Nth order equals

6"

SO (xy,- -, x,)=(0] S0y

de(wr)- - be(x,)
=gA\'/d4zl. cedizy Y 8™ (x—gz1)

- 6(111‘\')(x—ZN)SY,,,l..-mN(A) y (6)
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X m;=n) with
" (x—2)=8(x;,—2)8(x5,—2) - + - 8(2:,,—2), (7)

and
82 a mi
Sml...mN(A)sexp<% > Ay )(—«—)
i deidei/ \der
a myN
(52) teen - Lo Tema ©®
den
The vacuum graphs are given in their entirety by
(i)Y
S =z V1 11421 tet (14ZN5'(1(|...(1(A) ’ (9)
N o\!
N 02
Sn(»...u(A) =€f\'p<% Z Aij >L(<p1) ce L((pN) y (10)
i O¢ide;

while the two-point (self-energy) graphs are completely
described by

(ig)™
S(xl,Xz) = Z f (1421' . (l"ZA\'
Nz2 V!

X {8(x1—21)8(x2—22)S200...(A)
+6(.’C1 ~52)5(-\32 —2’2)5020...(A) +[6(.\’.1 —Zl)é(xg —29)

. +6(x1—22)8(x2—21) JS110...(4) },  (11)
with
92 92 |
Sag0...(4) =exp[% S A :I L(¢1) - Len)|
o0 lo=0
92
S110...(A) =6Xp[% > A ]
dede
02 |
X (g1 - L(¢en)| , (12)
d¢10¢2 lp=0.cte.

which expressions are represented graphically in Figs.
1(a) and 1(b), respectively.

Step 2. Give a simple integral representation of
Hori’s exponential operator by making use of the EF
lemma’-®

62
eXP<A““*>1’ (¢,¢)

dede’

1 J a
=—/d2u exp(—’;qu{-uc +u*c’—)F(¢,<p')

T ¢ de

1
= / d*u exp(—u])F (¢tuc, ¢’ +u*c’),

™

(13)

with the parameters ¢ and ¢’ constrained to satisfy
cc’=A, but otherwise arbitrary. (They can be chosen
to suit one’s purpose. Thus ¢=c¢'=+/A would corre-

NONLINEAR AND LAGRANGIAN

THEORIES 2001
Fic. 1. (a) Self-energy dia- ‘
grams Sag.... (b) Self-energy
diagrams Syi... .
(a) ()

spond to the most symmetric choice, one we often make;
c=A4, ¢’=1 to the most asymmetric choice. In any
event, the final result cannot explicitly involve any
square roots of A and must depend only on the product
cc’=A.) Since the final expression on the right-hand side
of (13) involves as integrand the function F shifted from
its value at ¢, ¢’ to p+uc, ¢'+u*c’, we shall call this
the exponential-shift lemma.

Applying the lemma to the N'th order S matrix by
introducing complex variables u;;, ¢;; between every
two pairs of points 77, one has the representation

92 1
exp(% > A )L(%). Liem) =11 (_ /(iguij)
i 9¢ide; isi\r

Xexp(—3% 2 [uii| 2 L(er+ 2 curtear)
i &

< Llen+2 envune), (14)
k

with
¢;ic;i= A;; (no summation over 77)
and
(15)
As an application of the lemma, consider all vacuum
graphs of order gV. These are given by

1
Soo...0(A) =H (‘ / d2“ij> exp(—2 lui;]?)

m

_ %
Ui = Uji

XL cvrnr) - - - L enwuni).  (16)
k k

Likewise, the self-energy graphs of order gV are given
in terms of

1
Sa0..0(4) =11 (‘ / d2ui1> exp(—2_ |ui;[?)
i\
XL cwmr) - - L ennrens)
k k

1
Sno...(A) =H (“ / fi?“ij) BXP(—Z ;ui;; E ?)

i\

XL cwmrn) L' (X conman) - -+, (17)
k k

and so on. Hence L'=090L/d¢, L"=82L/d¢?, etc.

To see how this works in practice, take the model for
which gL(¢)=ge*/(14-72¢?). The power of the tech-
nique, which explicitly displays sums of perturbation
series to each order in g, is already apparent since all
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Fic. 2. Typical
vacuum transition
Soo.

orders in \? are automatically taken into account by
the EF expressions. Thus, to second order in g and all
orders in A%, the vacuum contribution equals

ctut ¢ u*e

142222 14+-\2" 2%

d*u \
2:Soo(xn,xe) =g | —e i
T

where ¢¢’= A(x;—x5). Likewise, the two relevant self-
energy terms to second order in g but all orders in \? are

d*u
— o lul?

T 62(1u2\1+>\262u2/1+/\2c’2u*2

d*u \ d( ctut > d ( ¢ u*t )
—— 7 S . N
T cdu\14- 2202/ ¢’ du* \14-N\2c"20*?

The simplification of these integrals rests on the pair of
relations’

(]2 / C4u4 \ C’4u*4

g‘3520=g2

and

¢2S11 =g

m™

1 T
- /d?u w*ur f(Ju|?) =5,.m/ dEgnf(¢),
0

1[ f(ul? /* &
— d*u = ‘15_" )
T A4an)(1+8u*?) Jo 1—ap?

and derivatives thereof. Thus we find, as expected, that
the integrals only involve the product ¢¢’=A and not
the parameters ¢ and ¢’ separately. Explicitly (see Figs.
2 and 3),

£ A4£46_E
2Q, o2
22500 g/0 d£1__>\4A2g2’ (18)
© \2AESeE
g2Szo= —g“’/ d&— )
0 1—\A2g
(19)

= 2 2
g2511 =g2/ 41’5A3E4€_E< + ) ,
o 1—AA22 (1 —A\tA2L2)2

In particular, when we set A=0, we recover the ¢*
perturbation-theory results, viz.,

So=4!4%, S3=S50:=0,

) -

(a) (b)

Snu=4(4Aa3.

Fic. 3. (a) Self-energy dia-
gram Ss. (b) Self-energy
diagram Sy;.

21t is clear from these identities that the E-F summation
method is equivalent to a Borel summation of divergent series.
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We shall return to the ultraviolet properties of these
integrals after we have discussed the question of
infinities.

III. ULTRAVIOLET INFINITIES OF
EF SUMS

Physically, we are only concerned with S-matrix ele-
ments in momentum space,'? i.e., the Fourier transforms

S(p) =H< / dix e""’>S(A(xu))‘ (20)

On account of the causal character of the propagators
A(x), the task of defining the x-space contours of inte-
gration in integrals like (20) is not trivial. As is well
known, the light-cone singularity of A(x) is given by
the following expression:

driA(x; w)

2

x2

0 8(
=6(x?) *5#—( ))J 1/ (xz))+'iu|:— N/ (2))

x? 24/ (x%)
0(—x?)
vy

™/ (—x?)

i 27
=) ——— 1 o) =~ InChun a2 |

T ™

+O0(W/

The crucial part of Efimov’s work is a method of carry-
ing out the x-space integrals, with the demonstration
that one may define them so as to preserve the unitarity
of the S matrix in the perturbation sense, i.e., in the
expansion of S(A) in powers of A. Efimov’s procedure
consists in concentrating firstly on the Euclidean or
Symanzik region of the external momenta.’> For this
region of p space, it must be assumed that x-space
contours of integration have been rotated from the
Minkowskian into the Euclidean region of x. (For the
theories under consideration, the Minkowskian integrals
may not be well defined.) For other regions of p-space,
Efimov makes suitably defined continuations from the

¥2]) In|a?]).

(21)

13T he integrands (18) and (19) exhibit poles on the real axis,
£>0, and pose the problem of defining the correct contour of
integration in the £ plane, such that power series expansion of EF
integrals coincides with the perturbation expansion and satisfies
causality and unitarity requirements. We believe that this problem
is bound up with the problem of defining the Fourier integral (20)
away from the Symanzik region in p space. Efimov (Ref. 7) in
his calculation of self-masses takes the principal-value integral in
£ space. This has been further discussed by B. W. Lee and B.
Zumino, CERN Report No. TH1053, 1969 (unpublished).

14 See, e.g., N. N. Bogolubov and D. V. Shirkov, Introduction to
the Theory of Quantized Fields (Wiley-Interscience, Inc., New
York, 1959).

15 The Symanzik region is defined by the condition that the
linear combinations 3 ;a;p; be spacelike for any choice of real
parameters o;; i.e., the Gram determinants of —(p;-p;) are
positive for all sets of Z and j.
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Symanzik region. In this paper we are only concerned
with the ultraviolet infinities associated with integrals
(20), so for our purpose it is sufficient to remain in the
Symanzik region—or, to make matters simpler, on its
edge, where all external momenta p, are zero. Thus we
examine the infinities associated with the Euclidean
x-space integrals (x;?<0)

S50)= / Id% S(A),

where the A assume real values. A naive power count of
the over-all' infinities can be made by considering the
appropriate proper diagrams and retaining the most
singular parts of all the propagators A. Applying the
lower cutoff x*=M—2 (M?—x) to all x-space integra-
tions, it is evident that we can associate a factor M to
each 4/A that occurs; and since what in fact determines
the infinities is the powers of L(¢=+/A), we may easily
estimate the over-all infinity to be expected by setting
¢=M in L(¢) and letting M —oc.

Consider, therefore, an #n-point function and follow
the Dyson power-counting procedure.'” Suppose that
L(¢=M) behaves as M for large M. The integrand
of Su.my(d) in (14) contains the term (putting
Ci]"—‘C,',':\/(Ai]‘) for SllnpliClt))

A-—.‘Jmi/?[L((,\/A)u):l,\’,\,M—n'}-Nv ,

where # denotes the number of external lines and .V
the order of the graph (number of ‘““vertices”). The singu-
larity produced at x>=0 (M — =) is compensated by
4(N —1) integrations, four integrations being omitted
because the integrand is independent of the over-all
c.m. coordinates. There,

/ (@) YIS (M)~ M-t =L M=mNy . (22)

If the integral is to be regular in the limit M — =, then
NM@A—v)+n>4.

This is the same criterion which one encounters in
renormalization theory of polynomial Lagrangians.
In this count we have included tadpole contributions
[i=j terms in Eq. (14)]. If these were left out, the
count would be jeopardized in a subtle manner to be
discussed elsewhere.

We return to the example above to see that this naive
infinity count is sensible. The self-energy contributions
(19) to second order in g (but all orders in \) read, in
momentum space,

S(p)=2g> / Sao(A(x))d4x—+2g2 / Su(A(x))ersdic.  (23)

16 There may, of course, be hidden infinities from subintegrations
which, though they are not discussed here, form an integral part
of the renormalization program. We hope to study these in future
work.

17 F. J. Dyson, Phys. Rev. 75, 1736 (1949).
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Taking p2< 0 (Euclidean region), the integrals reduce to

- * uK1(ur) 8m2g?
1S(p) =41r2g2/ dr 1'3520( > }
M Arr \/(—P2)

£ K (ur
x / dr 72.71('\/(—‘1?2))511(# : - )), (24)

T

where we cut off the integrations at r=M~! in order to
estimate the infinity as x*— 0. Since the ultraviolet
behavior of the integral is independent of the value of
p?, we set this equal to 0:

~ * K1 (ur) ukKi(ur)
15(0) =-L7r2g2/ dr 7’3[52()(‘— )-{-Su( ):I .
1M 47r2r 4:7!'27’

Asr— 0,

wKi(ur)
—_ ln(%,u.r) +_—._ )
A2y 82 472p2

so that the lethal infinities at the lower limit are ob-
tained, using (19), as

1 1
lim 472g? / dr r"'liS 2(;(——) +S 11<v——>j|
Mo 1M 42p? 4722

—12 8
= lim 47r2g2/ dr r3<—h———>
Mo 1 )\216,"_474 >\4

InM;

(25)

i.e., we meet a logarithmic infinity at most. A naive
power count (up to these logarithms) would have agreed
with this result since when we set A=M? >«

/d“x[Sm(A)'i‘Sn(A)]

NM_4[S20(M2)+511(M2)] —_ — 12}\2 . (26)

An interesting feature of the result is the pole 1/A? of
the “leading infinity” in the A\? plane. This is not en-
tirely surprising in view of the fact that for A=0, we
must necessarily recover the conventional quadratic
perturbation infinity.

IV. THEORIES WITH DERIVATIVE COUPLINGS

In this section we extend the summation technique
to cases where £iq¢ contains derivatives of the ¢ field,

Line=gL(¢,0,0). (27)

It is common knowledge that for such situations the
Hamiltonian contains surface-dependent terms and
formula (1) for the S matrix holds only if suitable modi-
fications are made to the definition of time-ordering
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products of d,¢, More specifically, using a theorem!®
first proved by Matthews for Lagrangians involving
one time derivative, and later extended by Dyson to
Lagrangians with two time derivatives, the S matrix is
covariantly defined if we invert the order of differentia-
tion and the time-ordering operation in vacuum expec-
tation values of the following variety:

(T*eu(x) p(x"))=Ap(x—x")=9,A(x—2"),
(T*u(x) oo(2')) = Ay (x—x)= — 9,0,A(x— '),

where ¢,= d,.¢, provided one leaves out all terms which
involve 84(0) whenever it occurs. Given, then, the modi-
fied time-ordering operation 7%, we have

S(.wzg.\f(ﬂzl. dnT* L ¢ (21), ¢ul(z1))
s L e(zn),eu(zn) ) ]

The Wick reduction can be carried through by extending
Hori’s exponential operator to include differentiation
with respect to the derived fields ¢, as follows:

g a
S =g“’/d4z1v cdizy exp<~A—)
de OJde

XEL{Q(’I,‘FM} o ’L‘ ‘FN,@ux}]wk=¢"“(zk),<p,.k=aw"‘(zk) )

(28)

(29)
3 N
exp(*A(x)“*)l‘ O
de  d¢
92 92 92
= exp(A +2x,0" —2x,A7 —4dx,x,A"
d¢ede’ deude’ dede,’

1 S} d
=7 /(llx((,,,)(iQCllzbld?b-zri?d ti\'p(“ !d ‘ 2+aah+a'a*—l> exp<— ]bz I 2+B2b22x,‘
T a

d¢

a9
XCXP< — 1611248161
d¢ e,

&) aJ
Xexp(-— loaen | 24yec—Fv2'c.*

™

ext2mBobat2axy1cFv200; ¢ o a* 4B bo*, o2+ 2281 br* 4 2y F v o\F)

where

ad'=A, vyyy/=-4",
BBy’ = —B1By' = — vy’ =4".

18P, T. Matthews, Phys. Rev. 75, 1270 (1949); I'. ]J. Dyson,
ibid. 83, 608 (1951).

(33)
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where
a3 a aJ J
—A—=1 A—
de Je i 0@; Ogj
02 92
=32 A(zi—z) FAuGi—z)
i ¢ile;j deuid@;
62 8‘2

+Au(zi_'5f)

-—+Au1«(~i—5j)’_——
¢i0¢y; Cuif¢vj

(30)

In order to give a simple integral representation of
this generalized operator we must be prepared to intro-
duce auxiliary vector variables. (This representation
will be needed in its full generality only for interactions
which are not polynomials in the vector variables.) To
see how this is achieved, it is enough to consider a pair
of points, since the extension to the whole series of points
is easily performed by the method outlined in Sec. IT.
Since

d
Au(x) =2x,—A(x?)=2x,A"(x?),
dx?
(31)
Ay (x) = —4a,0A" (2%) — 28,47 (x2),

we need to introduce at most one auxiliary vector and
four auxiliary scalar complex integrations. Showing this
in detail,

9? 0?
=247

deude,

i) S]
+ﬁ,’bl*2;\’,-—7) exp<— lel24y102a,

>F(¢,¢x; ¢’ ¢en’)
I¢ud ey

a9 I¢)
+B.'b2* >
d¢u d¢’

9
+71’c*2xu~-~>
Cu de)’

,>F(¢,m; ¢ en)

Cu a (2%

1
=— /d"c(,‘)d?cd?bld%ga expl —(la|2+ 1812416224 || 24 | exer | ) JF (¢ +aa—+B1b1,

(32)

The result cannot depend on the individual a,8,- - -, but
only on the products aa’= A, etc. For the remainder of
this discussion we choose to make the quasisymmetric
split

a=d'=B=B"=1/A, vi=v/=4/(-4"),

34
Yo=7"'=4/(—24"), and B.= —B/=A4"/\/A. )
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Now because in the limit 2% — 0,

A'(x?)~1/x* and A" (x2)~1/a8, (33)
one can see that, consistently for all integrations over
the shifted functional, we can ascribe the “singularity
factors”

o~M and g.~M? (36)

owing to the terms A and (xA’/v/A+x4/A"") occurring,
respectively, in the shifted arguments. Perhaps the
clearest way to appreciate this conclusion is to realize
that most of the auxiliary integrations are redundant
and that for the simple case treated above, only one
auxiliary vector and one auxiliary scalar variable suffice
to make the exponential shift defined in Sec. II. Thus,
write

a 9 d <]
cxp(——A——) = expl:(c“x-——-}-c)\—)
de 3¢ doy  de

a a 9?2
X(ny'——j+cx'v‘—l>+cc’ ’:I , (3D
dey de d¢de

with

o' =A, (38)

7
Cuxen’ =4y

a d 1
6-\'P<—A >1"(¢; ¢’)=—_/(1"umd2u

de J¢’ >

Cinen=4,,

Xexpl — ||+ |unues |) JF (@ cutcutty, oxtcnuty;
o' Fcur e/ u*, o o). (39)

Again the result can only depend on the products
cc’=A; if we make the symmetrical choice c=¢ for
simplicity, then (see the Appendix) in the (Euclidean)
limit x — 0,
c~1/x,

cu~1/x, cp~1/22.

The association (36) of the ultraviolet factors o~M
and ¢,~M? then becomes more obvious. The following
identities prove useful for the vector integrations:

1
- /d"u(,.)uxux*e“"“““"=%g,;\ , (40)
™

1
—4/rl’umuku,\f(u,uy*):(), etc. (41)
™

Here we are concerned only with a superficial count of
the over-all infinities to be expected in a given S-matrix
element.

The procedure is the same as before and will not be
repeated, since the result is that derivatives make no
essential difference to the infinity count beyond what
is expected for conventional polynomial Lagrangian
theories.
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V. NONLINEAR REALIZATIONS
OF SU(2)®SU(2)

The simplest practical applications of our conclusions
about derivative couplings are to be found in the non-
linear realizations of chiral groups. We shall study the
case of SU(2)®SU(2) symmetry for definiteness, be-
cause the features which emerge will apply to more
complicated cases as well.

Describe the mesons of the (3,3) representation by the
field matrix

S=o+it pA(e?), (42)

where the nonlinearity is introduced by imposing the
constraint
SST=1 or o2+ ¢?A%(p?)=1. (43)

The choice of the function A(¢?) corresponds to different
parametrizations of the nonlinear coordinates [o¢ and
¢ are coordinates of the differential manifold (43)7], and
with each such choice of A the corresponding inter-
polating field ¢ is different.!’® (However, we shall use
the same symbol in every case.)

The wunigue?® SU(2)®@SU(2)-invariant Lagrangian
which contains only two derivatives of the fields is

£=347%(0) Tr[(0,8)(9,8") 1= 3A7*(0) Tr[gus],

where we write

(44)
Ju=—i8'9,8=g,t. (43)

If we substitute for § the expression (42) and eliminate
o by means of the constraint equation (43), we then find

Ju=x[A(00,0— 9duo+ApXdyue)+20 0¢(e- due)]

¢(9dup)

=Ar| (1—-A2p2)129,0+———
(1—A242)1/2

X(A2+2A—’A’)+A¢X8u¢) (46)
and
Line=1A7%0) Tr[Jugu]—3(9ue) - (due)
=3[A*(0)A*—1](3,¢) - (Oue)
(¢-9ue)(e-due)

— (A*H4AA +44"2¢2)
2A%(0)(1—A%¢?)

(47)

where A’=dA/d¢? The ensuing equations of motion
can be conveniently remembered in the Sugawara
form?!

0,9.=0, aucgv_avg#+i[5#)cqv:]=0- (48)

9 For criteria when the S matrices are equivalent, see Sec. VI
and Refs. 23 and 24.

20 The coordinate independence of the Lagrangian on the
differential manifold has been proved by S. Coleman, J. Wess,
z(lﬁdf Iff) Zumino, Phys. Rev. 177, 2239 (1969); and C. Isham

ef. 4).

1 H. Sugawara and M. Yoshimura, Phys. Rev. 173, 1419 (1968).
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We may now inquire about the “ultraviolet behavior”
of the interaction Lagrangian with a view to possible
renormalizability.?? Begin by supposing that for large
e~M

A(e?) = gP~ME, o~ [1—M2]re,

M2(M2k+M——2)
ﬂ ~ MFk+2 (1 __M2+2k)1/2+_______+/1[k+1 ,
e (1__M2+2k)1/2
(49)
and
Mﬁ
Ling~(M*—1)M 44— —(M*++M2=2) . (50)
1 ___M2+2k
Hence
for k>0, Gu~ M and L~ M
for —1<k<0, go~M¥+ and Li~M4
and
for k< —1, Ju~M¥2 and  Lin~MH.

This shows that nonlinear realizations of chiral groups,
for the preferred meson fields, vield normal (£<0) or
seemingly abnormal (#>0) Lagrangians, but not super-
normal ones. The reason for this is not far to seek. For
k<0, £~M?*** so that subtracting off £,=(9,¢)?
~M?*, we meet a normal situation.

The question now poses itself: Since we can pass from
one set of coordinates ¢ to another, ¢’, by a point
transformation

S=o+it eA(p?)=0d'+it- ¢'A (92, (51)

what is the significance of the abnormal parametriza-
tions (k>0)? In Sec. VI we argue that the invariance of
the total Lagrangian (9,J.) should imply that the S-
matrix elements on the mass shell do not differ from
one parametrization to the next, so that the theory is
normal irrespective of the possibility #>0. We list
below some special choices of parametrization.
(i) Gasiorowicz-Geffen coordinates.

A(p?) =X\, a constant (i.e., k=0)
Ju=Ne-[00,0— a0+ reXdue],
with o= (1—=72¢?). Also,
28int=N(p- 0u0) (0 dup)/(1=N2e*) ~ M.
(ii) Schwinger coordinates.
A(e®)=M1422¢2)"12; X constant (i.e., k= —1).
Thus o= (1422p?)~ 12,

(52)

At
Ju=
142202

. In applying the exponential-shift lemma for making an ultra-
violet count, one has to introduce isotopic labels Ut to the auxil-
iary variables of integration.

[au¢+)\¢x au?] )
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and
)\2
2Line= -—————<¢2(a“¢)- (0ue)
14\2p2
¢ 9.0)(¢  due)
+(———"————“—>~M4. (53)
14A2¢2

(iii) Weinberg coordinates.
A(e?)=20(14+72¢*)71; \ constant (i.e., k= —2)
o=(1=Ne)(1+Ne),

giving

2\t
Ju= —"‘[(1_}\29?2)61‘(0"‘2)\4’)(8#("

(14r2¢2)?
+2\¢(¢- due) |
and
1
2Line=(0,0)- (9 ¢)<~—--—*~—1>~M4. (54)
t ( u® (M (1+)\2¢2)2

(iv) Harmonic coordinates. A set of coordinates
which may prove useful in the vector problem is de-
fined by the condition

A(1—@2A2) 2=\,

where A is a constant. In these coordinates, which we
shall call harmonic, the current operator is given by

2\ 22 ¢(¢- Oup)
Ju=| duo+ eXduo+ AT .
14 (1 —4\22) 12 (1—4\2¢2)172

In this form the linear term 9,¢ appears multiplied by
a constant rather than by a function of ¢2.

VI. FIELD TRANSFORMATIONS

In Sec. V we assumed the correctness of the basic
equivalence theorem, which states that if a local point
transformation of fields is made such that the physical
spectrum associated with these fields is unaltered—and
therefore also the Hilbert spaces of in and out states
remains the same—then the on-mass-shell (physical)
S-matrix elements, computed using either the original
or the transformed Lagrangians, are identical. This
theorem,?® first stated by Chisholm, Kamefuchi,
O’Raifeartaigh, and Salam, has been proved to varying
degrees of restrictiveness on field transformations and
rigor by the above-mentioned authors and in axiomatic
field theory by Borchers. It has latterly been extended
by Coleman, Wess, and Zumino?® who claim to sharpen
the result to apply even to diagrams with equal numbers
of closed loops. The weak point, when one comes to
applying the theorem in practical cases, is the lack of
criteria whereby one may judge what transformations

% J. 8. R. Chisholm, Nucl. Phys. 26, 469 (1961); H. J. Borchers,

Nuovo Cimento 15, 784 (1960); S. Kamefuchi, L. O’Raifeartaigh,
and Abdus Salam, Nucl. Phys. 28, 529 (1961).
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leave unchanged the in and out limits of the inter-
polating fields. For practical purposes, the only pro-
cedure known to us is the adiabatic switching on and
off of charges; this implies that a point transformation is
allowed if:

(1) In the limit g— 0 for a transformation like
e(x) = ¢ (x)=a10(x)+a20*(x)+ - - -, the a;— 0, i>1,
and @;— const#0. (@71 implies a wave-function
renormalization).

(ii) In the language of axiomatic field theory, all
transformations ¢ — ¢’ are allowed, provided ¢ and ¢’
are mutually local operators, [¢'(x),¢(y)]1=0, (x—y)?
<0 and provided (0| ¢|p)=2{0] ¢’| p), %0, where |p)
is the appropriate one-particle state.

(ili) The only known procedure for computing S-
matrix elements for given Lagrangians is essentially
the Dyson perturbation procedure which relies on
identifying that part of the Lagrangian which depends
bilinearly on field variables as £;. In this paper, when
making point transformations we have separated out all
bilinear terms; thus a term like £=(9,¢)%/ (14 ¢?) will
contribute (9,¢)% to £; and [¢?/(1+ ¢*)](9,.¢)? to
oeint-

(iv) A consequence of the split mentioned in (iii)
is that in our power-counting theorem, £=(d,¢)>/
(14 ¢?), does not behave supernormally like M? (assum-
ing o~M, do~M?) but normally like [¢2/(14 ¢*]
X(d¢)?~M* This may mean that our estimates of
singularity behavior are likely to be overestimates and
that a future formulation of a new computational pro-
cedure may depress our estimates of likely infinities.

(v) Regarding our discussion of nonlinear realizations
of chiral groups in Sec. V, it is important to realize that
the interpolating fields for two different choices of co-
ordinates can be related to each other; thus, writing

8=0(¢*)+ir eA(e?)=0'(¢?)+iz ¢'N(¢"), (51)
one can express ¢ fields in terms of ¢’ fields by compar-
ing terms of the power series in the ¢. We have assumed
that the adiabatic limits of both ¢ and ¢’ are the same,
so that the on-mass-shell S matrices are equal and so is
the singularity behavior of S-matrix elements. It is well

known that this result does not apply to the n-point
Green’s functions.

VII. CONCLUSIONS

We have shown in this paper that a simple power
count of ultraviolet infinite integrals in Efimov-Fradkin
sums of perturbation diagrams suggests that nonlinear
meson theories may behave in the same way as poly-
nomial Lagrangian theories so far as the infinity
count is concerned.

A number of fundamental problems remain, basic to
the whole approach, which are unresolved. There is the
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difficult problem of #nigueness of the sums, the renormal
ization program, and the problem of defining the con-
tours in the auxiliary variable planes. It is important to
realize that the proof of the absence of infinities in this
paper has been given with all vectors x, Wick-rotated
and Eulidean. It appears that for nonlinear theories a
“Euclidean continuation postulate” must be an essential
feature of the theories to render their matrix elements
finite. This principle is not new. It has been suggested by
Schwinger,?* Symanzik,? Fradkin,® and others. The only
thing one must guarantee is that the unitarity relation
T+T'+TTT=0 is preserved when the continuation in
external momenta to the physical region is made.
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APPENDIX

We give here proofs of the singular behaviors of the
shifted arguments occurring in (39) for derivative-
coupling theories. Our only concern is the (Euclidean)
limit « — 0, of Eqgs. (38), where A(x)~1/x2 To solve
Eqgs. (38), let

Cw=du(x)ereu(¥)co,
Cu=%XuC2,
and
(lpv(x)Eguv_x—quva guv—'ew'(x) )
and make the symmetrical choice ¢=¢’ as in the text.
Since
Ap= —20'd,— 20+ 4220 e,
and
A,=2x,4A,
we obtain the equations
612= —ZAI y

CoCr= 247 y

c?= —2(A"+222A"),

A+x%c’=A,

which are solved by
a=[—24"]"2~1/42,
co=[—2(a"+24A")]12~i(+/6) /22,
= ZAI//C()N‘i\/?/\/gxz ,

and

c=[A—x22]2~1/4/(342).

This proves the statement that a correct estimate of the
most singular behavior is given by
Cu~1/22,

cu~1/x, and c¢c~1/x.

# J. Schwinger, Proc. Natl. Acad. Sci. U. S. 44, 956 (1958);
Phys. Rev. 115, 721 (1959).
% K. Symanzik, J. Math. Phys. 7, 510 (1966).



