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In6nities of Nonlinear and Lagrangian Theories
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The technique for summing perturbation contributions introduced by Efimov and Fradkin is extended
and applied to nonlinear (chiral) Lagrangian theories. It is shown that the only likely infinites in these
theories are those associated with self-mass and self-charge.

I. INTRODUCTION

1
W)NE of the significant recent advances in particle

theory has been the formulation of chirally in-
variant Lagrangian theories. ' These theories have so
far been used with reasonable success for predicting low-

energy (soft-meson) amplitudes in the following way:
The interaction Lagrangian —an exponential or rational
function of the spin-zero meson fields p'—is expanded
as an infinite power series in y' and then used to eval-
uate tree-diagram' contributions to the amplitudes.
Clearly, at the next level of sophistication one is inter-
ested in the closed-loop contributions, at which stage
two related problems arise:

(i) Since the Lagrangian itself is expressed as an
infinite power series, 2;„&=P a g"y"(By)', the number
of perturbation diagrams in each order n increases
(typically) as fast or faster than n!. On any reasonable
estimate, the perturbation expansion must be a diver-
gent series. For respectable theories like quantum
electrodynamics, with Lagrangians which are poly-
nomials in the field variables, one has always suspected'
that the perturbation expansion provides an asymptotic
series in e')Iic; here, with Lagrangians which are them-
selves infinite series, this behavior appears to be a
virtual certainty.

(ii) Each of the terms in the expansion of the Lagran-
gian [terms like y"(By)2; n~&1j represents a nonre-
normalizable interaction in the conventional sense. The
ultraviolet infinities of the perturbation expansion there-
fore get progressively more virulent. On the face of it,
this is rather surprising, since it is well known that
every nonlinear theory can be reformulated as a theory
of linear group representations4 with polynomial La-
grangians together with a certain number of constraints
on the fields q '. Before the imposition of the constraint,
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Cimento 57A, 245 (1968).' C. A. Hurst, Phys. Rev. 85, 920L (1952); F. J. Dyson, ibid.
85, 631 (1952).

4 Abdus Salam and J. Strathdee, Phys. Rev. (to be published);
C. Isham, Nuovo Cimento 59A, 356 (1969).

the theories are renormalizable; if any nonrenormaliz-
ability occurs, it must arise through the imposition of
the constraint.

fn this paper, we argue that both difficulties (i) and

(ii) stem from the same circumstance, namely, the
expansion of the Lagrangian in a power series of the
field variables, and that a summation, ' or even a partial
summation, of the divergent perturbation series is
likely at the same time to reduce the problem of ultra-
violet infinities. '

An advance was made towards the (partial) summa-
tion of the perturbation series arising from rational and
exponential Lagrangians in a series of papers by Efimov
and Fradkin' ' during 1963.Like all summation methods
for divergent series, the problem of uniqueness of the
sum remains unresolved in their technique. Efimov,
however, has claimed that besides satisfying the usual
analyticity requirements, the Efimov-Fradkin (EF)
summation method meets the demand of consistency
neith Landal-CuSosky unitarily at least for the self-

energy and vertex functions. In this paper, we wish to
apply the EF method to summing the perturbation
series of nonlinear Lagrangians of the chiral variety. '
We wish to show that the infinities in such theories
appear to be no worse after summation than those en-
countered in conventionally renormalizable theories.
Central to our discussion is the result which states that
the degree of ultraviolet infinity of EF sums depends
on the growth of 2;„,(y) as y —+~ for nonlinear theories
just as for the usual linear theories. To be more specific,
the result (extended below to include derivative cou-

' We list here some of the papers where summation of perturba-
tion diagrams of infinite parts of such diagrams has been carried
out using widely difFerent techniques. R. Arnowitt and S. Deser,
Phys. Rev. 100, 349 (1955); G. Feinberg and A. Pais, ibid. 131,
2724 (1963); T. D. Lee and C. N. Yang, ibid. 128, 885 (I962);
Abdus Salam, ibid. 130, 1287 (1963); Abdus Salam and R. Del-
bourgo, ibid. 135, B1398 (1964); M. Baker, K. Johnson, and R.
Willey, ibid. 136, BIIII (1964); T. D. Lee, Nuovo Cimento
59A, 579 (1969).

'Throughout this paper we use the terms "divergent" for
series and "ultraviolet infinite" for integrals.' G. V. Efimov, Zh. Eksperim. i Teor. Fiz. 44, 2107 (1963)
/English transl. : Soviet Phys. —JETP 17, 1417 (1963)j.' E. S. Fradkin, Nucl. Phys. 49, 624 (1963).See also subsequent
work by G. V. Efimov, Nuovo Cimento 32, 1046 (1964); Nucl.
Phys. 74, 657 (1965).' After completion of this paper we became aware of the work of
H. M. Fried )Phys. Rev. 174, 1725 (1968); New Phys. (Korean
Phys. Soc.) Suppl. 7, 23 (1968)j which suggests applying the EF
methods to chiral Lagrangians, though derivative couplings were
not considered.
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plings so essential in nonlinear chiral Lagrangians) can
be stated as follows:

(i) Assign to each scalar field p(x) (with the propa-
gator (T{y(x)p(0)))=D(x) =x—' as x' —+ 0) the "singu-
larity" behavior p(x) =1/Q(x2) =1/x as x~ 0 or equiv-
alently q M with M ~~.

(ii) Likewise assign the behaviors

&t„p(x) = 1 x-' or &t„p —M',
@~0 half ~oc

P(x) = 1''x""-or M"-, (P =spin--,' field;
,&f ~ca

or U„M'-, U =spin-1 field.

'" S. Hori, Progr. Theoret. Phys. (Kyoto} 7, 589 (1952)."The type of problem which one meets is that 4; t(q) may look
abnormal when expressed in terms of one set of fields but normal
in another formulation. Consider, for example, a theory with
2; t ——2q(1+ q) (Bp)'+ q'(1+~)3, which looks hideously abnormal
but can be transformed into the familiar supernormal q' theory
with substitution q

—+ g(1+y).

A theory is expected to be renormalizable, with only
a few types of integrals that are ultraviolet infinite, if

M . This criterion applies equally to ~ntegrals
31~oo

in convenhonal polynomia/ Iagrangians like 2; &=gp
or g~p, as well as to FF sums in theories raith Lagran
gians like gp'(ct&c)'/(1+ rp') XVe .shall call such theories
norma/. These like 2;„&=g&p3 or g(ctrp)'/(I+ rp ) which
behave like M' or M' or lower (2;„, M'; n(4) will be
called slpernormuL. All theories which behave worse
than p4, i.e., for which 2;„t M", n&4, will be called
abnormal. For supernormal theories there is the attrac-
tive possibility that when n&2 all integrals, including
those for self-mass and self-charge, may be finite.

The plan of the paper is as follov s: In Sec. II we
give an outline of the EF method which has two ingre-
dients: (i) Hori's exponential representation" of Wick's
normal-ordering theorem and (ii) the EF integral
representation' ' of Hori's exponential operator, which
essentially performs a "Borel" sum of the divergent
perturbation series. The power-counting rules for
estimating over-all ultraviolet infinities of EF sums
is given in Sec. III. We consider derivative couplings
in Sec. IV and formulate the rules for writing EF sums
in such a manner that the ultraviolet power-counting
estimate can also be stated here. Section V contains the
application of these results to the nonlinear (chiral type)
Lagrangians in an SU(2)(SSU(2) s)~unetric theory.
Since equivalence theorems, which state that on-mass-
shell S-matrix elements are unaltered by contact trans-
formations in field space, play such a critical role, "
v e devote Sec. VI to a nonrigorous discussion of the
circumstances in which such transformations are
permissible. Xot discussed in this paper is the problem
of absorbing these infinities into counter-term
La.&~rangians.

s(x)
~ Qi

where

S("=g" (t'-~. . d's~TLI-{& (s~)) I{&(s~))l (1)

and we are supposing in this section that

&.(=gL{W(x))

where p denotes a real scalar field.
The further expansion of the S matrix into normal

Wick products can be compactly expressed through
Hori's functional operator" as follows:

S"'=g' de) . d4Zg;

Xexp — d x(d J26(x(—xe)
2 8 p(x() tI p(xp)

XLI-{&(-'()) ' '~-{&(s-v))j (3)

where D(x( —x2) denotes the bare causal propagator for
the scalar field p. This formula can be simplified to read

S(x)

XLL{p&) . I {px)j„„=,'* (,) ~„, g&, I, ,). (4)

Here p&,.——v"'(s(,) is the wave function of any external
particle which may be acting at the point zI„-. One may
rewrite (4) in a form where these external wave functions
are exhibited separately by writing

S(-"= d X(' ' ' ft Xu'. P(X()

p(x.):S&-"(x(, , x„), (oi

where the n-point function in the Xth order equals

S&-"(x(, , x„)=(0I S(-') I()&

8( (x,). tIp(x„)

=g' (l's( d's~ Q 8"'(x—s()

II. THEORIES WITH NONDERIVATIVE
COUPLINGS

Ke summarize below the steps needed to arrive at the
EF representationv of the S matrix, assuming that
the interaction Lagrangian contains no field derivatives.
(In Sec. IV we extend the techniques to cover situations
where derivatives are encountered. ) An illustrative
example is presented to demonstrate the power of the
EF method.

Step 1. Begin with the standard perturbation ex-

pansion of the S matrix,
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(g ns;=n) with

FIG. 1. (a) Self-energy dia-
Im S) & (~) grams S (to. .. . (b) Self-energy

and diagrams 511D... .
Q2

S,... (3)=—exp -' Q 3;, {a) (b)

~,V

l L(qI). . L(v.)N) j„o =(8.)
~pe

(f &I' ' '(f sNS00" ~ 0(~)

IV

S(o(,...„(a)=exp -', P a;, L(o I) L(koN),
Oft. ic) rfj

(1D)

The vacuum graphs are given in their entirety by

spond to the m.ost symmetric choice, one we often make'
c=A, c'=1 to the most asymmetric choice. In a»
event, the final result cannot explicitly involve any
square roots of 6 and must depend only on the product
cc'= A.) Since the final expression on the right-hand side
of (13) involves as integrand the function F shifted from
its value at p, p' to ~+Nc, p'+N*c', we shall call this
the exPonential shift le-mma.

Applying the lemma to the Xth order S matrix by
introducing complex variables uij, c;, between every
two pairs of points ij, one has the representation

while the two-point (self-energI. ) graphs are completely
B' 1

described by

(Ig) '
S(xl,xs) = p f') Zl d aP

Xexp( —
2 2 lu'II2)L(~1+2 c»ulk)

X (8(XI—.:I)B(x2—z2)$200. ..(h)

+B(XI 22)B(X2 22)S020" ~ (+)+LB(xl sl)B(x2 '2)

+8(xl Z2)B(X2 Zl) jS110 .~ (+) j ) (11)

with

L(pN+Q CNlu. Nk), (14)

c;,c,;=6;, (no summation over ij)

02 a2
S200...(11)=exp —, Q 6 L((oi) L(pN)

BPBft." l9q~i I y —0

Silo. ..(6) =exp

X '(0 I) I (k=N), (12)
~ ft" l~ +2 I tf2=0, etC.

Sij= Qji (15)

1
2......(k) =II — d'I;;) e 0(-X IN;;I'-')

ij 7r

XL(Q cikuik) .L(Q CNkuaok). (16)

As an application of the lemma, consider all vacuum
graphs of order g'~. These are given by

which expressions are represented graphically in Figs.
1(a) and 1(b), respectively.

Step Z. Give a simple integral representation of
Hori's exponential operator by making use of the EF
lemma"

Likewise, the self-energy graphs of order g~' are given
in terms of

XL (Q Clkulk) ' L(Q CNkuNk) )

(f ex2pu—I u
l
2+uc +u"c' F(p,p')— —

7r g pn XL (Q Clkuik}L (Q C2ku2k) ' ', (1 l )

d 'u exp( —l'-ul')F(p+uc, v'+u'c'), (13)

with the parameters c and t."' constrained to satisfy
CC'=6, but otherwise arbitrarv. (They can be chosen
to suit one's purpose. Thus c=c'=Qh would corre-

and so on. Hence L'= BL/B(S, L"=B2L/Bys, etc-.
To see how this works in practice, take the model for

which gL(ko) =gko'/(1+X2022). The power of the tech-
nique, which explicitly displays sums of perturbation
series to each order in g, is already apparent since all
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FiG. 2. Typical
vacuum transition
Spp.

o the ultraviolet propert' jes of these@re sh~ll return to t
'

d the question ofintegra sl ft we h*ve discusse e
infinities.

automatica y all t ken into account by
d d d ll
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III. ULTRAVIOLET INFINITIES OF
EF SUMS

e are only concerned with S-matnx ele-
h F ",""'f

ments inmomentum ps ace, "i.e., t e

g 500(xl x2) —g

C Q/4 Q4
(1 Q CN

Il
I

2

)
1+32C2u2 1+3.2c"I~27r S(p)= i x(Ixe" SD x;; (2O)

a'S» =Z'
d c Q62Q d C Q

e
—

I
~~I2

2 /21+&,2C2n2 c/dN, * f+g c 'z~Cdl

e jnte rais rests on the pair oThe simplification of these in g
relations"

d'u u*"'u "f(lul-') =8„dj)"f(j),

the two relevant se-lf-&x —x2, . Li ewise,
2b t llod i X aeenergy ermt rms tosecondorderin g u a

/4 g4d I ((32 c4n4 c n
2 2 e—lul2

2 2 /2 42j.+5,2C2u2 1+3'cC (I
and

e causal character of the propagators

l A i 11

nin the x-space co
rais like (20) is not tnvia.g ' ' ' g

known '4 the light-cone singu ari y o)

the following expression:

4~in(x; u)

8(x')
*))+&

— ~ (.~'("))= 8 (x')—A(uV'
2+(x')

+ &i(uv'( —x'))
~g/( —x')

f(lul')

m (1+nn') (1+Pu*')
d~

1 —np(2

2j
t

z
1 f (2i—-' ' e(x') ——»(2~=b(x') — —4u-

7rx2

+i&((d lx'I)»l'-'I) (»)

g4(4e—(
g Soo=g d~

1-X4a ~

Z2a4g6e-~
2o- d(—

0

2
g2Sii =g2 a'(~'~4e —~—

(19)

4e set X=o, we recover the pIn particular, when we se
perturbation-theory results, viz. ,

Soo= 4!~', S2o= So2= 0, =4 4!)5'.

(a)

FIG. 3. (a) Self-energy dia-
gram S2p. (b) Self-energy
diagram Sii.
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products of 8„p, More specifically, using a theorem"
hrst proved by Matthews for Lagrangians involving
one time derivative, and later extended by Dyson to
Lagrangians with two time derivatives, the 5 matrix is
covariantly defined if we invert the order of differentia-
tion and the time-ordering operation in vacuum expec-
tation values of the following variety:

(T*p„(x)p(x') )= D„(x—x') —= 8„6(x—x'),

(T*p„(x)q.(x')) = A„„(x—x') —= B—„B„A(x x—'),

where

8y 8q»

=—
2 2 ~(s*—-) +a„(s;—=,)—

8 (Ppt &Pj

(3())

where p„=—B„p, provided one leaves out all terms which
involve 8'(0) whenever it occurs. Given, then, the modi-
hed time-ordering operation T*, we have

S"~'=g' (/4sg (34zgT*P.{p(-g) p (s)))

I-{~(»), ~.(-~) )7 (21l)

The AVick reduction can be carried through by extending
Hori s exponential operator to include differentiation
with respect to the derived fields p„as follows. '

In order to give a, simple integral representation of
this generalized operator we must be prepared to intro-
duce auxiliary vector variables. (This representation
will be needed in its full generality only for interactions
which are not polynomials in the vector variables. ) To
see how this is achieved, it is enough to consider a pair
of points, since the extension to the whole series of points
is easily performed by the method outlined in Sec. II.
Since

6 (x) =2x —A(x') =—2x„h'(x-'),
dx

5 ('v) =g'v de& ' ' ' rl4z g exp 4
t9 p

D„„(x)= —4x„x„h"(x') —2g,„h'(x-'),
(31)

&LL{~~,~Pl). L«~, ~.~}7 k (k)=I; a„.*
(,==
(29)

we need to introduce at most one auxiliary vector and
four auxiliary scalar complex integrations. Showing this
in detail,

l9 l9

exp —A(x) F(q; q')

g2 C}2

=exp 6 -+2x„h'—
8(@pe(p

—2x,d'—
2 82

—4x„x„h"— —2A' —F(y, pg, q', pg')
~ p p~ ~t. v

d"c&„)d"cd'bg(Pb2d2a exp —Ia I
'+na '-+a'a—* exp —lb2I'+P2b22x„+P'b2*

7r"

l9 t9

Xexp —
Ii b~ '+pibi —+pi'b~*2x„exp —t c

I
'+yic2x„-+pi'c 2x;—

g qc'

Xexp —lcP, cg ++2c„++2c„* F
B(pp

&"c(.)«'cd'»~I'4a exp[ —(lal'+ Ibil'+ lb~I'+ lc I'+ lc~c~ I)7F(~+«+&~b~
7r'

&pq+2x~Pib2+2xgy~c+y2cg, y'+a'a*+Pa'b2*, yq'+2xqP~'bq*+2xn&'c" +y2'c'&*), (32),

where

0,'ck =Dq PyP] = 6 )
l tl

6242 ——Pili ——2y~y2 = ~ .

The result cannot depend on the individual o.,P, . , but
only on the products no, '= 6, etc. For the remainder of
this discussion we choose to make the quasisymmetric
split

P. T. AIatthews, Phys. Rev. 75, 1270 (1949); F. $. Dyson,
~Md. 83, %8 (19S1).

o= &'= &~=»'=- V'~ V ~= V ~'= V'( ~"), -
(34)y2=yg'=Q( —2D'), and Pg= —Pg'=6'jQD.
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Xow because in the limit x' ~ (),

A'(x') 1/x' a.nd A"(x') 1/'x',

p~M and (p„~M' (36)

owing to the terms A and (xA'/gA+x+A") occurring,
respectively, in the shifted arguments. Perhaps the
clearest way to appreciate this conclusion is to realize
that most of the auxiliary integrations are redundant
and that for the simple case treated above, only one
auxiliary vector and one auxiliary scalar variable suf5ce
to make the exponential shift defined in Sec. II. Thus,
write

one can see that, consistently for all integrations over
the shifted functional, we can ascribe the "singularity
factors"

S=o+i~ qA(q'), (42)

where the nonlinearity is introduced by imposing the
constraint

SS"=1 or 0+qPA(p)=1. (43)

V. NONLINEAR REALIZATIONS
OF SU(2)SU(2)

The simplest practical applications of our conclusions
about derivative couplings are to be found in the non-
linear realizations of chiral groups. We shall study the
case of SU(2)SU(2) symmetry for definiteness, be-
cause the features which emerge will apply to more
complicated cases as well.

Describe the mesons of the (2,—') representation by the
field matrix

with

I9 8 l9

X c)),p +cy — +cc
QBp

exp —A =exp c„q -+c),—

(37)

The choice of the function A(y') corresponds to different
parametrizations of the nonlinear coordinates La and
rp are coordinates of the differential manifold (43)], and
with each such choice of A the corresponding inter-
polating field p is different. " (However, we shall use
the same symbol in every case.)

The un'(lueso SU(2)(g)SU(2)-invariant Lagrangian
which contains only two derivatives of the fields is

/
CC +C&C)t =6 ) C~)tcg =DIs) C„gcg), =D~), . ~= lA '(o) T L(~.S)(~ S')l= lA '(o) T LA.A.j38)

(44)

exp —4 F(p; ((') =— d'u(„)d'u
7l

where we write

A~ — z~ ~.~—
A~ . (45)

If we substitute for S the expression (42) and eliminate
a by means of the constraint equation (43), we then find

Xe~pL —Iul + Iu&u, l)jf'(p+cu+c„u» p&+c&,„»u
(c +c u +c~ up, (cy +czpuy ) . (39)

()„=s $A((rB„rp (((B„(r+—A sr XB„rp)+2A'(r((i((p B„(((i)$
Again the result can only depend on the products
CC'=6; if we make the symmetrical choice c=c' for
simplicity, then (see the Appendix) in the (Euclidean)
limit x~ 0,

(r'((i)r)» p)
& —~2&»~2a &+

(1 A2+2) (/2

c 1/x, c„1/x, c„„1/x'.
The association (36) of the ultraviolet factors p M
and p„M' then becomes more obvious. The following
identities prove useful for the vector integrations:

d"u(„)u„u),~e ~ "~'=
4g„), ,

m4

j.
d u(„)u,usaf(u, u'„*)=0, etc.

Z4
(41)

Here we are concerned only with a superficial count of
the over-all infinities to be expected in a given S-matrix
element.

The procedure is the same as before and will not be
repeated, since the result is that derivatives make no
essential difference to the infinity count beyond what
is expected for conventional polynomial Lagrangian
theories.

and

~ - =-.'A '(0)»LA.A.j—2(d.v). (~.(()
=-',

I
A '(0)A' —17(8„si).(B„si)

((o ~.v)(» ~,s)+— (A4+4AA'+4A" p'), (47)
2A'(0) (1—A'&2)

where A'=dA/d(p'. The ensuing equations of motion
can be conveniently remembered in the Sugawara
form2'

~4.+ALA. „'1 3= o

"For criteria when the S matrices are equivalent, see Sec. VI
and Refs. 23 and 24.' The coordinate independence of the Lagrangian on the
differential manifold has been proved by S. Coleman, J. 9'ess,
and B. Zumino, Phys. Rev. 177, 2239 (1969); and C. Isham
{Ref.4)."H. Sugawara and M. Yoshimura, Phys. Rev. 173, 1419 (1968).
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We may now inquire about the "ultraviolet behavior"
of the interaction Lagrangian with a view to possible
renormalizability. 22 Begin by supposing that for large

M

A(~2) ~ ~k~M4: ~~[1 M2+12]//2

and
P2

2~(nt = (p (41u/p) ' (~v(p)
1+X'(p~

(4 ~.4P)(4P ~.2)+ M4. (53)
]+X'(p'M'(M'"+M ')~M2+2 (1 M2+22) 1/2+ +~1:+1

(1 M2+22)1/2 (iii) Weinberg coordinates.

(49) A(p') = 2K(1+X2(p') ' X constant (i.e., k= —2)

a= (1—X2222)(1+X2P2) ',
and

(M'"—1)M'+ — (M4"+—M2" ') . (50—)
1 —M'+'~ giving

Hence

for 4~0, M"+' and 2;„( M "+',
for —1&k &0, g„M'~+' and 2;„t, M';

and

for k & —1, p M~+~ and g;„t 3II4 ~

This shows that nonlinear realizations of chiral groups,
for the preferred meson fields, yield normal (k&0) or
seemingly abnormal (k)0) Lagrangians, b24t 2201 suPer
normal ones. The reason for this is not far to seek. For
k(0, X~M"+4, so that subtracting off Z/=(f/„(p)2

.V', we meet a normal situation.
The question now poses itself: Since we can pass from

one set of coordinates q to another, p', by a point
transformation

S o+i2:=(pA(4p2) = 0'+2'2: 22'A'(2 "-), (51)

v hat is the significance of the abnormal parametriza-
tions (k) 0)? In Sec. VI we argue that the invariance of
the total Lagrangian (()„g„) should imply that the 5-
matrix elements on the mass shell do not differ from
one parametrization to the next, so that the theory is
normal irrespective of the possibility k)0. Vire list
below some special choices of parametrization.

(i) Gasiorowicz-Geffen coordinates.

A.(p2) = X, a constant (i.e., k = 0)

=XV'[(28 /p /p4lp(2+X(pX leap/pj q

with 0= (1—X2(()2). Also,

2z;„2——) 2(s2 8 (p)(/p. 8„/p)/(1 —X'22') M'. (52)

(ii) Schwinger coordinates.

A((p2)=X(1+X2p2) "', X constant (i.e., k= —1).
Thus 0 = (1+X2222)—"'

[a„qp+l q)&a„qg,
I+3 'p'

"In applying the exponential-shift lemma for making an ultra-
violet count, one has to introduce isotopic labels U' to the auxil-
iary variables of integration.

2A, t
~))

= L(1 ~ (i )~) /p+2/1/p+f//(p
(1+l 2+2)2

+2&'V(4 ~.4)j

24;.,=(4,y) (4 y) . —1) M'. (54)
(1+X'-p 2) 2

(iv) Harmonic coordinates. A set of coordinates
which may prove useful in the vector problem is de-
6ned by the condition

A(1 —p2h2) '"= /).
2

where A, is a constant. In these coordinates, which we
shall call harmonic, the current operator is given by

2A. 2/(F((p '
4l/ /p)

p+ p P+ — X'C .
1+(1—4/(, 'p')'" (1—4i('p-'))/2

In this form the linear term B„p appears multiplied by
a constant rather than by a function of p'-.

VI. FIELD TRANSFORMAYIONS

In Sec. V we assumed the correctness of the basic
equivalence theorem, which states that if a, local point
transformation of fields is made such that the physical
spectrum associated with these fields is unaltered —and
therefore also the Hilbert spaces of in and out states
remains the same —then the on-mass-shell (physical)
S-matrix elements, computed using either the original
or the transformed Lagrangians, are identical. This
theorem, " first stated by Chisholm, Kamefuchi,
O'Raifeartaigh, and Salam, has been proved to varying
degrees of restrictiveness on field transformations and
rigor by the above-mentioned authors and in axiomatic
field theory by Borchers. It has latterly been extended
by Coleman, Wess, and Zumino' who claim to sharpen
the result to apply even to diagrams with equal numbers
of closed loops. The weak point, when one comes to
applying the theorem in practical cases, is the lack of
criteria whereby one may judge what transformations

~' J. S. R. Chisholm, Nucl. Phys. 26, 469 (1961);H. J. Borchers,
Xuovo Cimento 15, 784 (5960); S. Kamefuchi, I-. O'Raifeartaigh,
and Abdus Salam, Nucl. Phys. 28, 529 (196I}.
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leave unchanged the in and out limits of the inter-
polating fields. For practical purposes, the only pro-
cedure known to us is the adiabatic switching on and
off of charges; this implies that a point transformation is
allowed if:

difficult problem of uniqueness of the sums, the renormal
ization program, and the problem of defining the con-
tours in the auxiliary variable planes. It is important to
realize that the proof of the absence of infinities in this
paper has been given with all vectors x„Wick-rotated
and Eulidean. It appears that for nonlinear theories a
"Euclidean continuation postulate" must be an essential
feature of the theories to render their matrix elements
finite. This principle is not new. It has been suggested by
Schwinger, "Symanzik, "Fradkin, ' and others. The only
thing one must guarantee is that the unitarity relation
T+Tt+ TTt= 0 is preserved when the continuation in
external momenta to the physical region is made.

(i) In the limit g~ 0 for a transformation like

q (x) ~ (p'(x)=ai(p(x)+a, e'(x)+ the a;~0, i)1,
and a& —+ const/0. (ai/1 implies a wave-function
renormalization).

(ii) In the language of axiomatic field theory, all
transformations y —+ p' are allowed, provided p and p'
are mutually local operators, [e'(x),w(y))=0, (x—y)'
(0 and provided (0~ et

~ p) = s(0
~

y'
~ p), s&0, where

( p)
is the appropriate one-particle state.

(iii) The only known procedure for computing S-
matrix elements for given Lagrangians is essentially
the Dyson perturbation procedure which relies on
identifying that part of the Lagrangian which depends
bih'nearly on field variables as Zf. In this paper, when
making point transformations we have separated out alt
bilinear terms; thus a term like 2= (B„w)'/(1+ &p') will

contribute (B„w)' to Zr and [ie'/(1+w'))(B„w)' to

(iv) A consequence of the split mentioned in (iii)
is that in our power-counting theorem, Z=(B„p)"/-
(1+e '), does not behave supernormally like M2 (assuni-
ing e M, Bw M') but normally like [rp'/(1++'))
&((Bw)' M' This . may mean that our estimates of
singularity behavior are likely to be overestimates and
that a future formulation of a new computational pro-
cedure may depress our estimates of likely infinities.

(v) Regarding our discussion of nonlinear realizations
of chiral groups in Sec. V, it is important to realize that
the interpolating fields for two diferent choices of co-
ordinates can be related to each other; thus, writing

ACKNOWLEDGMENTS

We are indebted to Professor P. T. Matthews and
Professor G. Feldman for their support.

We give here proofs of the singular behaviors of the
shifted arguments occurring in (39) for derivative-
coupling theories. Our only concern is the (Euclidean)
limit x~ 0, of Eqs. (38), where A(x) 1/x'. To solve
Eqs. (38), let

c„,—=d„,(x)ci+e„.(x)co,

Cii = X~Cg )

and

d„„(x)—=g„„—x-'x„x„=—g„„-e„„(x),

and make the symmetrical choice c=c' as in the text.
Since

6„„=—2D'd„„—(2A'+4x-"6")e„,
and

6„=2x„k',

8= &(&')+i&.e,it(&p') = o'(w")+iz q'p'(w". ), (51') we obtain the equations

one can express rp fields in terms of q' fields by compar-
ing terms of the power series in the p. Ke have assumed
that the adiabatic limits of both q and p' are the same,
so that the on-mass-shell S matrices are equal and so is
the singularity behavior of S-matrix elements. It is well
known that this result does not apply to the n-point
Green's functions.

VII. CONCLUSIONS

We have shown in this paper that a simple power
count of ultraviolet infinite integrals in Efimov-Fradkin
sums of perturbation diagrams suggests that nonlinear
meson theories may behave in the same way as poly-
nomial Lagrangian theories so far as the infinity
count is concerned.

A number of fundamental problems remain, basic to
the whole approach, which are unresolved. There is the

ci-'= —26', c '= —2(A'+2x'6")
COCo= 2Q

y C +X C

which are solved by

ci= [—2g')'12 1/x2

c.=[—2(a'+2x'Z")) ~'-i(+6)/x',
c,= 2A')co- iV2/V3x',

c= [6—x'c~')'" I/g(3x')
This proves the statement that a correct estimate of the
most singular behavior is given by

c„„-1/x', c„-1/x, and c-1/x.

"J. Schwinger, Proc. Natl. Acad. Sci. U. S. 44, 956 (1958);
Phys. Rev. 115, 721 (1959)."K.Symanzik, J. Math. Phys. 7, 510 (1966).


